Properties

Label 66.2
Level 66
Weight 2
Dimension 31
Nonzero newspaces 4
Newform subspaces 9
Sturm bound 480
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 66 = 2 \cdot 3 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 9 \)
Sturm bound: \(480\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(66))\).

Total New Old
Modular forms 160 31 129
Cusp forms 81 31 50
Eisenstein series 79 0 79

Trace form

\( 31 q + q^{2} + q^{3} + q^{4} + 6 q^{5} - 4 q^{6} - 12 q^{7} + q^{8} - 19 q^{9} - 14 q^{10} - 9 q^{11} - 9 q^{12} - 6 q^{13} - 12 q^{14} - 24 q^{15} + q^{16} - 22 q^{17} - 4 q^{18} - 10 q^{19} + 6 q^{20}+ \cdots + 41 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(66))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
66.2.a \(\chi_{66}(1, \cdot)\) 66.2.a.a 1 1
66.2.a.b 1
66.2.a.c 1
66.2.b \(\chi_{66}(65, \cdot)\) 66.2.b.a 2 1
66.2.b.b 2
66.2.e \(\chi_{66}(25, \cdot)\) 66.2.e.a 4 4
66.2.e.b 4
66.2.h \(\chi_{66}(17, \cdot)\) 66.2.h.a 8 4
66.2.h.b 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(66))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(66)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 1}\)