Properties

Label 725.2.a.l.1.4
Level $725$
Weight $2$
Character 725.1
Self dual yes
Analytic conductor $5.789$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [725,2,Mod(1,725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(725, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("725.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.337383424.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 13x^{4} + 41x^{2} - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.156785\) of defining polynomial
Character \(\chi\) \(=\) 725.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.156785 q^{2} -2.56387 q^{3} -1.97542 q^{4} -0.401976 q^{6} -1.09364 q^{7} -0.623285 q^{8} +3.57344 q^{9} -4.40198 q^{11} +5.06472 q^{12} -3.97108 q^{13} -0.171466 q^{14} +3.85312 q^{16} -6.22138 q^{17} +0.560261 q^{18} +6.97542 q^{19} +2.80395 q^{21} -0.690163 q^{22} +0.780070 q^{23} +1.59802 q^{24} -0.622605 q^{26} -1.47023 q^{27} +2.16040 q^{28} -1.00000 q^{29} +6.40198 q^{31} +1.85068 q^{32} +11.2861 q^{33} -0.975419 q^{34} -7.05904 q^{36} +1.09364 q^{37} +1.09364 q^{38} +10.1813 q^{39} +0.439617 q^{42} +0.376593 q^{43} +8.69575 q^{44} +0.122303 q^{46} +4.75115 q^{47} -9.87890 q^{48} -5.80395 q^{49} +15.9508 q^{51} +7.84455 q^{52} +11.2861 q^{53} -0.230510 q^{54} +0.681649 q^{56} -17.8841 q^{57} -0.156785 q^{58} +10.0000 q^{59} -1.14688 q^{61} +1.00373 q^{62} -3.90806 q^{63} -7.41607 q^{64} +1.76949 q^{66} +5.90782 q^{67} +12.2898 q^{68} -2.00000 q^{69} +2.00000 q^{71} -2.22727 q^{72} -8.72223 q^{73} +0.171466 q^{74} -13.7794 q^{76} +4.81418 q^{77} +1.59628 q^{78} -5.54886 q^{79} -6.95084 q^{81} -6.22138 q^{83} -5.53898 q^{84} +0.0590441 q^{86} +2.56387 q^{87} +2.74369 q^{88} -10.8040 q^{89} +4.34293 q^{91} -1.54096 q^{92} -16.4139 q^{93} +0.744908 q^{94} -4.74491 q^{96} +17.4176 q^{97} -0.909972 q^{98} -15.7302 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 14 q^{4} + 14 q^{6} + 12 q^{9} - 10 q^{11} - 8 q^{14} + 42 q^{16} + 16 q^{19} - 16 q^{21} + 26 q^{24} - 46 q^{26} - 6 q^{29} + 22 q^{31} + 20 q^{34} - 12 q^{36} - 14 q^{39} - 2 q^{44} - 44 q^{46}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.156785 0.110864 0.0554318 0.998462i \(-0.482346\pi\)
0.0554318 + 0.998462i \(0.482346\pi\)
\(3\) −2.56387 −1.48025 −0.740126 0.672468i \(-0.765234\pi\)
−0.740126 + 0.672468i \(0.765234\pi\)
\(4\) −1.97542 −0.987709
\(5\) 0 0
\(6\) −0.401976 −0.164106
\(7\) −1.09364 −0.413357 −0.206678 0.978409i \(-0.566265\pi\)
−0.206678 + 0.978409i \(0.566265\pi\)
\(8\) −0.623285 −0.220365
\(9\) 3.57344 1.19115
\(10\) 0 0
\(11\) −4.40198 −1.32725 −0.663623 0.748067i \(-0.730982\pi\)
−0.663623 + 0.748067i \(0.730982\pi\)
\(12\) 5.06472 1.46206
\(13\) −3.97108 −1.10138 −0.550690 0.834710i \(-0.685635\pi\)
−0.550690 + 0.834710i \(0.685635\pi\)
\(14\) −0.171466 −0.0458262
\(15\) 0 0
\(16\) 3.85312 0.963279
\(17\) −6.22138 −1.50891 −0.754454 0.656353i \(-0.772098\pi\)
−0.754454 + 0.656353i \(0.772098\pi\)
\(18\) 0.560261 0.132055
\(19\) 6.97542 1.60027 0.800135 0.599819i \(-0.204761\pi\)
0.800135 + 0.599819i \(0.204761\pi\)
\(20\) 0 0
\(21\) 2.80395 0.611873
\(22\) −0.690163 −0.147143
\(23\) 0.780070 0.162656 0.0813279 0.996687i \(-0.474084\pi\)
0.0813279 + 0.996687i \(0.474084\pi\)
\(24\) 1.59802 0.326195
\(25\) 0 0
\(26\) −0.622605 −0.122103
\(27\) −1.47023 −0.282946
\(28\) 2.16040 0.408276
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 6.40198 1.14983 0.574914 0.818214i \(-0.305035\pi\)
0.574914 + 0.818214i \(0.305035\pi\)
\(32\) 1.85068 0.327157
\(33\) 11.2861 1.96466
\(34\) −0.975419 −0.167283
\(35\) 0 0
\(36\) −7.05904 −1.17651
\(37\) 1.09364 0.179793 0.0898966 0.995951i \(-0.471346\pi\)
0.0898966 + 0.995951i \(0.471346\pi\)
\(38\) 1.09364 0.177412
\(39\) 10.1813 1.63032
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0.439617 0.0678344
\(43\) 0.376593 0.0574299 0.0287150 0.999588i \(-0.490858\pi\)
0.0287150 + 0.999588i \(0.490858\pi\)
\(44\) 8.69575 1.31093
\(45\) 0 0
\(46\) 0.122303 0.0180326
\(47\) 4.75115 0.693027 0.346513 0.938045i \(-0.387366\pi\)
0.346513 + 0.938045i \(0.387366\pi\)
\(48\) −9.87890 −1.42590
\(49\) −5.80395 −0.829136
\(50\) 0 0
\(51\) 15.9508 2.23356
\(52\) 7.84455 1.08784
\(53\) 11.2861 1.55027 0.775133 0.631798i \(-0.217683\pi\)
0.775133 + 0.631798i \(0.217683\pi\)
\(54\) −0.230510 −0.0313685
\(55\) 0 0
\(56\) 0.681649 0.0910892
\(57\) −17.8841 −2.36880
\(58\) −0.156785 −0.0205869
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) −1.14688 −0.146844 −0.0734218 0.997301i \(-0.523392\pi\)
−0.0734218 + 0.997301i \(0.523392\pi\)
\(62\) 1.00373 0.127474
\(63\) −3.90806 −0.492369
\(64\) −7.41607 −0.927009
\(65\) 0 0
\(66\) 1.76949 0.217809
\(67\) 5.90782 0.721754 0.360877 0.932613i \(-0.382477\pi\)
0.360877 + 0.932613i \(0.382477\pi\)
\(68\) 12.2898 1.49036
\(69\) −2.00000 −0.240772
\(70\) 0 0
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) −2.22727 −0.262487
\(73\) −8.72223 −1.02086 −0.510430 0.859919i \(-0.670514\pi\)
−0.510430 + 0.859919i \(0.670514\pi\)
\(74\) 0.171466 0.0199325
\(75\) 0 0
\(76\) −13.7794 −1.58060
\(77\) 4.81418 0.548626
\(78\) 1.59628 0.180743
\(79\) −5.54886 −0.624296 −0.312148 0.950034i \(-0.601048\pi\)
−0.312148 + 0.950034i \(0.601048\pi\)
\(80\) 0 0
\(81\) −6.95084 −0.772315
\(82\) 0 0
\(83\) −6.22138 −0.682886 −0.341443 0.939903i \(-0.610916\pi\)
−0.341443 + 0.939903i \(0.610916\pi\)
\(84\) −5.53898 −0.604352
\(85\) 0 0
\(86\) 0.0590441 0.00636689
\(87\) 2.56387 0.274876
\(88\) 2.74369 0.292478
\(89\) −10.8040 −1.14522 −0.572608 0.819829i \(-0.694068\pi\)
−0.572608 + 0.819829i \(0.694068\pi\)
\(90\) 0 0
\(91\) 4.34293 0.455263
\(92\) −1.54096 −0.160657
\(93\) −16.4139 −1.70204
\(94\) 0.744908 0.0768314
\(95\) 0 0
\(96\) −4.74491 −0.484275
\(97\) 17.4176 1.76849 0.884244 0.467026i \(-0.154674\pi\)
0.884244 + 0.467026i \(0.154674\pi\)
\(98\) −0.909972 −0.0919210
\(99\) −15.7302 −1.58095
\(100\) 0 0
\(101\) −12.7548 −1.26915 −0.634574 0.772862i \(-0.718825\pi\)
−0.634574 + 0.772862i \(0.718825\pi\)
\(102\) 2.50085 0.247621
\(103\) 5.15463 0.507901 0.253950 0.967217i \(-0.418270\pi\)
0.253950 + 0.967217i \(0.418270\pi\)
\(104\) 2.47512 0.242705
\(105\) 0 0
\(106\) 1.76949 0.171868
\(107\) 1.09364 0.105726 0.0528631 0.998602i \(-0.483165\pi\)
0.0528631 + 0.998602i \(0.483165\pi\)
\(108\) 2.90433 0.279469
\(109\) 15.3282 1.46818 0.734089 0.679053i \(-0.237609\pi\)
0.734089 + 0.679053i \(0.237609\pi\)
\(110\) 0 0
\(111\) −2.80395 −0.266139
\(112\) −4.21392 −0.398178
\(113\) −7.28814 −0.685611 −0.342805 0.939406i \(-0.611377\pi\)
−0.342805 + 0.939406i \(0.611377\pi\)
\(114\) −2.80395 −0.262614
\(115\) 0 0
\(116\) 1.97542 0.183413
\(117\) −14.1904 −1.31191
\(118\) 1.56785 0.144332
\(119\) 6.80395 0.623717
\(120\) 0 0
\(121\) 8.37739 0.761581
\(122\) −0.179814 −0.0162796
\(123\) 0 0
\(124\) −12.6466 −1.13570
\(125\) 0 0
\(126\) −0.612724 −0.0545858
\(127\) −17.7312 −1.57339 −0.786693 0.617345i \(-0.788208\pi\)
−0.786693 + 0.617345i \(0.788208\pi\)
\(128\) −4.86409 −0.429929
\(129\) −0.965537 −0.0850108
\(130\) 0 0
\(131\) 7.31835 0.639407 0.319704 0.947518i \(-0.396417\pi\)
0.319704 + 0.947518i \(0.396417\pi\)
\(132\) −22.2948 −1.94051
\(133\) −7.62859 −0.661483
\(134\) 0.926256 0.0800163
\(135\) 0 0
\(136\) 3.87770 0.332510
\(137\) −9.78899 −0.836330 −0.418165 0.908371i \(-0.637327\pi\)
−0.418165 + 0.908371i \(0.637327\pi\)
\(138\) −0.313570 −0.0266928
\(139\) −2.75479 −0.233658 −0.116829 0.993152i \(-0.537273\pi\)
−0.116829 + 0.993152i \(0.537273\pi\)
\(140\) 0 0
\(141\) −12.1813 −1.02585
\(142\) 0.313570 0.0263142
\(143\) 17.4806 1.46180
\(144\) 13.7689 1.14741
\(145\) 0 0
\(146\) −1.36751 −0.113176
\(147\) 14.8806 1.22733
\(148\) −2.16040 −0.177583
\(149\) −4.52428 −0.370643 −0.185322 0.982678i \(-0.559333\pi\)
−0.185322 + 0.982678i \(0.559333\pi\)
\(150\) 0 0
\(151\) 2.80395 0.228182 0.114091 0.993470i \(-0.463604\pi\)
0.114091 + 0.993470i \(0.463604\pi\)
\(152\) −4.34768 −0.352643
\(153\) −22.2318 −1.79733
\(154\) 0.754790 0.0608227
\(155\) 0 0
\(156\) −20.1124 −1.61028
\(157\) 4.97481 0.397033 0.198517 0.980098i \(-0.436388\pi\)
0.198517 + 0.980098i \(0.436388\pi\)
\(158\) −0.869977 −0.0692117
\(159\) −28.9361 −2.29478
\(160\) 0 0
\(161\) −0.853115 −0.0672349
\(162\) −1.08979 −0.0856216
\(163\) 20.7615 1.62617 0.813084 0.582146i \(-0.197787\pi\)
0.813084 + 0.582146i \(0.197787\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −0.975419 −0.0757072
\(167\) 21.9182 1.69608 0.848040 0.529932i \(-0.177783\pi\)
0.848040 + 0.529932i \(0.177783\pi\)
\(168\) −1.74766 −0.134835
\(169\) 2.76949 0.213038
\(170\) 0 0
\(171\) 24.9263 1.90616
\(172\) −0.743929 −0.0567241
\(173\) −3.25404 −0.247400 −0.123700 0.992320i \(-0.539476\pi\)
−0.123700 + 0.992320i \(0.539476\pi\)
\(174\) 0.401976 0.0304737
\(175\) 0 0
\(176\) −16.9613 −1.27851
\(177\) −25.6387 −1.92712
\(178\) −1.69390 −0.126963
\(179\) −7.19605 −0.537858 −0.268929 0.963160i \(-0.586670\pi\)
−0.268929 + 0.963160i \(0.586670\pi\)
\(180\) 0 0
\(181\) 13.0345 0.968844 0.484422 0.874834i \(-0.339030\pi\)
0.484422 + 0.874834i \(0.339030\pi\)
\(182\) 0.680906 0.0504721
\(183\) 2.94047 0.217365
\(184\) −0.486206 −0.0358436
\(185\) 0 0
\(186\) −2.57344 −0.188694
\(187\) 27.3864 2.00269
\(188\) −9.38551 −0.684509
\(189\) 1.60790 0.116958
\(190\) 0 0
\(191\) −10.1223 −0.732424 −0.366212 0.930531i \(-0.619346\pi\)
−0.366212 + 0.930531i \(0.619346\pi\)
\(192\) 19.0139 1.37221
\(193\) 22.8589 1.64542 0.822710 0.568462i \(-0.192461\pi\)
0.822710 + 0.568462i \(0.192461\pi\)
\(194\) 2.73081 0.196061
\(195\) 0 0
\(196\) 11.4652 0.818945
\(197\) 22.0711 1.57250 0.786251 0.617907i \(-0.212019\pi\)
0.786251 + 0.617907i \(0.212019\pi\)
\(198\) −2.46626 −0.175269
\(199\) 5.19605 0.368338 0.184169 0.982895i \(-0.441041\pi\)
0.184169 + 0.982895i \(0.441041\pi\)
\(200\) 0 0
\(201\) −15.1469 −1.06838
\(202\) −1.99976 −0.140702
\(203\) 1.09364 0.0767585
\(204\) −31.5096 −2.20611
\(205\) 0 0
\(206\) 0.808167 0.0563077
\(207\) 2.78754 0.193747
\(208\) −15.3010 −1.06094
\(209\) −30.7056 −2.12395
\(210\) 0 0
\(211\) 1.64719 0.113397 0.0566985 0.998391i \(-0.481943\pi\)
0.0566985 + 0.998391i \(0.481943\pi\)
\(212\) −22.2948 −1.53121
\(213\) −5.12775 −0.351347
\(214\) 0.171466 0.0117212
\(215\) 0 0
\(216\) 0.916374 0.0623514
\(217\) −7.00145 −0.475290
\(218\) 2.40323 0.162768
\(219\) 22.3627 1.51113
\(220\) 0 0
\(221\) 24.7056 1.66188
\(222\) −0.439617 −0.0295052
\(223\) 9.47542 0.634521 0.317261 0.948338i \(-0.397237\pi\)
0.317261 + 0.948338i \(0.397237\pi\)
\(224\) −2.02398 −0.135233
\(225\) 0 0
\(226\) −1.14267 −0.0760093
\(227\) 5.72800 0.380181 0.190090 0.981767i \(-0.439122\pi\)
0.190090 + 0.981767i \(0.439122\pi\)
\(228\) 35.3286 2.33969
\(229\) 15.1469 1.00093 0.500467 0.865756i \(-0.333162\pi\)
0.500467 + 0.865756i \(0.333162\pi\)
\(230\) 0 0
\(231\) −12.3429 −0.812105
\(232\) 0.623285 0.0409207
\(233\) −0.717046 −0.0469753 −0.0234876 0.999724i \(-0.507477\pi\)
−0.0234876 + 0.999724i \(0.507477\pi\)
\(234\) −2.22484 −0.145443
\(235\) 0 0
\(236\) −19.7542 −1.28589
\(237\) 14.2266 0.924115
\(238\) 1.06676 0.0691475
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0 0
\(241\) 17.3282 1.11621 0.558105 0.829770i \(-0.311529\pi\)
0.558105 + 0.829770i \(0.311529\pi\)
\(242\) 1.31345 0.0844316
\(243\) 22.2318 1.42617
\(244\) 2.26558 0.145039
\(245\) 0 0
\(246\) 0 0
\(247\) −27.7000 −1.76251
\(248\) −3.99026 −0.253382
\(249\) 15.9508 1.01084
\(250\) 0 0
\(251\) 26.0099 1.64173 0.820865 0.571123i \(-0.193492\pi\)
0.820865 + 0.571123i \(0.193492\pi\)
\(252\) 7.72005 0.486317
\(253\) −3.43385 −0.215884
\(254\) −2.77998 −0.174431
\(255\) 0 0
\(256\) 14.0695 0.879346
\(257\) 15.0335 0.937766 0.468883 0.883260i \(-0.344657\pi\)
0.468883 + 0.883260i \(0.344657\pi\)
\(258\) −0.151382 −0.00942461
\(259\) −1.19605 −0.0743188
\(260\) 0 0
\(261\) −3.57344 −0.221191
\(262\) 1.14741 0.0708870
\(263\) −12.0662 −0.744032 −0.372016 0.928226i \(-0.621333\pi\)
−0.372016 + 0.928226i \(0.621333\pi\)
\(264\) −7.03446 −0.432941
\(265\) 0 0
\(266\) −1.19605 −0.0733344
\(267\) 27.7000 1.69521
\(268\) −11.6704 −0.712884
\(269\) −10.8531 −0.661726 −0.330863 0.943679i \(-0.607340\pi\)
−0.330863 + 0.943679i \(0.607340\pi\)
\(270\) 0 0
\(271\) −12.7449 −0.774198 −0.387099 0.922038i \(-0.626523\pi\)
−0.387099 + 0.922038i \(0.626523\pi\)
\(272\) −23.9717 −1.45350
\(273\) −11.1347 −0.673904
\(274\) −1.53476 −0.0927185
\(275\) 0 0
\(276\) 3.95084 0.237812
\(277\) −20.0714 −1.20597 −0.602986 0.797752i \(-0.706022\pi\)
−0.602986 + 0.797752i \(0.706022\pi\)
\(278\) −0.431909 −0.0259042
\(279\) 22.8771 1.36962
\(280\) 0 0
\(281\) −20.9361 −1.24895 −0.624473 0.781047i \(-0.714686\pi\)
−0.624473 + 0.781047i \(0.714686\pi\)
\(282\) −1.90985 −0.113730
\(283\) −16.9703 −1.00878 −0.504389 0.863477i \(-0.668282\pi\)
−0.504389 + 0.863477i \(0.668282\pi\)
\(284\) −3.95084 −0.234439
\(285\) 0 0
\(286\) 2.74069 0.162061
\(287\) 0 0
\(288\) 6.61330 0.389692
\(289\) 21.7056 1.27680
\(290\) 0 0
\(291\) −44.6565 −2.61781
\(292\) 17.2301 1.00831
\(293\) 9.47542 0.553560 0.276780 0.960933i \(-0.410733\pi\)
0.276780 + 0.960933i \(0.410733\pi\)
\(294\) 2.33305 0.136066
\(295\) 0 0
\(296\) −0.681649 −0.0396201
\(297\) 6.47193 0.375539
\(298\) −0.709338 −0.0410909
\(299\) −3.09772 −0.179146
\(300\) 0 0
\(301\) −0.411857 −0.0237391
\(302\) 0.439617 0.0252971
\(303\) 32.7017 1.87866
\(304\) 26.8771 1.54151
\(305\) 0 0
\(306\) −3.48560 −0.199259
\(307\) −19.3812 −1.10614 −0.553072 0.833134i \(-0.686544\pi\)
−0.553072 + 0.833134i \(0.686544\pi\)
\(308\) −9.51001 −0.541883
\(309\) −13.2158 −0.751821
\(310\) 0 0
\(311\) −9.26919 −0.525607 −0.262804 0.964849i \(-0.584647\pi\)
−0.262804 + 0.964849i \(0.584647\pi\)
\(312\) −6.34588 −0.359265
\(313\) 14.5324 0.821422 0.410711 0.911766i \(-0.365281\pi\)
0.410711 + 0.911766i \(0.365281\pi\)
\(314\) 0.779975 0.0440165
\(315\) 0 0
\(316\) 10.9613 0.616623
\(317\) 22.4116 1.25876 0.629380 0.777098i \(-0.283309\pi\)
0.629380 + 0.777098i \(0.283309\pi\)
\(318\) −4.53675 −0.254408
\(319\) 4.40198 0.246463
\(320\) 0 0
\(321\) −2.80395 −0.156501
\(322\) −0.133756 −0.00745390
\(323\) −43.3968 −2.41466
\(324\) 13.7308 0.762823
\(325\) 0 0
\(326\) 3.25509 0.180283
\(327\) −39.2996 −2.17327
\(328\) 0 0
\(329\) −5.19605 −0.286467
\(330\) 0 0
\(331\) 7.89179 0.433772 0.216886 0.976197i \(-0.430410\pi\)
0.216886 + 0.976197i \(0.430410\pi\)
\(332\) 12.2898 0.674493
\(333\) 3.90806 0.214160
\(334\) 3.43644 0.188034
\(335\) 0 0
\(336\) 10.8040 0.589404
\(337\) −33.4280 −1.82094 −0.910468 0.413579i \(-0.864279\pi\)
−0.910468 + 0.413579i \(0.864279\pi\)
\(338\) 0.434214 0.0236181
\(339\) 18.6859 1.01488
\(340\) 0 0
\(341\) −28.1813 −1.52611
\(342\) 3.90806 0.211324
\(343\) 14.0029 0.756086
\(344\) −0.234725 −0.0126555
\(345\) 0 0
\(346\) −0.510183 −0.0274276
\(347\) −31.1069 −1.66991 −0.834954 0.550320i \(-0.814506\pi\)
−0.834954 + 0.550320i \(0.814506\pi\)
\(348\) −5.06472 −0.271498
\(349\) −5.76949 −0.308834 −0.154417 0.988006i \(-0.549350\pi\)
−0.154417 + 0.988006i \(0.549350\pi\)
\(350\) 0 0
\(351\) 5.83842 0.311632
\(352\) −8.14665 −0.434218
\(353\) 13.5095 0.719039 0.359520 0.933137i \(-0.382941\pi\)
0.359520 + 0.933137i \(0.382941\pi\)
\(354\) −4.01976 −0.213648
\(355\) 0 0
\(356\) 21.3423 1.13114
\(357\) −17.4445 −0.923259
\(358\) −1.12823 −0.0596289
\(359\) −1.15677 −0.0610518 −0.0305259 0.999534i \(-0.509718\pi\)
−0.0305259 + 0.999534i \(0.509718\pi\)
\(360\) 0 0
\(361\) 29.6565 1.56087
\(362\) 2.04361 0.107410
\(363\) −21.4786 −1.12733
\(364\) −8.57911 −0.449667
\(365\) 0 0
\(366\) 0.461020 0.0240979
\(367\) 10.5959 0.553104 0.276552 0.960999i \(-0.410808\pi\)
0.276552 + 0.960999i \(0.410808\pi\)
\(368\) 3.00570 0.156683
\(369\) 0 0
\(370\) 0 0
\(371\) −12.3429 −0.640813
\(372\) 32.4242 1.68112
\(373\) 7.09907 0.367576 0.183788 0.982966i \(-0.441164\pi\)
0.183788 + 0.982966i \(0.441164\pi\)
\(374\) 4.29377 0.222026
\(375\) 0 0
\(376\) −2.96132 −0.152719
\(377\) 3.97108 0.204521
\(378\) 0.252095 0.0129664
\(379\) 18.1223 0.930880 0.465440 0.885079i \(-0.345896\pi\)
0.465440 + 0.885079i \(0.345896\pi\)
\(380\) 0 0
\(381\) 45.4604 2.32901
\(382\) −1.58702 −0.0811992
\(383\) 3.28092 0.167647 0.0838236 0.996481i \(-0.473287\pi\)
0.0838236 + 0.996481i \(0.473287\pi\)
\(384\) 12.4709 0.636403
\(385\) 0 0
\(386\) 3.58393 0.182417
\(387\) 1.34573 0.0684075
\(388\) −34.4070 −1.74675
\(389\) −12.0000 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(390\) 0 0
\(391\) −4.85312 −0.245433
\(392\) 3.61752 0.182712
\(393\) −18.7633 −0.946484
\(394\) 3.46042 0.174333
\(395\) 0 0
\(396\) 31.0737 1.56151
\(397\) 36.3054 1.82212 0.911058 0.412278i \(-0.135267\pi\)
0.911058 + 0.412278i \(0.135267\pi\)
\(398\) 0.814661 0.0408353
\(399\) 19.5587 0.979162
\(400\) 0 0
\(401\) 26.0830 1.30252 0.651262 0.758853i \(-0.274240\pi\)
0.651262 + 0.758853i \(0.274240\pi\)
\(402\) −2.37480 −0.118444
\(403\) −25.4228 −1.26640
\(404\) 25.1960 1.25355
\(405\) 0 0
\(406\) 0.171466 0.00850972
\(407\) −4.81418 −0.238630
\(408\) −9.94192 −0.492198
\(409\) 13.0486 0.645210 0.322605 0.946534i \(-0.395442\pi\)
0.322605 + 0.946534i \(0.395442\pi\)
\(410\) 0 0
\(411\) 25.0977 1.23798
\(412\) −10.1825 −0.501658
\(413\) −10.9364 −0.538145
\(414\) 0.437043 0.0214795
\(415\) 0 0
\(416\) −7.34920 −0.360324
\(417\) 7.06293 0.345873
\(418\) −4.81418 −0.235469
\(419\) 35.8525 1.75151 0.875755 0.482756i \(-0.160364\pi\)
0.875755 + 0.482756i \(0.160364\pi\)
\(420\) 0 0
\(421\) 16.7056 0.814182 0.407091 0.913388i \(-0.366543\pi\)
0.407091 + 0.913388i \(0.366543\pi\)
\(422\) 0.258254 0.0125716
\(423\) 16.9780 0.825497
\(424\) −7.03446 −0.341624
\(425\) 0 0
\(426\) −0.803952 −0.0389516
\(427\) 1.25428 0.0606988
\(428\) −2.16040 −0.104427
\(429\) −44.8180 −2.16384
\(430\) 0 0
\(431\) −26.3135 −1.26748 −0.633739 0.773547i \(-0.718481\pi\)
−0.633739 + 0.773547i \(0.718481\pi\)
\(432\) −5.66498 −0.272556
\(433\) −10.7220 −0.515266 −0.257633 0.966243i \(-0.582943\pi\)
−0.257633 + 0.966243i \(0.582943\pi\)
\(434\) −1.09772 −0.0526923
\(435\) 0 0
\(436\) −30.2797 −1.45013
\(437\) 5.44131 0.260293
\(438\) 3.50613 0.167529
\(439\) 29.5587 1.41076 0.705381 0.708828i \(-0.250776\pi\)
0.705381 + 0.708828i \(0.250776\pi\)
\(440\) 0 0
\(441\) −20.7401 −0.987623
\(442\) 3.87347 0.184242
\(443\) 3.40697 0.161870 0.0809349 0.996719i \(-0.474209\pi\)
0.0809349 + 0.996719i \(0.474209\pi\)
\(444\) 5.53898 0.262868
\(445\) 0 0
\(446\) 1.48560 0.0703453
\(447\) 11.5997 0.548646
\(448\) 8.11051 0.383186
\(449\) 0.461020 0.0217569 0.0108784 0.999941i \(-0.496537\pi\)
0.0108784 + 0.999941i \(0.496537\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 14.3971 0.677184
\(453\) −7.18898 −0.337768
\(454\) 0.898063 0.0421482
\(455\) 0 0
\(456\) 11.1469 0.522001
\(457\) −1.37262 −0.0642084 −0.0321042 0.999485i \(-0.510221\pi\)
−0.0321042 + 0.999485i \(0.510221\pi\)
\(458\) 2.37480 0.110967
\(459\) 9.14688 0.426940
\(460\) 0 0
\(461\) 14.5875 0.679409 0.339705 0.940532i \(-0.389673\pi\)
0.339705 + 0.940532i \(0.389673\pi\)
\(462\) −1.93518 −0.0900329
\(463\) 18.8517 0.876112 0.438056 0.898948i \(-0.355667\pi\)
0.438056 + 0.898948i \(0.355667\pi\)
\(464\) −3.85312 −0.178876
\(465\) 0 0
\(466\) −0.112422 −0.00520785
\(467\) −29.9580 −1.38629 −0.693145 0.720798i \(-0.743775\pi\)
−0.693145 + 0.720798i \(0.743775\pi\)
\(468\) 28.0320 1.29578
\(469\) −6.46102 −0.298342
\(470\) 0 0
\(471\) −12.7548 −0.587710
\(472\) −6.23285 −0.286890
\(473\) −1.65776 −0.0762237
\(474\) 2.23051 0.102451
\(475\) 0 0
\(476\) −13.4407 −0.616051
\(477\) 40.3302 1.84660
\(478\) −0.313570 −0.0143423
\(479\) −32.7647 −1.49706 −0.748528 0.663103i \(-0.769239\pi\)
−0.748528 + 0.663103i \(0.769239\pi\)
\(480\) 0 0
\(481\) −4.34293 −0.198021
\(482\) 2.71680 0.123747
\(483\) 2.18728 0.0995246
\(484\) −16.5489 −0.752221
\(485\) 0 0
\(486\) 3.48560 0.158110
\(487\) 14.1098 0.639375 0.319688 0.947523i \(-0.396422\pi\)
0.319688 + 0.947523i \(0.396422\pi\)
\(488\) 0.714836 0.0323591
\(489\) −53.2299 −2.40714
\(490\) 0 0
\(491\) 4.10821 0.185401 0.0927004 0.995694i \(-0.470450\pi\)
0.0927004 + 0.995694i \(0.470450\pi\)
\(492\) 0 0
\(493\) 6.22138 0.280197
\(494\) −4.34293 −0.195398
\(495\) 0 0
\(496\) 24.6676 1.10761
\(497\) −2.18728 −0.0981129
\(498\) 2.50085 0.112066
\(499\) 30.0689 1.34607 0.673035 0.739611i \(-0.264990\pi\)
0.673035 + 0.739611i \(0.264990\pi\)
\(500\) 0 0
\(501\) −56.1954 −2.51063
\(502\) 4.07795 0.182008
\(503\) 14.8806 0.663493 0.331746 0.943369i \(-0.392362\pi\)
0.331746 + 0.943369i \(0.392362\pi\)
\(504\) 2.43583 0.108501
\(505\) 0 0
\(506\) −0.538375 −0.0239337
\(507\) −7.10062 −0.315350
\(508\) 35.0264 1.55405
\(509\) 1.93674 0.0858445 0.0429223 0.999078i \(-0.486333\pi\)
0.0429223 + 0.999078i \(0.486333\pi\)
\(510\) 0 0
\(511\) 9.53898 0.421980
\(512\) 11.9341 0.527416
\(513\) −10.2555 −0.452791
\(514\) 2.35703 0.103964
\(515\) 0 0
\(516\) 1.90734 0.0839660
\(517\) −20.9145 −0.919817
\(518\) −0.187522 −0.00823925
\(519\) 8.34293 0.366214
\(520\) 0 0
\(521\) −4.23051 −0.185342 −0.0926710 0.995697i \(-0.529540\pi\)
−0.0926710 + 0.995697i \(0.529540\pi\)
\(522\) −0.560261 −0.0245220
\(523\) 4.40144 0.192462 0.0962308 0.995359i \(-0.469321\pi\)
0.0962308 + 0.995359i \(0.469321\pi\)
\(524\) −14.4568 −0.631548
\(525\) 0 0
\(526\) −1.89179 −0.0824861
\(527\) −39.8292 −1.73499
\(528\) 43.4867 1.89251
\(529\) −22.3915 −0.973543
\(530\) 0 0
\(531\) 35.7344 1.55074
\(532\) 15.0697 0.653353
\(533\) 0 0
\(534\) 4.34293 0.187937
\(535\) 0 0
\(536\) −3.68225 −0.159049
\(537\) 18.4497 0.796165
\(538\) −1.70160 −0.0733613
\(539\) 25.5489 1.10047
\(540\) 0 0
\(541\) −32.4119 −1.39349 −0.696747 0.717317i \(-0.745370\pi\)
−0.696747 + 0.717317i \(0.745370\pi\)
\(542\) −1.99821 −0.0858304
\(543\) −33.4187 −1.43413
\(544\) −11.5138 −0.493650
\(545\) 0 0
\(546\) −1.74576 −0.0747114
\(547\) 12.9093 0.551961 0.275980 0.961163i \(-0.410998\pi\)
0.275980 + 0.961163i \(0.410998\pi\)
\(548\) 19.3374 0.826051
\(549\) −4.09833 −0.174912
\(550\) 0 0
\(551\) −6.97542 −0.297163
\(552\) 1.24657 0.0530576
\(553\) 6.06845 0.258057
\(554\) −3.14688 −0.133698
\(555\) 0 0
\(556\) 5.44186 0.230786
\(557\) −23.0195 −0.975369 −0.487685 0.873020i \(-0.662158\pi\)
−0.487685 + 0.873020i \(0.662158\pi\)
\(558\) 3.58678 0.151841
\(559\) −1.49548 −0.0632522
\(560\) 0 0
\(561\) −70.2152 −2.96449
\(562\) −3.28247 −0.138463
\(563\) 27.3234 1.15154 0.575771 0.817611i \(-0.304702\pi\)
0.575771 + 0.817611i \(0.304702\pi\)
\(564\) 24.0633 1.01325
\(565\) 0 0
\(566\) −2.66068 −0.111837
\(567\) 7.60171 0.319242
\(568\) −1.24657 −0.0523049
\(569\) −0.803952 −0.0337034 −0.0168517 0.999858i \(-0.505364\pi\)
−0.0168517 + 0.999858i \(0.505364\pi\)
\(570\) 0 0
\(571\) 43.4604 1.81876 0.909381 0.415964i \(-0.136556\pi\)
0.909381 + 0.415964i \(0.136556\pi\)
\(572\) −34.5315 −1.44384
\(573\) 25.9523 1.08417
\(574\) 0 0
\(575\) 0 0
\(576\) −26.5009 −1.10420
\(577\) 1.27345 0.0530146 0.0265073 0.999649i \(-0.491561\pi\)
0.0265073 + 0.999649i \(0.491561\pi\)
\(578\) 3.40311 0.141551
\(579\) −58.6073 −2.43564
\(580\) 0 0
\(581\) 6.80395 0.282276
\(582\) −7.00145 −0.290220
\(583\) −49.6812 −2.05758
\(584\) 5.43644 0.224961
\(585\) 0 0
\(586\) 1.48560 0.0613696
\(587\) −31.8678 −1.31533 −0.657663 0.753312i \(-0.728455\pi\)
−0.657663 + 0.753312i \(0.728455\pi\)
\(588\) −29.3954 −1.21225
\(589\) 44.6565 1.84004
\(590\) 0 0
\(591\) −56.5875 −2.32770
\(592\) 4.21392 0.173191
\(593\) −1.21043 −0.0497064 −0.0248532 0.999691i \(-0.507912\pi\)
−0.0248532 + 0.999691i \(0.507912\pi\)
\(594\) 1.01470 0.0416337
\(595\) 0 0
\(596\) 8.93735 0.366088
\(597\) −13.3220 −0.545233
\(598\) −0.485676 −0.0198608
\(599\) 24.2053 0.989003 0.494501 0.869177i \(-0.335351\pi\)
0.494501 + 0.869177i \(0.335351\pi\)
\(600\) 0 0
\(601\) 4.68586 0.191140 0.0955702 0.995423i \(-0.469533\pi\)
0.0955702 + 0.995423i \(0.469533\pi\)
\(602\) −0.0645730 −0.00263180
\(603\) 21.1112 0.859716
\(604\) −5.53898 −0.225378
\(605\) 0 0
\(606\) 5.12712 0.208275
\(607\) −0.502641 −0.0204016 −0.0102008 0.999948i \(-0.503247\pi\)
−0.0102008 + 0.999948i \(0.503247\pi\)
\(608\) 12.9093 0.523540
\(609\) −2.80395 −0.113622
\(610\) 0 0
\(611\) −18.8672 −0.763286
\(612\) 43.9170 1.77524
\(613\) 22.9142 0.925496 0.462748 0.886490i \(-0.346863\pi\)
0.462748 + 0.886490i \(0.346863\pi\)
\(614\) −3.03868 −0.122631
\(615\) 0 0
\(616\) −3.00060 −0.120898
\(617\) −15.8574 −0.638397 −0.319198 0.947688i \(-0.603414\pi\)
−0.319198 + 0.947688i \(0.603414\pi\)
\(618\) −2.07204 −0.0833496
\(619\) −35.4014 −1.42290 −0.711451 0.702736i \(-0.751961\pi\)
−0.711451 + 0.702736i \(0.751961\pi\)
\(620\) 0 0
\(621\) −1.14688 −0.0460229
\(622\) −1.45327 −0.0582707
\(623\) 11.8156 0.473383
\(624\) 39.2299 1.57045
\(625\) 0 0
\(626\) 2.27846 0.0910658
\(627\) 78.7253 3.14399
\(628\) −9.82734 −0.392154
\(629\) −6.80395 −0.271291
\(630\) 0 0
\(631\) 44.7056 1.77970 0.889851 0.456250i \(-0.150808\pi\)
0.889851 + 0.456250i \(0.150808\pi\)
\(632\) 3.45852 0.137573
\(633\) −4.22318 −0.167856
\(634\) 3.51379 0.139551
\(635\) 0 0
\(636\) 57.1610 2.26658
\(637\) 23.0480 0.913194
\(638\) 0.690163 0.0273238
\(639\) 7.14688 0.282726
\(640\) 0 0
\(641\) 10.0689 0.397699 0.198849 0.980030i \(-0.436280\pi\)
0.198849 + 0.980030i \(0.436280\pi\)
\(642\) −0.439617 −0.0173503
\(643\) 13.9760 0.551161 0.275580 0.961278i \(-0.411130\pi\)
0.275580 + 0.961278i \(0.411130\pi\)
\(644\) 1.68526 0.0664085
\(645\) 0 0
\(646\) −6.80395 −0.267698
\(647\) 31.1607 1.22505 0.612527 0.790450i \(-0.290153\pi\)
0.612527 + 0.790450i \(0.290153\pi\)
\(648\) 4.33235 0.170191
\(649\) −44.0198 −1.72793
\(650\) 0 0
\(651\) 17.9508 0.703549
\(652\) −41.0127 −1.60618
\(653\) −26.1129 −1.02188 −0.510939 0.859617i \(-0.670702\pi\)
−0.510939 + 0.859617i \(0.670702\pi\)
\(654\) −6.16158 −0.240937
\(655\) 0 0
\(656\) 0 0
\(657\) −31.1684 −1.21600
\(658\) −0.814661 −0.0317588
\(659\) −28.5974 −1.11400 −0.556999 0.830513i \(-0.688047\pi\)
−0.556999 + 0.830513i \(0.688047\pi\)
\(660\) 0 0
\(661\) −38.9994 −1.51690 −0.758450 0.651731i \(-0.774043\pi\)
−0.758450 + 0.651731i \(0.774043\pi\)
\(662\) 1.23731 0.0480895
\(663\) −63.3421 −2.46000
\(664\) 3.87770 0.150484
\(665\) 0 0
\(666\) 0.612724 0.0237426
\(667\) −0.780070 −0.0302044
\(668\) −43.2976 −1.67523
\(669\) −24.2938 −0.939251
\(670\) 0 0
\(671\) 5.04856 0.194897
\(672\) 5.18922 0.200178
\(673\) −38.6725 −1.49072 −0.745358 0.666665i \(-0.767721\pi\)
−0.745358 + 0.666665i \(0.767721\pi\)
\(674\) −5.24100 −0.201876
\(675\) 0 0
\(676\) −5.47090 −0.210419
\(677\) 28.4800 1.09458 0.547288 0.836944i \(-0.315660\pi\)
0.547288 + 0.836944i \(0.315660\pi\)
\(678\) 2.92966 0.112513
\(679\) −19.0486 −0.731017
\(680\) 0 0
\(681\) −14.6859 −0.562764
\(682\) −4.41841 −0.169190
\(683\) 12.4159 0.475081 0.237540 0.971378i \(-0.423659\pi\)
0.237540 + 0.971378i \(0.423659\pi\)
\(684\) −49.2398 −1.88273
\(685\) 0 0
\(686\) 2.19544 0.0838224
\(687\) −38.8347 −1.48164
\(688\) 1.45106 0.0553211
\(689\) −44.8180 −1.70743
\(690\) 0 0
\(691\) 10.8040 0.411002 0.205501 0.978657i \(-0.434118\pi\)
0.205501 + 0.978657i \(0.434118\pi\)
\(692\) 6.42808 0.244359
\(693\) 17.2032 0.653495
\(694\) −4.87709 −0.185132
\(695\) 0 0
\(696\) −1.59802 −0.0605729
\(697\) 0 0
\(698\) −0.904568 −0.0342384
\(699\) 1.83842 0.0695352
\(700\) 0 0
\(701\) 8.47512 0.320101 0.160050 0.987109i \(-0.448834\pi\)
0.160050 + 0.987109i \(0.448834\pi\)
\(702\) 0.915375 0.0345486
\(703\) 7.62859 0.287718
\(704\) 32.6454 1.23037
\(705\) 0 0
\(706\) 2.11809 0.0797153
\(707\) 13.9491 0.524612
\(708\) 50.6472 1.90344
\(709\) −32.8180 −1.23251 −0.616254 0.787548i \(-0.711350\pi\)
−0.616254 + 0.787548i \(0.711350\pi\)
\(710\) 0 0
\(711\) −19.8285 −0.743628
\(712\) 6.73394 0.252365
\(713\) 4.99399 0.187026
\(714\) −2.73503 −0.102356
\(715\) 0 0
\(716\) 14.2152 0.531247
\(717\) 5.12775 0.191499
\(718\) −0.181363 −0.00676842
\(719\) 39.7542 1.48258 0.741290 0.671184i \(-0.234214\pi\)
0.741290 + 0.671184i \(0.234214\pi\)
\(720\) 0 0
\(721\) −5.63731 −0.209944
\(722\) 4.64968 0.173043
\(723\) −44.4274 −1.65227
\(724\) −25.7485 −0.956936
\(725\) 0 0
\(726\) −3.36751 −0.124980
\(727\) −49.4844 −1.83527 −0.917637 0.397419i \(-0.869906\pi\)
−0.917637 + 0.397419i \(0.869906\pi\)
\(728\) −2.70689 −0.100324
\(729\) −36.1469 −1.33877
\(730\) 0 0
\(731\) −2.34293 −0.0866565
\(732\) −5.80865 −0.214694
\(733\) 46.2381 1.70784 0.853921 0.520403i \(-0.174218\pi\)
0.853921 + 0.520403i \(0.174218\pi\)
\(734\) 1.66128 0.0613191
\(735\) 0 0
\(736\) 1.44366 0.0532140
\(737\) −26.0061 −0.957946
\(738\) 0 0
\(739\) 28.7155 1.05632 0.528159 0.849146i \(-0.322883\pi\)
0.528159 + 0.849146i \(0.322883\pi\)
\(740\) 0 0
\(741\) 71.0192 2.60895
\(742\) −1.93518 −0.0710428
\(743\) −27.0536 −0.992502 −0.496251 0.868179i \(-0.665290\pi\)
−0.496251 + 0.868179i \(0.665290\pi\)
\(744\) 10.2305 0.375069
\(745\) 0 0
\(746\) 1.11303 0.0407508
\(747\) −22.2318 −0.813418
\(748\) −54.0996 −1.97808
\(749\) −1.19605 −0.0437026
\(750\) 0 0
\(751\) −26.8771 −0.980759 −0.490380 0.871509i \(-0.663142\pi\)
−0.490380 + 0.871509i \(0.663142\pi\)
\(752\) 18.3067 0.667578
\(753\) −66.6860 −2.43017
\(754\) 0.622605 0.0226739
\(755\) 0 0
\(756\) −3.17629 −0.115520
\(757\) 7.28814 0.264892 0.132446 0.991190i \(-0.457717\pi\)
0.132446 + 0.991190i \(0.457717\pi\)
\(758\) 2.84130 0.103201
\(759\) 8.80395 0.319563
\(760\) 0 0
\(761\) −31.6079 −1.14579 −0.572893 0.819630i \(-0.694179\pi\)
−0.572893 + 0.819630i \(0.694179\pi\)
\(762\) 7.12750 0.258202
\(763\) −16.7636 −0.606882
\(764\) 19.9958 0.723422
\(765\) 0 0
\(766\) 0.514398 0.0185860
\(767\) −39.7108 −1.43387
\(768\) −36.0725 −1.30165
\(769\) −0.293769 −0.0105936 −0.00529679 0.999986i \(-0.501686\pi\)
−0.00529679 + 0.999986i \(0.501686\pi\)
\(770\) 0 0
\(771\) −38.5440 −1.38813
\(772\) −45.1559 −1.62520
\(773\) −28.4877 −1.02463 −0.512316 0.858797i \(-0.671212\pi\)
−0.512316 + 0.858797i \(0.671212\pi\)
\(774\) 0.210991 0.00758391
\(775\) 0 0
\(776\) −10.8561 −0.389712
\(777\) 3.06651 0.110011
\(778\) −1.88142 −0.0674521
\(779\) 0 0
\(780\) 0 0
\(781\) −8.80395 −0.315030
\(782\) −0.760895 −0.0272095
\(783\) 1.47023 0.0525418
\(784\) −22.3633 −0.798689
\(785\) 0 0
\(786\) −2.94180 −0.104931
\(787\) 32.9883 1.17591 0.587954 0.808895i \(-0.299934\pi\)
0.587954 + 0.808895i \(0.299934\pi\)
\(788\) −43.5997 −1.55317
\(789\) 30.9361 1.10136
\(790\) 0 0
\(791\) 7.97060 0.283402
\(792\) 9.80441 0.348384
\(793\) 4.55437 0.161731
\(794\) 5.69213 0.202006
\(795\) 0 0
\(796\) −10.2644 −0.363811
\(797\) 30.9194 1.09522 0.547611 0.836733i \(-0.315537\pi\)
0.547611 + 0.836733i \(0.315537\pi\)
\(798\) 3.06651 0.108553
\(799\) −29.5587 −1.04571
\(800\) 0 0
\(801\) −38.6073 −1.36412
\(802\) 4.08942 0.144402
\(803\) 38.3951 1.35493
\(804\) 29.9214 1.05525
\(805\) 0 0
\(806\) −3.98590 −0.140397
\(807\) 27.8260 0.979522
\(808\) 7.94987 0.279675
\(809\) 21.0977 0.741756 0.370878 0.928682i \(-0.379057\pi\)
0.370878 + 0.928682i \(0.379057\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) −2.16040 −0.0758150
\(813\) 32.6763 1.14601
\(814\) −0.754790 −0.0264554
\(815\) 0 0
\(816\) 61.4604 2.15154
\(817\) 2.62690 0.0919035
\(818\) 2.04582 0.0715303
\(819\) 15.5192 0.542285
\(820\) 0 0
\(821\) −15.2791 −0.533243 −0.266622 0.963801i \(-0.585907\pi\)
−0.266622 + 0.963801i \(0.585907\pi\)
\(822\) 3.93494 0.137247
\(823\) −7.78152 −0.271247 −0.135623 0.990760i \(-0.543304\pi\)
−0.135623 + 0.990760i \(0.543304\pi\)
\(824\) −3.21280 −0.111923
\(825\) 0 0
\(826\) −1.71466 −0.0596607
\(827\) −0.376593 −0.0130954 −0.00654772 0.999979i \(-0.502084\pi\)
−0.00654772 + 0.999979i \(0.502084\pi\)
\(828\) −5.50655 −0.191366
\(829\) −49.8723 −1.73214 −0.866068 0.499927i \(-0.833360\pi\)
−0.866068 + 0.499927i \(0.833360\pi\)
\(830\) 0 0
\(831\) 51.4604 1.78514
\(832\) 29.4498 1.02099
\(833\) 36.1086 1.25109
\(834\) 1.10736 0.0383447
\(835\) 0 0
\(836\) 60.6565 2.09785
\(837\) −9.41240 −0.325340
\(838\) 5.62113 0.194179
\(839\) −0.0590441 −0.00203843 −0.00101921 0.999999i \(-0.500324\pi\)
−0.00101921 + 0.999999i \(0.500324\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 2.61919 0.0902632
\(843\) 53.6776 1.84875
\(844\) −3.25388 −0.112003
\(845\) 0 0
\(846\) 2.66189 0.0915176
\(847\) −9.16185 −0.314805
\(848\) 43.4867 1.49334
\(849\) 43.5096 1.49324
\(850\) 0 0
\(851\) 0.853115 0.0292444
\(852\) 10.1294 0.347029
\(853\) 2.77983 0.0951795 0.0475897 0.998867i \(-0.484846\pi\)
0.0475897 + 0.998867i \(0.484846\pi\)
\(854\) 0.196652 0.00672929
\(855\) 0 0
\(856\) −0.681649 −0.0232983
\(857\) 0.850802 0.0290628 0.0145314 0.999894i \(-0.495374\pi\)
0.0145314 + 0.999894i \(0.495374\pi\)
\(858\) −7.02679 −0.239891
\(859\) 7.35342 0.250895 0.125448 0.992100i \(-0.459963\pi\)
0.125448 + 0.992100i \(0.459963\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −4.12556 −0.140517
\(863\) 42.6167 1.45069 0.725345 0.688386i \(-0.241680\pi\)
0.725345 + 0.688386i \(0.241680\pi\)
\(864\) −2.72093 −0.0925680
\(865\) 0 0
\(866\) −1.68105 −0.0571242
\(867\) −55.6505 −1.88999
\(868\) 13.8308 0.469448
\(869\) 24.4260 0.828594
\(870\) 0 0
\(871\) −23.4604 −0.794926
\(872\) −9.55386 −0.323535
\(873\) 62.2407 2.10653
\(874\) 0.853115 0.0288571
\(875\) 0 0
\(876\) −44.1757 −1.49256
\(877\) 13.4196 0.453148 0.226574 0.973994i \(-0.427247\pi\)
0.226574 + 0.973994i \(0.427247\pi\)
\(878\) 4.63436 0.156402
\(879\) −24.2938 −0.819408
\(880\) 0 0
\(881\) −38.3135 −1.29082 −0.645408 0.763838i \(-0.723313\pi\)
−0.645408 + 0.763838i \(0.723313\pi\)
\(882\) −3.25173 −0.109491
\(883\) −31.5542 −1.06188 −0.530942 0.847408i \(-0.678162\pi\)
−0.530942 + 0.847408i \(0.678162\pi\)
\(884\) −48.8040 −1.64145
\(885\) 0 0
\(886\) 0.534161 0.0179455
\(887\) 23.3961 0.785565 0.392783 0.919631i \(-0.371512\pi\)
0.392783 + 0.919631i \(0.371512\pi\)
\(888\) 1.74766 0.0586477
\(889\) 19.3915 0.650370
\(890\) 0 0
\(891\) 30.5974 1.02505
\(892\) −18.7179 −0.626722
\(893\) 33.1413 1.10903
\(894\) 1.81865 0.0608248
\(895\) 0 0
\(896\) 5.31956 0.177714
\(897\) 7.94216 0.265181
\(898\) 0.0722810 0.00241205
\(899\) −6.40198 −0.213518
\(900\) 0 0
\(901\) −70.2152 −2.33921
\(902\) 0 0
\(903\) 1.05595 0.0351398
\(904\) 4.54259 0.151084
\(905\) 0 0
\(906\) −1.12712 −0.0374461
\(907\) 32.4150 1.07632 0.538161 0.842842i \(-0.319119\pi\)
0.538161 + 0.842842i \(0.319119\pi\)
\(908\) −11.3152 −0.375508
\(909\) −45.5785 −1.51174
\(910\) 0 0
\(911\) −45.2749 −1.50002 −0.750011 0.661425i \(-0.769952\pi\)
−0.750011 + 0.661425i \(0.769952\pi\)
\(912\) −68.9094 −2.28182
\(913\) 27.3864 0.906357
\(914\) −0.215206 −0.00711837
\(915\) 0 0
\(916\) −29.9214 −0.988632
\(917\) −8.00364 −0.264303
\(918\) 1.43409 0.0473321
\(919\) −5.90167 −0.194678 −0.0973391 0.995251i \(-0.531033\pi\)
−0.0973391 + 0.995251i \(0.531033\pi\)
\(920\) 0 0
\(921\) 49.6909 1.63737
\(922\) 2.28710 0.0753218
\(923\) −7.94216 −0.261419
\(924\) 24.3825 0.802124
\(925\) 0 0
\(926\) 2.95566 0.0971289
\(927\) 18.4198 0.604985
\(928\) −1.85068 −0.0607516
\(929\) −6.00000 −0.196854 −0.0984268 0.995144i \(-0.531381\pi\)
−0.0984268 + 0.995144i \(0.531381\pi\)
\(930\) 0 0
\(931\) −40.4850 −1.32684
\(932\) 1.41647 0.0463979
\(933\) 23.7650 0.778032
\(934\) −4.69695 −0.153689
\(935\) 0 0
\(936\) 8.84469 0.289098
\(937\) 43.0755 1.40721 0.703607 0.710589i \(-0.251571\pi\)
0.703607 + 0.710589i \(0.251571\pi\)
\(938\) −1.01299 −0.0330753
\(939\) −37.2593 −1.21591
\(940\) 0 0
\(941\) 2.91637 0.0950711 0.0475355 0.998870i \(-0.484863\pi\)
0.0475355 + 0.998870i \(0.484863\pi\)
\(942\) −1.99976 −0.0651556
\(943\) 0 0
\(944\) 38.5312 1.25408
\(945\) 0 0
\(946\) −0.259911 −0.00845043
\(947\) 0.556407 0.0180808 0.00904041 0.999959i \(-0.497122\pi\)
0.00904041 + 0.999959i \(0.497122\pi\)
\(948\) −28.1034 −0.912757
\(949\) 34.6367 1.12435
\(950\) 0 0
\(951\) −57.4604 −1.86328
\(952\) −4.24080 −0.137445
\(953\) −37.1661 −1.20393 −0.601964 0.798523i \(-0.705615\pi\)
−0.601964 + 0.798523i \(0.705615\pi\)
\(954\) 6.32317 0.204720
\(955\) 0 0
\(956\) 3.95084 0.127779
\(957\) −11.2861 −0.364828
\(958\) −5.13700 −0.165969
\(959\) 10.7056 0.345703
\(960\) 0 0
\(961\) 9.98530 0.322106
\(962\) −0.680906 −0.0219533
\(963\) 3.90806 0.125935
\(964\) −34.2305 −1.10249
\(965\) 0 0
\(966\) 0.342932 0.0110337
\(967\) −24.2754 −0.780643 −0.390322 0.920679i \(-0.627636\pi\)
−0.390322 + 0.920679i \(0.627636\pi\)
\(968\) −5.22151 −0.167826
\(969\) 111.264 3.57431
\(970\) 0 0
\(971\) −17.1709 −0.551039 −0.275520 0.961295i \(-0.588850\pi\)
−0.275520 + 0.961295i \(0.588850\pi\)
\(972\) −43.9170 −1.40864
\(973\) 3.01275 0.0965842
\(974\) 2.21220 0.0708834
\(975\) 0 0
\(976\) −4.41908 −0.141451
\(977\) −4.95785 −0.158616 −0.0793078 0.996850i \(-0.525271\pi\)
−0.0793078 + 0.996850i \(0.525271\pi\)
\(978\) −8.34564 −0.266864
\(979\) 47.5587 1.51998
\(980\) 0 0
\(981\) 54.7746 1.74882
\(982\) 0.644104 0.0205542
\(983\) −11.5651 −0.368869 −0.184434 0.982845i \(-0.559045\pi\)
−0.184434 + 0.982845i \(0.559045\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0.975419 0.0310637
\(987\) 13.3220 0.424044
\(988\) 54.7190 1.74084
\(989\) 0.293769 0.00934132
\(990\) 0 0
\(991\) −18.3429 −0.582682 −0.291341 0.956619i \(-0.594102\pi\)
−0.291341 + 0.956619i \(0.594102\pi\)
\(992\) 11.8480 0.376175
\(993\) −20.2336 −0.642092
\(994\) −0.342932 −0.0108771
\(995\) 0 0
\(996\) −31.5096 −0.998419
\(997\) 32.2997 1.02294 0.511471 0.859300i \(-0.329101\pi\)
0.511471 + 0.859300i \(0.329101\pi\)
\(998\) 4.71435 0.149230
\(999\) −1.60790 −0.0508719
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.a.l.1.4 6
3.2 odd 2 6525.2.a.bt.1.3 6
5.2 odd 4 145.2.b.c.59.4 yes 6
5.3 odd 4 145.2.b.c.59.3 6
5.4 even 2 inner 725.2.a.l.1.3 6
15.2 even 4 1305.2.c.h.784.3 6
15.8 even 4 1305.2.c.h.784.4 6
15.14 odd 2 6525.2.a.bt.1.4 6
20.3 even 4 2320.2.d.g.929.5 6
20.7 even 4 2320.2.d.g.929.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.b.c.59.3 6 5.3 odd 4
145.2.b.c.59.4 yes 6 5.2 odd 4
725.2.a.l.1.3 6 5.4 even 2 inner
725.2.a.l.1.4 6 1.1 even 1 trivial
1305.2.c.h.784.3 6 15.2 even 4
1305.2.c.h.784.4 6 15.8 even 4
2320.2.d.g.929.2 6 20.7 even 4
2320.2.d.g.929.5 6 20.3 even 4
6525.2.a.bt.1.3 6 3.2 odd 2
6525.2.a.bt.1.4 6 15.14 odd 2