Newspace parameters
Level: | \( N \) | \(=\) | \( 66 = 2 \cdot 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 66.e (of order \(5\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.527012653340\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\zeta_{10})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{3} + x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/66\mathbb{Z}\right)^\times\).
\(n\) | \(13\) | \(23\) |
\(\chi(n)\) | \(\zeta_{10}^{2}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 |
|
−0.809017 | + | 0.587785i | −0.309017 | − | 0.951057i | 0.309017 | − | 0.951057i | 3.11803 | + | 2.26538i | 0.809017 | + | 0.587785i | 0.736068 | − | 2.26538i | 0.309017 | + | 0.951057i | −0.809017 | + | 0.587785i | −3.85410 | ||||||||||||||
31.1 | 0.309017 | − | 0.951057i | 0.809017 | − | 0.587785i | −0.809017 | − | 0.587785i | 0.881966 | + | 2.71441i | −0.309017 | − | 0.951057i | −3.73607 | − | 2.71441i | −0.809017 | + | 0.587785i | 0.309017 | − | 0.951057i | 2.85410 | |||||||||||||||
37.1 | −0.809017 | − | 0.587785i | −0.309017 | + | 0.951057i | 0.309017 | + | 0.951057i | 3.11803 | − | 2.26538i | 0.809017 | − | 0.587785i | 0.736068 | + | 2.26538i | 0.309017 | − | 0.951057i | −0.809017 | − | 0.587785i | −3.85410 | |||||||||||||||
49.1 | 0.309017 | + | 0.951057i | 0.809017 | + | 0.587785i | −0.809017 | + | 0.587785i | 0.881966 | − | 2.71441i | −0.309017 | + | 0.951057i | −3.73607 | + | 2.71441i | −0.809017 | − | 0.587785i | 0.309017 | + | 0.951057i | 2.85410 | |||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 66.2.e.a | ✓ | 4 |
3.b | odd | 2 | 1 | 198.2.f.c | 4 | ||
4.b | odd | 2 | 1 | 528.2.y.d | 4 | ||
11.b | odd | 2 | 1 | 726.2.e.r | 4 | ||
11.c | even | 5 | 1 | inner | 66.2.e.a | ✓ | 4 |
11.c | even | 5 | 1 | 726.2.a.l | 2 | ||
11.c | even | 5 | 2 | 726.2.e.f | 4 | ||
11.d | odd | 10 | 1 | 726.2.a.j | 2 | ||
11.d | odd | 10 | 2 | 726.2.e.n | 4 | ||
11.d | odd | 10 | 1 | 726.2.e.r | 4 | ||
33.f | even | 10 | 1 | 2178.2.a.bb | 2 | ||
33.h | odd | 10 | 1 | 198.2.f.c | 4 | ||
33.h | odd | 10 | 1 | 2178.2.a.t | 2 | ||
44.g | even | 10 | 1 | 5808.2.a.cg | 2 | ||
44.h | odd | 10 | 1 | 528.2.y.d | 4 | ||
44.h | odd | 10 | 1 | 5808.2.a.cb | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
66.2.e.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
66.2.e.a | ✓ | 4 | 11.c | even | 5 | 1 | inner |
198.2.f.c | 4 | 3.b | odd | 2 | 1 | ||
198.2.f.c | 4 | 33.h | odd | 10 | 1 | ||
528.2.y.d | 4 | 4.b | odd | 2 | 1 | ||
528.2.y.d | 4 | 44.h | odd | 10 | 1 | ||
726.2.a.j | 2 | 11.d | odd | 10 | 1 | ||
726.2.a.l | 2 | 11.c | even | 5 | 1 | ||
726.2.e.f | 4 | 11.c | even | 5 | 2 | ||
726.2.e.n | 4 | 11.d | odd | 10 | 2 | ||
726.2.e.r | 4 | 11.b | odd | 2 | 1 | ||
726.2.e.r | 4 | 11.d | odd | 10 | 1 | ||
2178.2.a.t | 2 | 33.h | odd | 10 | 1 | ||
2178.2.a.bb | 2 | 33.f | even | 10 | 1 | ||
5808.2.a.cb | 2 | 44.h | odd | 10 | 1 | ||
5808.2.a.cg | 2 | 44.g | even | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} - 8T_{5}^{3} + 34T_{5}^{2} - 77T_{5} + 121 \)
acting on \(S_{2}^{\mathrm{new}}(66, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + T^{3} + T^{2} + T + 1 \)
$3$
\( T^{4} - T^{3} + T^{2} - T + 1 \)
$5$
\( T^{4} - 8 T^{3} + 34 T^{2} - 77 T + 121 \)
$7$
\( T^{4} + 6 T^{3} + 16 T^{2} + 11 T + 121 \)
$11$
\( T^{4} + 4 T^{3} + 6 T^{2} + 44 T + 121 \)
$13$
\( T^{4} + 4 T^{3} + 16 T^{2} + 24 T + 16 \)
$17$
\( T^{4} + 12 T^{3} + 64 T^{2} + \cdots + 256 \)
$19$
\( T^{4} - 6 T^{3} + 16 T^{2} - 16 T + 16 \)
$23$
\( (T^{2} + 2 T - 4)^{2} \)
$29$
\( T^{4} + T^{3} + 6 T^{2} - 4 T + 1 \)
$31$
\( T^{4} + 5 T^{3} + 60 T^{2} + \cdots + 3025 \)
$37$
\( T^{4} - 4 T^{3} + 96 T^{2} + 256 T + 256 \)
$41$
\( T^{4} - 6 T^{3} + 16 T^{2} - 16 T + 16 \)
$43$
\( (T^{2} + 2 T - 4)^{2} \)
$47$
\( T^{4} + 8 T^{3} + 64 T^{2} + 192 T + 256 \)
$53$
\( T^{4} + 7 T^{3} + 34 T^{2} + 88 T + 121 \)
$59$
\( T^{4} - 8 T^{3} + 34 T^{2} - 77 T + 121 \)
$61$
\( T^{4} - 14 T^{3} + 96 T^{2} + \cdots + 5776 \)
$67$
\( (T - 4)^{4} \)
$71$
\( T^{4} - 2 T^{3} + 124 T^{2} + \cdots + 1936 \)
$73$
\( T^{4} - 21 T^{3} + 196 T^{2} + \cdots + 2401 \)
$79$
\( T^{4} + 16 T^{3} + 186 T^{2} + \cdots + 3481 \)
$83$
\( T^{4} - 26 T^{3} + 256 T^{2} + \cdots + 121 \)
$89$
\( (T^{2} + 10 T - 20)^{2} \)
$97$
\( T^{4} - 14 T^{3} + 196 T^{2} + \cdots + 2401 \)
show more
show less