Properties

Label 6525.2.a.bt.1.3
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6525,2,Mod(1,6525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6525, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6525.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,14,0,0,0,0,0,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.337383424.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 13x^{4} + 41x^{2} - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.156785\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.156785 q^{2} -1.97542 q^{4} -1.09364 q^{7} +0.623285 q^{8} +4.40198 q^{11} -3.97108 q^{13} +0.171466 q^{14} +3.85312 q^{16} +6.22138 q^{17} +6.97542 q^{19} -0.690163 q^{22} -0.780070 q^{23} +0.622605 q^{26} +2.16040 q^{28} +1.00000 q^{29} +6.40198 q^{31} -1.85068 q^{32} -0.975419 q^{34} +1.09364 q^{37} -1.09364 q^{38} +0.376593 q^{43} -8.69575 q^{44} +0.122303 q^{46} -4.75115 q^{47} -5.80395 q^{49} +7.84455 q^{52} -11.2861 q^{53} -0.681649 q^{56} -0.156785 q^{58} -10.0000 q^{59} -1.14688 q^{61} -1.00373 q^{62} -7.41607 q^{64} +5.90782 q^{67} -12.2898 q^{68} -2.00000 q^{71} -8.72223 q^{73} -0.171466 q^{74} -13.7794 q^{76} -4.81418 q^{77} -5.54886 q^{79} +6.22138 q^{83} -0.0590441 q^{86} +2.74369 q^{88} +10.8040 q^{89} +4.34293 q^{91} +1.54096 q^{92} +0.744908 q^{94} +17.4176 q^{97} +0.909972 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 14 q^{4} + 10 q^{11} + 8 q^{14} + 42 q^{16} + 16 q^{19} + 46 q^{26} + 6 q^{29} + 22 q^{31} + 20 q^{34} + 2 q^{44} - 44 q^{46} - 2 q^{49} - 16 q^{56} - 60 q^{59} + 12 q^{61} + 38 q^{64} - 12 q^{71}+ \cdots + 2 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.156785 −0.110864 −0.0554318 0.998462i \(-0.517654\pi\)
−0.0554318 + 0.998462i \(0.517654\pi\)
\(3\) 0 0
\(4\) −1.97542 −0.987709
\(5\) 0 0
\(6\) 0 0
\(7\) −1.09364 −0.413357 −0.206678 0.978409i \(-0.566265\pi\)
−0.206678 + 0.978409i \(0.566265\pi\)
\(8\) 0.623285 0.220365
\(9\) 0 0
\(10\) 0 0
\(11\) 4.40198 1.32725 0.663623 0.748067i \(-0.269018\pi\)
0.663623 + 0.748067i \(0.269018\pi\)
\(12\) 0 0
\(13\) −3.97108 −1.10138 −0.550690 0.834710i \(-0.685635\pi\)
−0.550690 + 0.834710i \(0.685635\pi\)
\(14\) 0.171466 0.0458262
\(15\) 0 0
\(16\) 3.85312 0.963279
\(17\) 6.22138 1.50891 0.754454 0.656353i \(-0.227902\pi\)
0.754454 + 0.656353i \(0.227902\pi\)
\(18\) 0 0
\(19\) 6.97542 1.60027 0.800135 0.599819i \(-0.204761\pi\)
0.800135 + 0.599819i \(0.204761\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.690163 −0.147143
\(23\) −0.780070 −0.162656 −0.0813279 0.996687i \(-0.525916\pi\)
−0.0813279 + 0.996687i \(0.525916\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0.622605 0.122103
\(27\) 0 0
\(28\) 2.16040 0.408276
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 6.40198 1.14983 0.574914 0.818214i \(-0.305035\pi\)
0.574914 + 0.818214i \(0.305035\pi\)
\(32\) −1.85068 −0.327157
\(33\) 0 0
\(34\) −0.975419 −0.167283
\(35\) 0 0
\(36\) 0 0
\(37\) 1.09364 0.179793 0.0898966 0.995951i \(-0.471346\pi\)
0.0898966 + 0.995951i \(0.471346\pi\)
\(38\) −1.09364 −0.177412
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0.376593 0.0574299 0.0287150 0.999588i \(-0.490858\pi\)
0.0287150 + 0.999588i \(0.490858\pi\)
\(44\) −8.69575 −1.31093
\(45\) 0 0
\(46\) 0.122303 0.0180326
\(47\) −4.75115 −0.693027 −0.346513 0.938045i \(-0.612634\pi\)
−0.346513 + 0.938045i \(0.612634\pi\)
\(48\) 0 0
\(49\) −5.80395 −0.829136
\(50\) 0 0
\(51\) 0 0
\(52\) 7.84455 1.08784
\(53\) −11.2861 −1.55027 −0.775133 0.631798i \(-0.782317\pi\)
−0.775133 + 0.631798i \(0.782317\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −0.681649 −0.0910892
\(57\) 0 0
\(58\) −0.156785 −0.0205869
\(59\) −10.0000 −1.30189 −0.650945 0.759125i \(-0.725627\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(60\) 0 0
\(61\) −1.14688 −0.146844 −0.0734218 0.997301i \(-0.523392\pi\)
−0.0734218 + 0.997301i \(0.523392\pi\)
\(62\) −1.00373 −0.127474
\(63\) 0 0
\(64\) −7.41607 −0.927009
\(65\) 0 0
\(66\) 0 0
\(67\) 5.90782 0.721754 0.360877 0.932613i \(-0.382477\pi\)
0.360877 + 0.932613i \(0.382477\pi\)
\(68\) −12.2898 −1.49036
\(69\) 0 0
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) −8.72223 −1.02086 −0.510430 0.859919i \(-0.670514\pi\)
−0.510430 + 0.859919i \(0.670514\pi\)
\(74\) −0.171466 −0.0199325
\(75\) 0 0
\(76\) −13.7794 −1.58060
\(77\) −4.81418 −0.548626
\(78\) 0 0
\(79\) −5.54886 −0.624296 −0.312148 0.950034i \(-0.601048\pi\)
−0.312148 + 0.950034i \(0.601048\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.22138 0.682886 0.341443 0.939903i \(-0.389084\pi\)
0.341443 + 0.939903i \(0.389084\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.0590441 −0.00636689
\(87\) 0 0
\(88\) 2.74369 0.292478
\(89\) 10.8040 1.14522 0.572608 0.819829i \(-0.305932\pi\)
0.572608 + 0.819829i \(0.305932\pi\)
\(90\) 0 0
\(91\) 4.34293 0.455263
\(92\) 1.54096 0.160657
\(93\) 0 0
\(94\) 0.744908 0.0768314
\(95\) 0 0
\(96\) 0 0
\(97\) 17.4176 1.76849 0.884244 0.467026i \(-0.154674\pi\)
0.884244 + 0.467026i \(0.154674\pi\)
\(98\) 0.909972 0.0919210
\(99\) 0 0
\(100\) 0 0
\(101\) 12.7548 1.26915 0.634574 0.772862i \(-0.281175\pi\)
0.634574 + 0.772862i \(0.281175\pi\)
\(102\) 0 0
\(103\) 5.15463 0.507901 0.253950 0.967217i \(-0.418270\pi\)
0.253950 + 0.967217i \(0.418270\pi\)
\(104\) −2.47512 −0.242705
\(105\) 0 0
\(106\) 1.76949 0.171868
\(107\) −1.09364 −0.105726 −0.0528631 0.998602i \(-0.516835\pi\)
−0.0528631 + 0.998602i \(0.516835\pi\)
\(108\) 0 0
\(109\) 15.3282 1.46818 0.734089 0.679053i \(-0.237609\pi\)
0.734089 + 0.679053i \(0.237609\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −4.21392 −0.398178
\(113\) 7.28814 0.685611 0.342805 0.939406i \(-0.388623\pi\)
0.342805 + 0.939406i \(0.388623\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.97542 −0.183413
\(117\) 0 0
\(118\) 1.56785 0.144332
\(119\) −6.80395 −0.623717
\(120\) 0 0
\(121\) 8.37739 0.761581
\(122\) 0.179814 0.0162796
\(123\) 0 0
\(124\) −12.6466 −1.13570
\(125\) 0 0
\(126\) 0 0
\(127\) −17.7312 −1.57339 −0.786693 0.617345i \(-0.788208\pi\)
−0.786693 + 0.617345i \(0.788208\pi\)
\(128\) 4.86409 0.429929
\(129\) 0 0
\(130\) 0 0
\(131\) −7.31835 −0.639407 −0.319704 0.947518i \(-0.603583\pi\)
−0.319704 + 0.947518i \(0.603583\pi\)
\(132\) 0 0
\(133\) −7.62859 −0.661483
\(134\) −0.926256 −0.0800163
\(135\) 0 0
\(136\) 3.87770 0.332510
\(137\) 9.78899 0.836330 0.418165 0.908371i \(-0.362673\pi\)
0.418165 + 0.908371i \(0.362673\pi\)
\(138\) 0 0
\(139\) −2.75479 −0.233658 −0.116829 0.993152i \(-0.537273\pi\)
−0.116829 + 0.993152i \(0.537273\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.313570 0.0263142
\(143\) −17.4806 −1.46180
\(144\) 0 0
\(145\) 0 0
\(146\) 1.36751 0.113176
\(147\) 0 0
\(148\) −2.16040 −0.177583
\(149\) 4.52428 0.370643 0.185322 0.982678i \(-0.440667\pi\)
0.185322 + 0.982678i \(0.440667\pi\)
\(150\) 0 0
\(151\) 2.80395 0.228182 0.114091 0.993470i \(-0.463604\pi\)
0.114091 + 0.993470i \(0.463604\pi\)
\(152\) 4.34768 0.352643
\(153\) 0 0
\(154\) 0.754790 0.0608227
\(155\) 0 0
\(156\) 0 0
\(157\) 4.97481 0.397033 0.198517 0.980098i \(-0.436388\pi\)
0.198517 + 0.980098i \(0.436388\pi\)
\(158\) 0.869977 0.0692117
\(159\) 0 0
\(160\) 0 0
\(161\) 0.853115 0.0672349
\(162\) 0 0
\(163\) 20.7615 1.62617 0.813084 0.582146i \(-0.197787\pi\)
0.813084 + 0.582146i \(0.197787\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −0.975419 −0.0757072
\(167\) −21.9182 −1.69608 −0.848040 0.529932i \(-0.822217\pi\)
−0.848040 + 0.529932i \(0.822217\pi\)
\(168\) 0 0
\(169\) 2.76949 0.213038
\(170\) 0 0
\(171\) 0 0
\(172\) −0.743929 −0.0567241
\(173\) 3.25404 0.247400 0.123700 0.992320i \(-0.460524\pi\)
0.123700 + 0.992320i \(0.460524\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 16.9613 1.27851
\(177\) 0 0
\(178\) −1.69390 −0.126963
\(179\) 7.19605 0.537858 0.268929 0.963160i \(-0.413330\pi\)
0.268929 + 0.963160i \(0.413330\pi\)
\(180\) 0 0
\(181\) 13.0345 0.968844 0.484422 0.874834i \(-0.339030\pi\)
0.484422 + 0.874834i \(0.339030\pi\)
\(182\) −0.680906 −0.0504721
\(183\) 0 0
\(184\) −0.486206 −0.0358436
\(185\) 0 0
\(186\) 0 0
\(187\) 27.3864 2.00269
\(188\) 9.38551 0.684509
\(189\) 0 0
\(190\) 0 0
\(191\) 10.1223 0.732424 0.366212 0.930531i \(-0.380654\pi\)
0.366212 + 0.930531i \(0.380654\pi\)
\(192\) 0 0
\(193\) 22.8589 1.64542 0.822710 0.568462i \(-0.192461\pi\)
0.822710 + 0.568462i \(0.192461\pi\)
\(194\) −2.73081 −0.196061
\(195\) 0 0
\(196\) 11.4652 0.818945
\(197\) −22.0711 −1.57250 −0.786251 0.617907i \(-0.787981\pi\)
−0.786251 + 0.617907i \(0.787981\pi\)
\(198\) 0 0
\(199\) 5.19605 0.368338 0.184169 0.982895i \(-0.441041\pi\)
0.184169 + 0.982895i \(0.441041\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −1.99976 −0.140702
\(203\) −1.09364 −0.0767585
\(204\) 0 0
\(205\) 0 0
\(206\) −0.808167 −0.0563077
\(207\) 0 0
\(208\) −15.3010 −1.06094
\(209\) 30.7056 2.12395
\(210\) 0 0
\(211\) 1.64719 0.113397 0.0566985 0.998391i \(-0.481943\pi\)
0.0566985 + 0.998391i \(0.481943\pi\)
\(212\) 22.2948 1.53121
\(213\) 0 0
\(214\) 0.171466 0.0117212
\(215\) 0 0
\(216\) 0 0
\(217\) −7.00145 −0.475290
\(218\) −2.40323 −0.162768
\(219\) 0 0
\(220\) 0 0
\(221\) −24.7056 −1.66188
\(222\) 0 0
\(223\) 9.47542 0.634521 0.317261 0.948338i \(-0.397237\pi\)
0.317261 + 0.948338i \(0.397237\pi\)
\(224\) 2.02398 0.135233
\(225\) 0 0
\(226\) −1.14267 −0.0760093
\(227\) −5.72800 −0.380181 −0.190090 0.981767i \(-0.560878\pi\)
−0.190090 + 0.981767i \(0.560878\pi\)
\(228\) 0 0
\(229\) 15.1469 1.00093 0.500467 0.865756i \(-0.333162\pi\)
0.500467 + 0.865756i \(0.333162\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.623285 0.0409207
\(233\) 0.717046 0.0469753 0.0234876 0.999724i \(-0.492523\pi\)
0.0234876 + 0.999724i \(0.492523\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 19.7542 1.28589
\(237\) 0 0
\(238\) 1.06676 0.0691475
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 0 0
\(241\) 17.3282 1.11621 0.558105 0.829770i \(-0.311529\pi\)
0.558105 + 0.829770i \(0.311529\pi\)
\(242\) −1.31345 −0.0844316
\(243\) 0 0
\(244\) 2.26558 0.145039
\(245\) 0 0
\(246\) 0 0
\(247\) −27.7000 −1.76251
\(248\) 3.99026 0.253382
\(249\) 0 0
\(250\) 0 0
\(251\) −26.0099 −1.64173 −0.820865 0.571123i \(-0.806508\pi\)
−0.820865 + 0.571123i \(0.806508\pi\)
\(252\) 0 0
\(253\) −3.43385 −0.215884
\(254\) 2.77998 0.174431
\(255\) 0 0
\(256\) 14.0695 0.879346
\(257\) −15.0335 −0.937766 −0.468883 0.883260i \(-0.655343\pi\)
−0.468883 + 0.883260i \(0.655343\pi\)
\(258\) 0 0
\(259\) −1.19605 −0.0743188
\(260\) 0 0
\(261\) 0 0
\(262\) 1.14741 0.0708870
\(263\) 12.0662 0.744032 0.372016 0.928226i \(-0.378667\pi\)
0.372016 + 0.928226i \(0.378667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.19605 0.0733344
\(267\) 0 0
\(268\) −11.6704 −0.712884
\(269\) 10.8531 0.661726 0.330863 0.943679i \(-0.392660\pi\)
0.330863 + 0.943679i \(0.392660\pi\)
\(270\) 0 0
\(271\) −12.7449 −0.774198 −0.387099 0.922038i \(-0.626523\pi\)
−0.387099 + 0.922038i \(0.626523\pi\)
\(272\) 23.9717 1.45350
\(273\) 0 0
\(274\) −1.53476 −0.0927185
\(275\) 0 0
\(276\) 0 0
\(277\) −20.0714 −1.20597 −0.602986 0.797752i \(-0.706022\pi\)
−0.602986 + 0.797752i \(0.706022\pi\)
\(278\) 0.431909 0.0259042
\(279\) 0 0
\(280\) 0 0
\(281\) 20.9361 1.24895 0.624473 0.781047i \(-0.285314\pi\)
0.624473 + 0.781047i \(0.285314\pi\)
\(282\) 0 0
\(283\) −16.9703 −1.00878 −0.504389 0.863477i \(-0.668282\pi\)
−0.504389 + 0.863477i \(0.668282\pi\)
\(284\) 3.95084 0.234439
\(285\) 0 0
\(286\) 2.74069 0.162061
\(287\) 0 0
\(288\) 0 0
\(289\) 21.7056 1.27680
\(290\) 0 0
\(291\) 0 0
\(292\) 17.2301 1.00831
\(293\) −9.47542 −0.553560 −0.276780 0.960933i \(-0.589267\pi\)
−0.276780 + 0.960933i \(0.589267\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.681649 0.0396201
\(297\) 0 0
\(298\) −0.709338 −0.0410909
\(299\) 3.09772 0.179146
\(300\) 0 0
\(301\) −0.411857 −0.0237391
\(302\) −0.439617 −0.0252971
\(303\) 0 0
\(304\) 26.8771 1.54151
\(305\) 0 0
\(306\) 0 0
\(307\) −19.3812 −1.10614 −0.553072 0.833134i \(-0.686544\pi\)
−0.553072 + 0.833134i \(0.686544\pi\)
\(308\) 9.51001 0.541883
\(309\) 0 0
\(310\) 0 0
\(311\) 9.26919 0.525607 0.262804 0.964849i \(-0.415353\pi\)
0.262804 + 0.964849i \(0.415353\pi\)
\(312\) 0 0
\(313\) 14.5324 0.821422 0.410711 0.911766i \(-0.365281\pi\)
0.410711 + 0.911766i \(0.365281\pi\)
\(314\) −0.779975 −0.0440165
\(315\) 0 0
\(316\) 10.9613 0.616623
\(317\) −22.4116 −1.25876 −0.629380 0.777098i \(-0.716691\pi\)
−0.629380 + 0.777098i \(0.716691\pi\)
\(318\) 0 0
\(319\) 4.40198 0.246463
\(320\) 0 0
\(321\) 0 0
\(322\) −0.133756 −0.00745390
\(323\) 43.3968 2.41466
\(324\) 0 0
\(325\) 0 0
\(326\) −3.25509 −0.180283
\(327\) 0 0
\(328\) 0 0
\(329\) 5.19605 0.286467
\(330\) 0 0
\(331\) 7.89179 0.433772 0.216886 0.976197i \(-0.430410\pi\)
0.216886 + 0.976197i \(0.430410\pi\)
\(332\) −12.2898 −0.674493
\(333\) 0 0
\(334\) 3.43644 0.188034
\(335\) 0 0
\(336\) 0 0
\(337\) −33.4280 −1.82094 −0.910468 0.413579i \(-0.864279\pi\)
−0.910468 + 0.413579i \(0.864279\pi\)
\(338\) −0.434214 −0.0236181
\(339\) 0 0
\(340\) 0 0
\(341\) 28.1813 1.52611
\(342\) 0 0
\(343\) 14.0029 0.756086
\(344\) 0.234725 0.0126555
\(345\) 0 0
\(346\) −0.510183 −0.0274276
\(347\) 31.1069 1.66991 0.834954 0.550320i \(-0.185494\pi\)
0.834954 + 0.550320i \(0.185494\pi\)
\(348\) 0 0
\(349\) −5.76949 −0.308834 −0.154417 0.988006i \(-0.549350\pi\)
−0.154417 + 0.988006i \(0.549350\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −8.14665 −0.434218
\(353\) −13.5095 −0.719039 −0.359520 0.933137i \(-0.617059\pi\)
−0.359520 + 0.933137i \(0.617059\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −21.3423 −1.13114
\(357\) 0 0
\(358\) −1.12823 −0.0596289
\(359\) 1.15677 0.0610518 0.0305259 0.999534i \(-0.490282\pi\)
0.0305259 + 0.999534i \(0.490282\pi\)
\(360\) 0 0
\(361\) 29.6565 1.56087
\(362\) −2.04361 −0.107410
\(363\) 0 0
\(364\) −8.57911 −0.449667
\(365\) 0 0
\(366\) 0 0
\(367\) 10.5959 0.553104 0.276552 0.960999i \(-0.410808\pi\)
0.276552 + 0.960999i \(0.410808\pi\)
\(368\) −3.00570 −0.156683
\(369\) 0 0
\(370\) 0 0
\(371\) 12.3429 0.640813
\(372\) 0 0
\(373\) 7.09907 0.367576 0.183788 0.982966i \(-0.441164\pi\)
0.183788 + 0.982966i \(0.441164\pi\)
\(374\) −4.29377 −0.222026
\(375\) 0 0
\(376\) −2.96132 −0.152719
\(377\) −3.97108 −0.204521
\(378\) 0 0
\(379\) 18.1223 0.930880 0.465440 0.885079i \(-0.345896\pi\)
0.465440 + 0.885079i \(0.345896\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.58702 −0.0811992
\(383\) −3.28092 −0.167647 −0.0838236 0.996481i \(-0.526713\pi\)
−0.0838236 + 0.996481i \(0.526713\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3.58393 −0.182417
\(387\) 0 0
\(388\) −34.4070 −1.74675
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) −4.85312 −0.245433
\(392\) −3.61752 −0.182712
\(393\) 0 0
\(394\) 3.46042 0.174333
\(395\) 0 0
\(396\) 0 0
\(397\) 36.3054 1.82212 0.911058 0.412278i \(-0.135267\pi\)
0.911058 + 0.412278i \(0.135267\pi\)
\(398\) −0.814661 −0.0408353
\(399\) 0 0
\(400\) 0 0
\(401\) −26.0830 −1.30252 −0.651262 0.758853i \(-0.725760\pi\)
−0.651262 + 0.758853i \(0.725760\pi\)
\(402\) 0 0
\(403\) −25.4228 −1.26640
\(404\) −25.1960 −1.25355
\(405\) 0 0
\(406\) 0.171466 0.00850972
\(407\) 4.81418 0.238630
\(408\) 0 0
\(409\) 13.0486 0.645210 0.322605 0.946534i \(-0.395442\pi\)
0.322605 + 0.946534i \(0.395442\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −10.1825 −0.501658
\(413\) 10.9364 0.538145
\(414\) 0 0
\(415\) 0 0
\(416\) 7.34920 0.360324
\(417\) 0 0
\(418\) −4.81418 −0.235469
\(419\) −35.8525 −1.75151 −0.875755 0.482756i \(-0.839636\pi\)
−0.875755 + 0.482756i \(0.839636\pi\)
\(420\) 0 0
\(421\) 16.7056 0.814182 0.407091 0.913388i \(-0.366543\pi\)
0.407091 + 0.913388i \(0.366543\pi\)
\(422\) −0.258254 −0.0125716
\(423\) 0 0
\(424\) −7.03446 −0.341624
\(425\) 0 0
\(426\) 0 0
\(427\) 1.25428 0.0606988
\(428\) 2.16040 0.104427
\(429\) 0 0
\(430\) 0 0
\(431\) 26.3135 1.26748 0.633739 0.773547i \(-0.281519\pi\)
0.633739 + 0.773547i \(0.281519\pi\)
\(432\) 0 0
\(433\) −10.7220 −0.515266 −0.257633 0.966243i \(-0.582943\pi\)
−0.257633 + 0.966243i \(0.582943\pi\)
\(434\) 1.09772 0.0526923
\(435\) 0 0
\(436\) −30.2797 −1.45013
\(437\) −5.44131 −0.260293
\(438\) 0 0
\(439\) 29.5587 1.41076 0.705381 0.708828i \(-0.250776\pi\)
0.705381 + 0.708828i \(0.250776\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 3.87347 0.184242
\(443\) −3.40697 −0.161870 −0.0809349 0.996719i \(-0.525791\pi\)
−0.0809349 + 0.996719i \(0.525791\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1.48560 −0.0703453
\(447\) 0 0
\(448\) 8.11051 0.383186
\(449\) −0.461020 −0.0217569 −0.0108784 0.999941i \(-0.503463\pi\)
−0.0108784 + 0.999941i \(0.503463\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −14.3971 −0.677184
\(453\) 0 0
\(454\) 0.898063 0.0421482
\(455\) 0 0
\(456\) 0 0
\(457\) −1.37262 −0.0642084 −0.0321042 0.999485i \(-0.510221\pi\)
−0.0321042 + 0.999485i \(0.510221\pi\)
\(458\) −2.37480 −0.110967
\(459\) 0 0
\(460\) 0 0
\(461\) −14.5875 −0.679409 −0.339705 0.940532i \(-0.610327\pi\)
−0.339705 + 0.940532i \(0.610327\pi\)
\(462\) 0 0
\(463\) 18.8517 0.876112 0.438056 0.898948i \(-0.355667\pi\)
0.438056 + 0.898948i \(0.355667\pi\)
\(464\) 3.85312 0.178876
\(465\) 0 0
\(466\) −0.112422 −0.00520785
\(467\) 29.9580 1.38629 0.693145 0.720798i \(-0.256225\pi\)
0.693145 + 0.720798i \(0.256225\pi\)
\(468\) 0 0
\(469\) −6.46102 −0.298342
\(470\) 0 0
\(471\) 0 0
\(472\) −6.23285 −0.286890
\(473\) 1.65776 0.0762237
\(474\) 0 0
\(475\) 0 0
\(476\) 13.4407 0.616051
\(477\) 0 0
\(478\) −0.313570 −0.0143423
\(479\) 32.7647 1.49706 0.748528 0.663103i \(-0.230761\pi\)
0.748528 + 0.663103i \(0.230761\pi\)
\(480\) 0 0
\(481\) −4.34293 −0.198021
\(482\) −2.71680 −0.123747
\(483\) 0 0
\(484\) −16.5489 −0.752221
\(485\) 0 0
\(486\) 0 0
\(487\) 14.1098 0.639375 0.319688 0.947523i \(-0.396422\pi\)
0.319688 + 0.947523i \(0.396422\pi\)
\(488\) −0.714836 −0.0323591
\(489\) 0 0
\(490\) 0 0
\(491\) −4.10821 −0.185401 −0.0927004 0.995694i \(-0.529550\pi\)
−0.0927004 + 0.995694i \(0.529550\pi\)
\(492\) 0 0
\(493\) 6.22138 0.280197
\(494\) 4.34293 0.195398
\(495\) 0 0
\(496\) 24.6676 1.10761
\(497\) 2.18728 0.0981129
\(498\) 0 0
\(499\) 30.0689 1.34607 0.673035 0.739611i \(-0.264990\pi\)
0.673035 + 0.739611i \(0.264990\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 4.07795 0.182008
\(503\) −14.8806 −0.663493 −0.331746 0.943369i \(-0.607638\pi\)
−0.331746 + 0.943369i \(0.607638\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0.538375 0.0239337
\(507\) 0 0
\(508\) 35.0264 1.55405
\(509\) −1.93674 −0.0858445 −0.0429223 0.999078i \(-0.513667\pi\)
−0.0429223 + 0.999078i \(0.513667\pi\)
\(510\) 0 0
\(511\) 9.53898 0.421980
\(512\) −11.9341 −0.527416
\(513\) 0 0
\(514\) 2.35703 0.103964
\(515\) 0 0
\(516\) 0 0
\(517\) −20.9145 −0.919817
\(518\) 0.187522 0.00823925
\(519\) 0 0
\(520\) 0 0
\(521\) 4.23051 0.185342 0.0926710 0.995697i \(-0.470460\pi\)
0.0926710 + 0.995697i \(0.470460\pi\)
\(522\) 0 0
\(523\) 4.40144 0.192462 0.0962308 0.995359i \(-0.469321\pi\)
0.0962308 + 0.995359i \(0.469321\pi\)
\(524\) 14.4568 0.631548
\(525\) 0 0
\(526\) −1.89179 −0.0824861
\(527\) 39.8292 1.73499
\(528\) 0 0
\(529\) −22.3915 −0.973543
\(530\) 0 0
\(531\) 0 0
\(532\) 15.0697 0.653353
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 3.68225 0.159049
\(537\) 0 0
\(538\) −1.70160 −0.0733613
\(539\) −25.5489 −1.10047
\(540\) 0 0
\(541\) −32.4119 −1.39349 −0.696747 0.717317i \(-0.745370\pi\)
−0.696747 + 0.717317i \(0.745370\pi\)
\(542\) 1.99821 0.0858304
\(543\) 0 0
\(544\) −11.5138 −0.493650
\(545\) 0 0
\(546\) 0 0
\(547\) 12.9093 0.551961 0.275980 0.961163i \(-0.410998\pi\)
0.275980 + 0.961163i \(0.410998\pi\)
\(548\) −19.3374 −0.826051
\(549\) 0 0
\(550\) 0 0
\(551\) 6.97542 0.297163
\(552\) 0 0
\(553\) 6.06845 0.258057
\(554\) 3.14688 0.133698
\(555\) 0 0
\(556\) 5.44186 0.230786
\(557\) 23.0195 0.975369 0.487685 0.873020i \(-0.337842\pi\)
0.487685 + 0.873020i \(0.337842\pi\)
\(558\) 0 0
\(559\) −1.49548 −0.0632522
\(560\) 0 0
\(561\) 0 0
\(562\) −3.28247 −0.138463
\(563\) −27.3234 −1.15154 −0.575771 0.817611i \(-0.695298\pi\)
−0.575771 + 0.817611i \(0.695298\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 2.66068 0.111837
\(567\) 0 0
\(568\) −1.24657 −0.0523049
\(569\) 0.803952 0.0337034 0.0168517 0.999858i \(-0.494636\pi\)
0.0168517 + 0.999858i \(0.494636\pi\)
\(570\) 0 0
\(571\) 43.4604 1.81876 0.909381 0.415964i \(-0.136556\pi\)
0.909381 + 0.415964i \(0.136556\pi\)
\(572\) 34.5315 1.44384
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.27345 0.0530146 0.0265073 0.999649i \(-0.491561\pi\)
0.0265073 + 0.999649i \(0.491561\pi\)
\(578\) −3.40311 −0.141551
\(579\) 0 0
\(580\) 0 0
\(581\) −6.80395 −0.282276
\(582\) 0 0
\(583\) −49.6812 −2.05758
\(584\) −5.43644 −0.224961
\(585\) 0 0
\(586\) 1.48560 0.0613696
\(587\) 31.8678 1.31533 0.657663 0.753312i \(-0.271545\pi\)
0.657663 + 0.753312i \(0.271545\pi\)
\(588\) 0 0
\(589\) 44.6565 1.84004
\(590\) 0 0
\(591\) 0 0
\(592\) 4.21392 0.173191
\(593\) 1.21043 0.0497064 0.0248532 0.999691i \(-0.492088\pi\)
0.0248532 + 0.999691i \(0.492088\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −8.93735 −0.366088
\(597\) 0 0
\(598\) −0.485676 −0.0198608
\(599\) −24.2053 −0.989003 −0.494501 0.869177i \(-0.664649\pi\)
−0.494501 + 0.869177i \(0.664649\pi\)
\(600\) 0 0
\(601\) 4.68586 0.191140 0.0955702 0.995423i \(-0.469533\pi\)
0.0955702 + 0.995423i \(0.469533\pi\)
\(602\) 0.0645730 0.00263180
\(603\) 0 0
\(604\) −5.53898 −0.225378
\(605\) 0 0
\(606\) 0 0
\(607\) −0.502641 −0.0204016 −0.0102008 0.999948i \(-0.503247\pi\)
−0.0102008 + 0.999948i \(0.503247\pi\)
\(608\) −12.9093 −0.523540
\(609\) 0 0
\(610\) 0 0
\(611\) 18.8672 0.763286
\(612\) 0 0
\(613\) 22.9142 0.925496 0.462748 0.886490i \(-0.346863\pi\)
0.462748 + 0.886490i \(0.346863\pi\)
\(614\) 3.03868 0.122631
\(615\) 0 0
\(616\) −3.00060 −0.120898
\(617\) 15.8574 0.638397 0.319198 0.947688i \(-0.396586\pi\)
0.319198 + 0.947688i \(0.396586\pi\)
\(618\) 0 0
\(619\) −35.4014 −1.42290 −0.711451 0.702736i \(-0.751961\pi\)
−0.711451 + 0.702736i \(0.751961\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −1.45327 −0.0582707
\(623\) −11.8156 −0.473383
\(624\) 0 0
\(625\) 0 0
\(626\) −2.27846 −0.0910658
\(627\) 0 0
\(628\) −9.82734 −0.392154
\(629\) 6.80395 0.271291
\(630\) 0 0
\(631\) 44.7056 1.77970 0.889851 0.456250i \(-0.150808\pi\)
0.889851 + 0.456250i \(0.150808\pi\)
\(632\) −3.45852 −0.137573
\(633\) 0 0
\(634\) 3.51379 0.139551
\(635\) 0 0
\(636\) 0 0
\(637\) 23.0480 0.913194
\(638\) −0.690163 −0.0273238
\(639\) 0 0
\(640\) 0 0
\(641\) −10.0689 −0.397699 −0.198849 0.980030i \(-0.563720\pi\)
−0.198849 + 0.980030i \(0.563720\pi\)
\(642\) 0 0
\(643\) 13.9760 0.551161 0.275580 0.961278i \(-0.411130\pi\)
0.275580 + 0.961278i \(0.411130\pi\)
\(644\) −1.68526 −0.0664085
\(645\) 0 0
\(646\) −6.80395 −0.267698
\(647\) −31.1607 −1.22505 −0.612527 0.790450i \(-0.709847\pi\)
−0.612527 + 0.790450i \(0.709847\pi\)
\(648\) 0 0
\(649\) −44.0198 −1.72793
\(650\) 0 0
\(651\) 0 0
\(652\) −41.0127 −1.60618
\(653\) 26.1129 1.02188 0.510939 0.859617i \(-0.329298\pi\)
0.510939 + 0.859617i \(0.329298\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) −0.814661 −0.0317588
\(659\) 28.5974 1.11400 0.556999 0.830513i \(-0.311953\pi\)
0.556999 + 0.830513i \(0.311953\pi\)
\(660\) 0 0
\(661\) −38.9994 −1.51690 −0.758450 0.651731i \(-0.774043\pi\)
−0.758450 + 0.651731i \(0.774043\pi\)
\(662\) −1.23731 −0.0480895
\(663\) 0 0
\(664\) 3.87770 0.150484
\(665\) 0 0
\(666\) 0 0
\(667\) −0.780070 −0.0302044
\(668\) 43.2976 1.67523
\(669\) 0 0
\(670\) 0 0
\(671\) −5.04856 −0.194897
\(672\) 0 0
\(673\) −38.6725 −1.49072 −0.745358 0.666665i \(-0.767721\pi\)
−0.745358 + 0.666665i \(0.767721\pi\)
\(674\) 5.24100 0.201876
\(675\) 0 0
\(676\) −5.47090 −0.210419
\(677\) −28.4800 −1.09458 −0.547288 0.836944i \(-0.684340\pi\)
−0.547288 + 0.836944i \(0.684340\pi\)
\(678\) 0 0
\(679\) −19.0486 −0.731017
\(680\) 0 0
\(681\) 0 0
\(682\) −4.41841 −0.169190
\(683\) −12.4159 −0.475081 −0.237540 0.971378i \(-0.576341\pi\)
−0.237540 + 0.971378i \(0.576341\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −2.19544 −0.0838224
\(687\) 0 0
\(688\) 1.45106 0.0553211
\(689\) 44.8180 1.70743
\(690\) 0 0
\(691\) 10.8040 0.411002 0.205501 0.978657i \(-0.434118\pi\)
0.205501 + 0.978657i \(0.434118\pi\)
\(692\) −6.42808 −0.244359
\(693\) 0 0
\(694\) −4.87709 −0.185132
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0.904568 0.0342384
\(699\) 0 0
\(700\) 0 0
\(701\) −8.47512 −0.320101 −0.160050 0.987109i \(-0.551166\pi\)
−0.160050 + 0.987109i \(0.551166\pi\)
\(702\) 0 0
\(703\) 7.62859 0.287718
\(704\) −32.6454 −1.23037
\(705\) 0 0
\(706\) 2.11809 0.0797153
\(707\) −13.9491 −0.524612
\(708\) 0 0
\(709\) −32.8180 −1.23251 −0.616254 0.787548i \(-0.711350\pi\)
−0.616254 + 0.787548i \(0.711350\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 6.73394 0.252365
\(713\) −4.99399 −0.187026
\(714\) 0 0
\(715\) 0 0
\(716\) −14.2152 −0.531247
\(717\) 0 0
\(718\) −0.181363 −0.00676842
\(719\) −39.7542 −1.48258 −0.741290 0.671184i \(-0.765786\pi\)
−0.741290 + 0.671184i \(0.765786\pi\)
\(720\) 0 0
\(721\) −5.63731 −0.209944
\(722\) −4.64968 −0.173043
\(723\) 0 0
\(724\) −25.7485 −0.956936
\(725\) 0 0
\(726\) 0 0
\(727\) −49.4844 −1.83527 −0.917637 0.397419i \(-0.869906\pi\)
−0.917637 + 0.397419i \(0.869906\pi\)
\(728\) 2.70689 0.100324
\(729\) 0 0
\(730\) 0 0
\(731\) 2.34293 0.0866565
\(732\) 0 0
\(733\) 46.2381 1.70784 0.853921 0.520403i \(-0.174218\pi\)
0.853921 + 0.520403i \(0.174218\pi\)
\(734\) −1.66128 −0.0613191
\(735\) 0 0
\(736\) 1.44366 0.0532140
\(737\) 26.0061 0.957946
\(738\) 0 0
\(739\) 28.7155 1.05632 0.528159 0.849146i \(-0.322883\pi\)
0.528159 + 0.849146i \(0.322883\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.93518 −0.0710428
\(743\) 27.0536 0.992502 0.496251 0.868179i \(-0.334710\pi\)
0.496251 + 0.868179i \(0.334710\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −1.11303 −0.0407508
\(747\) 0 0
\(748\) −54.0996 −1.97808
\(749\) 1.19605 0.0437026
\(750\) 0 0
\(751\) −26.8771 −0.980759 −0.490380 0.871509i \(-0.663142\pi\)
−0.490380 + 0.871509i \(0.663142\pi\)
\(752\) −18.3067 −0.667578
\(753\) 0 0
\(754\) 0.622605 0.0226739
\(755\) 0 0
\(756\) 0 0
\(757\) 7.28814 0.264892 0.132446 0.991190i \(-0.457717\pi\)
0.132446 + 0.991190i \(0.457717\pi\)
\(758\) −2.84130 −0.103201
\(759\) 0 0
\(760\) 0 0
\(761\) 31.6079 1.14579 0.572893 0.819630i \(-0.305821\pi\)
0.572893 + 0.819630i \(0.305821\pi\)
\(762\) 0 0
\(763\) −16.7636 −0.606882
\(764\) −19.9958 −0.723422
\(765\) 0 0
\(766\) 0.514398 0.0185860
\(767\) 39.7108 1.43387
\(768\) 0 0
\(769\) −0.293769 −0.0105936 −0.00529679 0.999986i \(-0.501686\pi\)
−0.00529679 + 0.999986i \(0.501686\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −45.1559 −1.62520
\(773\) 28.4877 1.02463 0.512316 0.858797i \(-0.328788\pi\)
0.512316 + 0.858797i \(0.328788\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 10.8561 0.389712
\(777\) 0 0
\(778\) −1.88142 −0.0674521
\(779\) 0 0
\(780\) 0 0
\(781\) −8.80395 −0.315030
\(782\) 0.760895 0.0272095
\(783\) 0 0
\(784\) −22.3633 −0.798689
\(785\) 0 0
\(786\) 0 0
\(787\) 32.9883 1.17591 0.587954 0.808895i \(-0.299934\pi\)
0.587954 + 0.808895i \(0.299934\pi\)
\(788\) 43.5997 1.55317
\(789\) 0 0
\(790\) 0 0
\(791\) −7.97060 −0.283402
\(792\) 0 0
\(793\) 4.55437 0.161731
\(794\) −5.69213 −0.202006
\(795\) 0 0
\(796\) −10.2644 −0.363811
\(797\) −30.9194 −1.09522 −0.547611 0.836733i \(-0.684463\pi\)
−0.547611 + 0.836733i \(0.684463\pi\)
\(798\) 0 0
\(799\) −29.5587 −1.04571
\(800\) 0 0
\(801\) 0 0
\(802\) 4.08942 0.144402
\(803\) −38.3951 −1.35493
\(804\) 0 0
\(805\) 0 0
\(806\) 3.98590 0.140397
\(807\) 0 0
\(808\) 7.94987 0.279675
\(809\) −21.0977 −0.741756 −0.370878 0.928682i \(-0.620943\pi\)
−0.370878 + 0.928682i \(0.620943\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 2.16040 0.0758150
\(813\) 0 0
\(814\) −0.754790 −0.0264554
\(815\) 0 0
\(816\) 0 0
\(817\) 2.62690 0.0919035
\(818\) −2.04582 −0.0715303
\(819\) 0 0
\(820\) 0 0
\(821\) 15.2791 0.533243 0.266622 0.963801i \(-0.414093\pi\)
0.266622 + 0.963801i \(0.414093\pi\)
\(822\) 0 0
\(823\) −7.78152 −0.271247 −0.135623 0.990760i \(-0.543304\pi\)
−0.135623 + 0.990760i \(0.543304\pi\)
\(824\) 3.21280 0.111923
\(825\) 0 0
\(826\) −1.71466 −0.0596607
\(827\) 0.376593 0.0130954 0.00654772 0.999979i \(-0.497916\pi\)
0.00654772 + 0.999979i \(0.497916\pi\)
\(828\) 0 0
\(829\) −49.8723 −1.73214 −0.866068 0.499927i \(-0.833360\pi\)
−0.866068 + 0.499927i \(0.833360\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 29.4498 1.02099
\(833\) −36.1086 −1.25109
\(834\) 0 0
\(835\) 0 0
\(836\) −60.6565 −2.09785
\(837\) 0 0
\(838\) 5.62113 0.194179
\(839\) 0.0590441 0.00203843 0.00101921 0.999999i \(-0.499676\pi\)
0.00101921 + 0.999999i \(0.499676\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −2.61919 −0.0902632
\(843\) 0 0
\(844\) −3.25388 −0.112003
\(845\) 0 0
\(846\) 0 0
\(847\) −9.16185 −0.314805
\(848\) −43.4867 −1.49334
\(849\) 0 0
\(850\) 0 0
\(851\) −0.853115 −0.0292444
\(852\) 0 0
\(853\) 2.77983 0.0951795 0.0475897 0.998867i \(-0.484846\pi\)
0.0475897 + 0.998867i \(0.484846\pi\)
\(854\) −0.196652 −0.00672929
\(855\) 0 0
\(856\) −0.681649 −0.0232983
\(857\) −0.850802 −0.0290628 −0.0145314 0.999894i \(-0.504626\pi\)
−0.0145314 + 0.999894i \(0.504626\pi\)
\(858\) 0 0
\(859\) 7.35342 0.250895 0.125448 0.992100i \(-0.459963\pi\)
0.125448 + 0.992100i \(0.459963\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −4.12556 −0.140517
\(863\) −42.6167 −1.45069 −0.725345 0.688386i \(-0.758320\pi\)
−0.725345 + 0.688386i \(0.758320\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1.68105 0.0571242
\(867\) 0 0
\(868\) 13.8308 0.469448
\(869\) −24.4260 −0.828594
\(870\) 0 0
\(871\) −23.4604 −0.794926
\(872\) 9.55386 0.323535
\(873\) 0 0
\(874\) 0.853115 0.0288571
\(875\) 0 0
\(876\) 0 0
\(877\) 13.4196 0.453148 0.226574 0.973994i \(-0.427247\pi\)
0.226574 + 0.973994i \(0.427247\pi\)
\(878\) −4.63436 −0.156402
\(879\) 0 0
\(880\) 0 0
\(881\) 38.3135 1.29082 0.645408 0.763838i \(-0.276687\pi\)
0.645408 + 0.763838i \(0.276687\pi\)
\(882\) 0 0
\(883\) −31.5542 −1.06188 −0.530942 0.847408i \(-0.678162\pi\)
−0.530942 + 0.847408i \(0.678162\pi\)
\(884\) 48.8040 1.64145
\(885\) 0 0
\(886\) 0.534161 0.0179455
\(887\) −23.3961 −0.785565 −0.392783 0.919631i \(-0.628488\pi\)
−0.392783 + 0.919631i \(0.628488\pi\)
\(888\) 0 0
\(889\) 19.3915 0.650370
\(890\) 0 0
\(891\) 0 0
\(892\) −18.7179 −0.626722
\(893\) −33.1413 −1.10903
\(894\) 0 0
\(895\) 0 0
\(896\) −5.31956 −0.177714
\(897\) 0 0
\(898\) 0.0722810 0.00241205
\(899\) 6.40198 0.213518
\(900\) 0 0
\(901\) −70.2152 −2.33921
\(902\) 0 0
\(903\) 0 0
\(904\) 4.54259 0.151084
\(905\) 0 0
\(906\) 0 0
\(907\) 32.4150 1.07632 0.538161 0.842842i \(-0.319119\pi\)
0.538161 + 0.842842i \(0.319119\pi\)
\(908\) 11.3152 0.375508
\(909\) 0 0
\(910\) 0 0
\(911\) 45.2749 1.50002 0.750011 0.661425i \(-0.230048\pi\)
0.750011 + 0.661425i \(0.230048\pi\)
\(912\) 0 0
\(913\) 27.3864 0.906357
\(914\) 0.215206 0.00711837
\(915\) 0 0
\(916\) −29.9214 −0.988632
\(917\) 8.00364 0.264303
\(918\) 0 0
\(919\) −5.90167 −0.194678 −0.0973391 0.995251i \(-0.531033\pi\)
−0.0973391 + 0.995251i \(0.531033\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 2.28710 0.0753218
\(923\) 7.94216 0.261419
\(924\) 0 0
\(925\) 0 0
\(926\) −2.95566 −0.0971289
\(927\) 0 0
\(928\) −1.85068 −0.0607516
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) −40.4850 −1.32684
\(932\) −1.41647 −0.0463979
\(933\) 0 0
\(934\) −4.69695 −0.153689
\(935\) 0 0
\(936\) 0 0
\(937\) 43.0755 1.40721 0.703607 0.710589i \(-0.251571\pi\)
0.703607 + 0.710589i \(0.251571\pi\)
\(938\) 1.01299 0.0330753
\(939\) 0 0
\(940\) 0 0
\(941\) −2.91637 −0.0950711 −0.0475355 0.998870i \(-0.515137\pi\)
−0.0475355 + 0.998870i \(0.515137\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −38.5312 −1.25408
\(945\) 0 0
\(946\) −0.259911 −0.00845043
\(947\) −0.556407 −0.0180808 −0.00904041 0.999959i \(-0.502878\pi\)
−0.00904041 + 0.999959i \(0.502878\pi\)
\(948\) 0 0
\(949\) 34.6367 1.12435
\(950\) 0 0
\(951\) 0 0
\(952\) −4.24080 −0.137445
\(953\) 37.1661 1.20393 0.601964 0.798523i \(-0.294385\pi\)
0.601964 + 0.798523i \(0.294385\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −3.95084 −0.127779
\(957\) 0 0
\(958\) −5.13700 −0.165969
\(959\) −10.7056 −0.345703
\(960\) 0 0
\(961\) 9.98530 0.322106
\(962\) 0.680906 0.0219533
\(963\) 0 0
\(964\) −34.2305 −1.10249
\(965\) 0 0
\(966\) 0 0
\(967\) −24.2754 −0.780643 −0.390322 0.920679i \(-0.627636\pi\)
−0.390322 + 0.920679i \(0.627636\pi\)
\(968\) 5.22151 0.167826
\(969\) 0 0
\(970\) 0 0
\(971\) 17.1709 0.551039 0.275520 0.961295i \(-0.411150\pi\)
0.275520 + 0.961295i \(0.411150\pi\)
\(972\) 0 0
\(973\) 3.01275 0.0965842
\(974\) −2.21220 −0.0708834
\(975\) 0 0
\(976\) −4.41908 −0.141451
\(977\) 4.95785 0.158616 0.0793078 0.996850i \(-0.474729\pi\)
0.0793078 + 0.996850i \(0.474729\pi\)
\(978\) 0 0
\(979\) 47.5587 1.51998
\(980\) 0 0
\(981\) 0 0
\(982\) 0.644104 0.0205542
\(983\) 11.5651 0.368869 0.184434 0.982845i \(-0.440955\pi\)
0.184434 + 0.982845i \(0.440955\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −0.975419 −0.0310637
\(987\) 0 0
\(988\) 54.7190 1.74084
\(989\) −0.293769 −0.00934132
\(990\) 0 0
\(991\) −18.3429 −0.582682 −0.291341 0.956619i \(-0.594102\pi\)
−0.291341 + 0.956619i \(0.594102\pi\)
\(992\) −11.8480 −0.376175
\(993\) 0 0
\(994\) −0.342932 −0.0108771
\(995\) 0 0
\(996\) 0 0
\(997\) 32.2997 1.02294 0.511471 0.859300i \(-0.329101\pi\)
0.511471 + 0.859300i \(0.329101\pi\)
\(998\) −4.71435 −0.149230
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.bt.1.3 6
3.2 odd 2 725.2.a.l.1.4 6
5.2 odd 4 1305.2.c.h.784.3 6
5.3 odd 4 1305.2.c.h.784.4 6
5.4 even 2 inner 6525.2.a.bt.1.4 6
15.2 even 4 145.2.b.c.59.4 yes 6
15.8 even 4 145.2.b.c.59.3 6
15.14 odd 2 725.2.a.l.1.3 6
60.23 odd 4 2320.2.d.g.929.5 6
60.47 odd 4 2320.2.d.g.929.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.b.c.59.3 6 15.8 even 4
145.2.b.c.59.4 yes 6 15.2 even 4
725.2.a.l.1.3 6 15.14 odd 2
725.2.a.l.1.4 6 3.2 odd 2
1305.2.c.h.784.3 6 5.2 odd 4
1305.2.c.h.784.4 6 5.3 odd 4
2320.2.d.g.929.2 6 60.47 odd 4
2320.2.d.g.929.5 6 60.23 odd 4
6525.2.a.bt.1.3 6 1.1 even 1 trivial
6525.2.a.bt.1.4 6 5.4 even 2 inner