Properties

Label 1305.2.c.h.784.3
Level $1305$
Weight $2$
Character 1305.784
Analytic conductor $10.420$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1305,2,Mod(784,1305)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1305, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1305.784"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-14,-3,0,0,0,0,-3,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.84345856.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 13x^{4} + 41x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 784.3
Root \(-0.156785i\) of defining polynomial
Character \(\chi\) \(=\) 1305.784
Dual form 1305.2.c.h.784.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.156785i q^{2} +1.97542 q^{4} +(-1.28672 + 1.82876i) q^{5} -1.09364i q^{7} -0.623285i q^{8} +(0.286721 + 0.201738i) q^{10} +4.40198 q^{11} +3.97108i q^{13} -0.171466 q^{14} +3.85312 q^{16} +6.22138i q^{17} -6.97542 q^{19} +(-2.54181 + 3.61256i) q^{20} -0.690163i q^{22} +0.780070i q^{23} +(-1.68870 - 4.70620i) q^{25} +0.622605 q^{26} -2.16040i q^{28} -1.00000 q^{29} +6.40198 q^{31} -1.85068i q^{32} +0.975419 q^{34} +(2.00000 + 1.40721i) q^{35} +1.09364i q^{37} +1.09364i q^{38} +(1.13984 + 0.801994i) q^{40} -0.376593i q^{43} +8.69575 q^{44} +0.122303 q^{46} -4.75115i q^{47} +5.80395 q^{49} +(-0.737860 + 0.264762i) q^{50} +7.84455i q^{52} +11.2861i q^{53} +(-5.66412 + 8.05014i) q^{55} -0.681649 q^{56} +0.156785i q^{58} +10.0000 q^{59} -1.14688 q^{61} -1.00373i q^{62} +7.41607 q^{64} +(-7.26214 - 5.10967i) q^{65} +5.90782i q^{67} +12.2898i q^{68} +(0.220629 - 0.313570i) q^{70} -2.00000 q^{71} +8.72223i q^{73} +0.171466 q^{74} -13.7794 q^{76} -4.81418i q^{77} +5.54886 q^{79} +(-4.95789 + 7.04641i) q^{80} -6.22138i q^{83} +(-11.3774 - 8.00519i) q^{85} -0.0590441 q^{86} -2.74369i q^{88} -10.8040 q^{89} +4.34293 q^{91} +1.54096i q^{92} -0.744908 q^{94} +(8.97542 - 12.7563i) q^{95} +17.4176i q^{97} -0.909972i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 14 q^{4} - 3 q^{5} - 3 q^{10} + 10 q^{11} - 8 q^{14} + 42 q^{16} - 16 q^{19} - 13 q^{20} + 11 q^{25} + 46 q^{26} - 6 q^{29} + 22 q^{31} - 20 q^{34} + 12 q^{35} + 21 q^{40} - 2 q^{44} - 44 q^{46} + 2 q^{49}+ \cdots + 28 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.156785i 0.110864i −0.998462 0.0554318i \(-0.982346\pi\)
0.998462 0.0554318i \(-0.0176535\pi\)
\(3\) 0 0
\(4\) 1.97542 0.987709
\(5\) −1.28672 + 1.82876i −0.575439 + 0.817845i
\(6\) 0 0
\(7\) 1.09364i 0.413357i −0.978409 0.206678i \(-0.933735\pi\)
0.978409 0.206678i \(-0.0662654\pi\)
\(8\) 0.623285i 0.220365i
\(9\) 0 0
\(10\) 0.286721 + 0.201738i 0.0906692 + 0.0637953i
\(11\) 4.40198 1.32725 0.663623 0.748067i \(-0.269018\pi\)
0.663623 + 0.748067i \(0.269018\pi\)
\(12\) 0 0
\(13\) 3.97108i 1.10138i 0.834710 + 0.550690i \(0.185635\pi\)
−0.834710 + 0.550690i \(0.814365\pi\)
\(14\) −0.171466 −0.0458262
\(15\) 0 0
\(16\) 3.85312 0.963279
\(17\) 6.22138i 1.50891i 0.656353 + 0.754454i \(0.272098\pi\)
−0.656353 + 0.754454i \(0.727902\pi\)
\(18\) 0 0
\(19\) −6.97542 −1.60027 −0.800135 0.599819i \(-0.795239\pi\)
−0.800135 + 0.599819i \(0.795239\pi\)
\(20\) −2.54181 + 3.61256i −0.568367 + 0.807793i
\(21\) 0 0
\(22\) 0.690163i 0.147143i
\(23\) 0.780070i 0.162656i 0.996687 + 0.0813279i \(0.0259161\pi\)
−0.996687 + 0.0813279i \(0.974084\pi\)
\(24\) 0 0
\(25\) −1.68870 4.70620i −0.337739 0.941240i
\(26\) 0.622605 0.122103
\(27\) 0 0
\(28\) 2.16040i 0.408276i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 6.40198 1.14983 0.574914 0.818214i \(-0.305035\pi\)
0.574914 + 0.818214i \(0.305035\pi\)
\(32\) 1.85068i 0.327157i
\(33\) 0 0
\(34\) 0.975419 0.167283
\(35\) 2.00000 + 1.40721i 0.338062 + 0.237862i
\(36\) 0 0
\(37\) 1.09364i 0.179793i 0.995951 + 0.0898966i \(0.0286537\pi\)
−0.995951 + 0.0898966i \(0.971346\pi\)
\(38\) 1.09364i 0.177412i
\(39\) 0 0
\(40\) 1.13984 + 0.801994i 0.180224 + 0.126806i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0.376593i 0.0574299i −0.999588 0.0287150i \(-0.990858\pi\)
0.999588 0.0287150i \(-0.00914152\pi\)
\(44\) 8.69575 1.31093
\(45\) 0 0
\(46\) 0.122303 0.0180326
\(47\) 4.75115i 0.693027i −0.938045 0.346513i \(-0.887366\pi\)
0.938045 0.346513i \(-0.112634\pi\)
\(48\) 0 0
\(49\) 5.80395 0.829136
\(50\) −0.737860 + 0.264762i −0.104349 + 0.0374430i
\(51\) 0 0
\(52\) 7.84455i 1.08784i
\(53\) 11.2861i 1.55027i 0.631798 + 0.775133i \(0.282317\pi\)
−0.631798 + 0.775133i \(0.717683\pi\)
\(54\) 0 0
\(55\) −5.66412 + 8.05014i −0.763749 + 1.08548i
\(56\) −0.681649 −0.0910892
\(57\) 0 0
\(58\) 0.156785i 0.0205869i
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) −1.14688 −0.146844 −0.0734218 0.997301i \(-0.523392\pi\)
−0.0734218 + 0.997301i \(0.523392\pi\)
\(62\) 1.00373i 0.127474i
\(63\) 0 0
\(64\) 7.41607 0.927009
\(65\) −7.26214 5.10967i −0.900758 0.633777i
\(66\) 0 0
\(67\) 5.90782i 0.721754i 0.932613 + 0.360877i \(0.117523\pi\)
−0.932613 + 0.360877i \(0.882477\pi\)
\(68\) 12.2898i 1.49036i
\(69\) 0 0
\(70\) 0.220629 0.313570i 0.0263702 0.0374787i
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) 8.72223i 1.02086i 0.859919 + 0.510430i \(0.170514\pi\)
−0.859919 + 0.510430i \(0.829486\pi\)
\(74\) 0.171466 0.0199325
\(75\) 0 0
\(76\) −13.7794 −1.58060
\(77\) 4.81418i 0.548626i
\(78\) 0 0
\(79\) 5.54886 0.624296 0.312148 0.950034i \(-0.398952\pi\)
0.312148 + 0.950034i \(0.398952\pi\)
\(80\) −4.95789 + 7.04641i −0.554308 + 0.787812i
\(81\) 0 0
\(82\) 0 0
\(83\) 6.22138i 0.682886i −0.939903 0.341443i \(-0.889084\pi\)
0.939903 0.341443i \(-0.110916\pi\)
\(84\) 0 0
\(85\) −11.3774 8.00519i −1.23405 0.868284i
\(86\) −0.0590441 −0.00636689
\(87\) 0 0
\(88\) 2.74369i 0.292478i
\(89\) −10.8040 −1.14522 −0.572608 0.819829i \(-0.694068\pi\)
−0.572608 + 0.819829i \(0.694068\pi\)
\(90\) 0 0
\(91\) 4.34293 0.455263
\(92\) 1.54096i 0.160657i
\(93\) 0 0
\(94\) −0.744908 −0.0768314
\(95\) 8.97542 12.7563i 0.920859 1.30877i
\(96\) 0 0
\(97\) 17.4176i 1.76849i 0.467026 + 0.884244i \(0.345326\pi\)
−0.467026 + 0.884244i \(0.654674\pi\)
\(98\) 0.909972i 0.0919210i
\(99\) 0 0
\(100\) −3.33588 9.29671i −0.333588 0.929671i
\(101\) 12.7548 1.26915 0.634574 0.772862i \(-0.281175\pi\)
0.634574 + 0.772862i \(0.281175\pi\)
\(102\) 0 0
\(103\) 5.15463i 0.507901i −0.967217 0.253950i \(-0.918270\pi\)
0.967217 0.253950i \(-0.0817300\pi\)
\(104\) 2.47512 0.242705
\(105\) 0 0
\(106\) 1.76949 0.171868
\(107\) 1.09364i 0.105726i −0.998602 0.0528631i \(-0.983165\pi\)
0.998602 0.0528631i \(-0.0168347\pi\)
\(108\) 0 0
\(109\) −15.3282 −1.46818 −0.734089 0.679053i \(-0.762391\pi\)
−0.734089 + 0.679053i \(0.762391\pi\)
\(110\) 1.26214 + 0.888047i 0.120340 + 0.0846720i
\(111\) 0 0
\(112\) 4.21392i 0.398178i
\(113\) 7.28814i 0.685611i −0.939406 0.342805i \(-0.888623\pi\)
0.939406 0.342805i \(-0.111377\pi\)
\(114\) 0 0
\(115\) −1.42656 1.00373i −0.133027 0.0935985i
\(116\) −1.97542 −0.183413
\(117\) 0 0
\(118\) 1.56785i 0.144332i
\(119\) 6.80395 0.623717
\(120\) 0 0
\(121\) 8.37739 0.761581
\(122\) 0.179814i 0.0162796i
\(123\) 0 0
\(124\) 12.6466 1.13570
\(125\) 10.7794 + 2.96735i 0.964136 + 0.265408i
\(126\) 0 0
\(127\) 17.7312i 1.57339i −0.617345 0.786693i \(-0.711792\pi\)
0.617345 0.786693i \(-0.288208\pi\)
\(128\) 4.86409i 0.429929i
\(129\) 0 0
\(130\) −0.801119 + 1.13859i −0.0702628 + 0.0998612i
\(131\) −7.31835 −0.639407 −0.319704 0.947518i \(-0.603583\pi\)
−0.319704 + 0.947518i \(0.603583\pi\)
\(132\) 0 0
\(133\) 7.62859i 0.661483i
\(134\) 0.926256 0.0800163
\(135\) 0 0
\(136\) 3.87770 0.332510
\(137\) 9.78899i 0.836330i 0.908371 + 0.418165i \(0.137327\pi\)
−0.908371 + 0.418165i \(0.862673\pi\)
\(138\) 0 0
\(139\) 2.75479 0.233658 0.116829 0.993152i \(-0.462727\pi\)
0.116829 + 0.993152i \(0.462727\pi\)
\(140\) 3.95084 + 2.77983i 0.333907 + 0.234938i
\(141\) 0 0
\(142\) 0.313570i 0.0263142i
\(143\) 17.4806i 1.46180i
\(144\) 0 0
\(145\) 1.28672 1.82876i 0.106856 0.151870i
\(146\) 1.36751 0.113176
\(147\) 0 0
\(148\) 2.16040i 0.177583i
\(149\) −4.52428 −0.370643 −0.185322 0.982678i \(-0.559333\pi\)
−0.185322 + 0.982678i \(0.559333\pi\)
\(150\) 0 0
\(151\) 2.80395 0.228182 0.114091 0.993470i \(-0.463604\pi\)
0.114091 + 0.993470i \(0.463604\pi\)
\(152\) 4.34768i 0.352643i
\(153\) 0 0
\(154\) −0.754790 −0.0608227
\(155\) −8.23756 + 11.7077i −0.661657 + 0.940381i
\(156\) 0 0
\(157\) 4.97481i 0.397033i 0.980098 + 0.198517i \(0.0636124\pi\)
−0.980098 + 0.198517i \(0.936388\pi\)
\(158\) 0.869977i 0.0692117i
\(159\) 0 0
\(160\) 3.38444 + 2.38131i 0.267564 + 0.188259i
\(161\) 0.853115 0.0672349
\(162\) 0 0
\(163\) 20.7615i 1.62617i −0.582146 0.813084i \(-0.697787\pi\)
0.582146 0.813084i \(-0.302213\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −0.975419 −0.0757072
\(167\) 21.9182i 1.69608i −0.529932 0.848040i \(-0.677783\pi\)
0.529932 0.848040i \(-0.322217\pi\)
\(168\) 0 0
\(169\) −2.76949 −0.213038
\(170\) −1.25509 + 1.78380i −0.0962611 + 0.136811i
\(171\) 0 0
\(172\) 0.743929i 0.0567241i
\(173\) 3.25404i 0.247400i −0.992320 0.123700i \(-0.960524\pi\)
0.992320 0.123700i \(-0.0394760\pi\)
\(174\) 0 0
\(175\) −5.14688 + 1.84683i −0.389068 + 0.139607i
\(176\) 16.9613 1.27851
\(177\) 0 0
\(178\) 1.69390i 0.126963i
\(179\) −7.19605 −0.537858 −0.268929 0.963160i \(-0.586670\pi\)
−0.268929 + 0.963160i \(0.586670\pi\)
\(180\) 0 0
\(181\) 13.0345 0.968844 0.484422 0.874834i \(-0.339030\pi\)
0.484422 + 0.874834i \(0.339030\pi\)
\(182\) 0.680906i 0.0504721i
\(183\) 0 0
\(184\) 0.486206 0.0358436
\(185\) −2.00000 1.40721i −0.147043 0.103460i
\(186\) 0 0
\(187\) 27.3864i 2.00269i
\(188\) 9.38551i 0.684509i
\(189\) 0 0
\(190\) −2.00000 1.40721i −0.145095 0.102090i
\(191\) 10.1223 0.732424 0.366212 0.930531i \(-0.380654\pi\)
0.366212 + 0.930531i \(0.380654\pi\)
\(192\) 0 0
\(193\) 22.8589i 1.64542i −0.568462 0.822710i \(-0.692461\pi\)
0.568462 0.822710i \(-0.307539\pi\)
\(194\) 2.73081 0.196061
\(195\) 0 0
\(196\) 11.4652 0.818945
\(197\) 22.0711i 1.57250i −0.617907 0.786251i \(-0.712019\pi\)
0.617907 0.786251i \(-0.287981\pi\)
\(198\) 0 0
\(199\) −5.19605 −0.368338 −0.184169 0.982895i \(-0.558959\pi\)
−0.184169 + 0.982895i \(0.558959\pi\)
\(200\) −2.93330 + 1.05254i −0.207416 + 0.0744258i
\(201\) 0 0
\(202\) 1.99976i 0.140702i
\(203\) 1.09364i 0.0767585i
\(204\) 0 0
\(205\) 0 0
\(206\) −0.808167 −0.0563077
\(207\) 0 0
\(208\) 15.3010i 1.06094i
\(209\) −30.7056 −2.12395
\(210\) 0 0
\(211\) 1.64719 0.113397 0.0566985 0.998391i \(-0.481943\pi\)
0.0566985 + 0.998391i \(0.481943\pi\)
\(212\) 22.2948i 1.53121i
\(213\) 0 0
\(214\) −0.171466 −0.0117212
\(215\) 0.688697 + 0.484571i 0.0469688 + 0.0330474i
\(216\) 0 0
\(217\) 7.00145i 0.475290i
\(218\) 2.40323i 0.162768i
\(219\) 0 0
\(220\) −11.1890 + 15.9024i −0.754362 + 1.07214i
\(221\) −24.7056 −1.66188
\(222\) 0 0
\(223\) 9.47542i 0.634521i −0.948338 0.317261i \(-0.897237\pi\)
0.948338 0.317261i \(-0.102763\pi\)
\(224\) −2.02398 −0.135233
\(225\) 0 0
\(226\) −1.14267 −0.0760093
\(227\) 5.72800i 0.380181i −0.981767 0.190090i \(-0.939122\pi\)
0.981767 0.190090i \(-0.0608781\pi\)
\(228\) 0 0
\(229\) −15.1469 −1.00093 −0.500467 0.865756i \(-0.666838\pi\)
−0.500467 + 0.865756i \(0.666838\pi\)
\(230\) −0.157370 + 0.223663i −0.0103767 + 0.0147479i
\(231\) 0 0
\(232\) 0.623285i 0.0409207i
\(233\) 0.717046i 0.0469753i −0.999724 0.0234876i \(-0.992523\pi\)
0.999724 0.0234876i \(-0.00747703\pi\)
\(234\) 0 0
\(235\) 8.68870 + 6.11341i 0.566788 + 0.398795i
\(236\) 19.7542 1.28589
\(237\) 0 0
\(238\) 1.06676i 0.0691475i
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0 0
\(241\) 17.3282 1.11621 0.558105 0.829770i \(-0.311529\pi\)
0.558105 + 0.829770i \(0.311529\pi\)
\(242\) 1.31345i 0.0844316i
\(243\) 0 0
\(244\) −2.26558 −0.145039
\(245\) −7.46807 + 10.6140i −0.477117 + 0.678104i
\(246\) 0 0
\(247\) 27.7000i 1.76251i
\(248\) 3.99026i 0.253382i
\(249\) 0 0
\(250\) 0.465235 1.69004i 0.0294241 0.106888i
\(251\) −26.0099 −1.64173 −0.820865 0.571123i \(-0.806508\pi\)
−0.820865 + 0.571123i \(0.806508\pi\)
\(252\) 0 0
\(253\) 3.43385i 0.215884i
\(254\) −2.77998 −0.174431
\(255\) 0 0
\(256\) 14.0695 0.879346
\(257\) 15.0335i 0.937766i −0.883260 0.468883i \(-0.844657\pi\)
0.883260 0.468883i \(-0.155343\pi\)
\(258\) 0 0
\(259\) 1.19605 0.0743188
\(260\) −14.3458 10.0937i −0.889687 0.625988i
\(261\) 0 0
\(262\) 1.14741i 0.0708870i
\(263\) 12.0662i 0.744032i −0.928226 0.372016i \(-0.878667\pi\)
0.928226 0.372016i \(-0.121333\pi\)
\(264\) 0 0
\(265\) −20.6395 14.5221i −1.26788 0.892084i
\(266\) 1.19605 0.0733344
\(267\) 0 0
\(268\) 11.6704i 0.712884i
\(269\) −10.8531 −0.661726 −0.330863 0.943679i \(-0.607340\pi\)
−0.330863 + 0.943679i \(0.607340\pi\)
\(270\) 0 0
\(271\) −12.7449 −0.774198 −0.387099 0.922038i \(-0.626523\pi\)
−0.387099 + 0.922038i \(0.626523\pi\)
\(272\) 23.9717i 1.45350i
\(273\) 0 0
\(274\) 1.53476 0.0927185
\(275\) −7.43361 20.7166i −0.448263 1.24926i
\(276\) 0 0
\(277\) 20.0714i 1.20597i −0.797752 0.602986i \(-0.793978\pi\)
0.797752 0.602986i \(-0.206022\pi\)
\(278\) 0.431909i 0.0259042i
\(279\) 0 0
\(280\) 0.877093 1.24657i 0.0524163 0.0744968i
\(281\) 20.9361 1.24895 0.624473 0.781047i \(-0.285314\pi\)
0.624473 + 0.781047i \(0.285314\pi\)
\(282\) 0 0
\(283\) 16.9703i 1.00878i 0.863477 + 0.504389i \(0.168282\pi\)
−0.863477 + 0.504389i \(0.831718\pi\)
\(284\) −3.95084 −0.234439
\(285\) 0 0
\(286\) 2.74069 0.162061
\(287\) 0 0
\(288\) 0 0
\(289\) −21.7056 −1.27680
\(290\) −0.286721 0.201738i −0.0168368 0.0118465i
\(291\) 0 0
\(292\) 17.2301i 1.00831i
\(293\) 9.47542i 0.553560i 0.960933 + 0.276780i \(0.0892673\pi\)
−0.960933 + 0.276780i \(0.910733\pi\)
\(294\) 0 0
\(295\) −12.8672 + 18.2876i −0.749158 + 1.06474i
\(296\) 0.681649 0.0396201
\(297\) 0 0
\(298\) 0.709338i 0.0410909i
\(299\) −3.09772 −0.179146
\(300\) 0 0
\(301\) −0.411857 −0.0237391
\(302\) 0.439617i 0.0252971i
\(303\) 0 0
\(304\) −26.8771 −1.54151
\(305\) 1.47572 2.09737i 0.0844995 0.120095i
\(306\) 0 0
\(307\) 19.3812i 1.10614i −0.833134 0.553072i \(-0.813456\pi\)
0.833134 0.553072i \(-0.186544\pi\)
\(308\) 9.51001i 0.541883i
\(309\) 0 0
\(310\) 1.83558 + 1.29152i 0.104254 + 0.0733536i
\(311\) 9.26919 0.525607 0.262804 0.964849i \(-0.415353\pi\)
0.262804 + 0.964849i \(0.415353\pi\)
\(312\) 0 0
\(313\) 14.5324i 0.821422i −0.911766 0.410711i \(-0.865281\pi\)
0.911766 0.410711i \(-0.134719\pi\)
\(314\) 0.779975 0.0440165
\(315\) 0 0
\(316\) 10.9613 0.616623
\(317\) 22.4116i 1.25876i −0.777098 0.629380i \(-0.783309\pi\)
0.777098 0.629380i \(-0.216691\pi\)
\(318\) 0 0
\(319\) −4.40198 −0.246463
\(320\) −9.54242 + 13.5622i −0.533437 + 0.758149i
\(321\) 0 0
\(322\) 0.133756i 0.00745390i
\(323\) 43.3968i 2.41466i
\(324\) 0 0
\(325\) 18.6887 6.70596i 1.03666 0.371979i
\(326\) −3.25509 −0.180283
\(327\) 0 0
\(328\) 0 0
\(329\) −5.19605 −0.286467
\(330\) 0 0
\(331\) 7.89179 0.433772 0.216886 0.976197i \(-0.430410\pi\)
0.216886 + 0.976197i \(0.430410\pi\)
\(332\) 12.2898i 0.674493i
\(333\) 0 0
\(334\) −3.43644 −0.188034
\(335\) −10.8040 7.60171i −0.590283 0.415326i
\(336\) 0 0
\(337\) 33.4280i 1.82094i −0.413579 0.910468i \(-0.635721\pi\)
0.413579 0.910468i \(-0.364279\pi\)
\(338\) 0.434214i 0.0236181i
\(339\) 0 0
\(340\) −22.4751 15.8136i −1.21888 0.857613i
\(341\) 28.1813 1.52611
\(342\) 0 0
\(343\) 14.0029i 0.756086i
\(344\) −0.234725 −0.0126555
\(345\) 0 0
\(346\) −0.510183 −0.0274276
\(347\) 31.1069i 1.66991i 0.550320 + 0.834954i \(0.314506\pi\)
−0.550320 + 0.834954i \(0.685494\pi\)
\(348\) 0 0
\(349\) 5.76949 0.308834 0.154417 0.988006i \(-0.450650\pi\)
0.154417 + 0.988006i \(0.450650\pi\)
\(350\) 0.289554 + 0.806953i 0.0154773 + 0.0431335i
\(351\) 0 0
\(352\) 8.14665i 0.434218i
\(353\) 13.5095i 0.719039i 0.933137 + 0.359520i \(0.117059\pi\)
−0.933137 + 0.359520i \(0.882941\pi\)
\(354\) 0 0
\(355\) 2.57344 3.65751i 0.136584 0.194121i
\(356\) −21.3423 −1.13114
\(357\) 0 0
\(358\) 1.12823i 0.0596289i
\(359\) −1.15677 −0.0610518 −0.0305259 0.999534i \(-0.509718\pi\)
−0.0305259 + 0.999534i \(0.509718\pi\)
\(360\) 0 0
\(361\) 29.6565 1.56087
\(362\) 2.04361i 0.107410i
\(363\) 0 0
\(364\) 8.57911 0.449667
\(365\) −15.9508 11.2231i −0.834905 0.587443i
\(366\) 0 0
\(367\) 10.5959i 0.553104i 0.960999 + 0.276552i \(0.0891918\pi\)
−0.960999 + 0.276552i \(0.910808\pi\)
\(368\) 3.00570i 0.156683i
\(369\) 0 0
\(370\) −0.220629 + 0.313570i −0.0114700 + 0.0163017i
\(371\) 12.3429 0.640813
\(372\) 0 0
\(373\) 7.09907i 0.367576i −0.982966 0.183788i \(-0.941164\pi\)
0.982966 0.183788i \(-0.0588360\pi\)
\(374\) 4.29377 0.222026
\(375\) 0 0
\(376\) −2.96132 −0.152719
\(377\) 3.97108i 0.204521i
\(378\) 0 0
\(379\) −18.1223 −0.930880 −0.465440 0.885079i \(-0.654104\pi\)
−0.465440 + 0.885079i \(0.654104\pi\)
\(380\) 17.7302 25.1991i 0.909540 1.29269i
\(381\) 0 0
\(382\) 1.58702i 0.0811992i
\(383\) 3.28092i 0.167647i 0.996481 + 0.0838236i \(0.0267132\pi\)
−0.996481 + 0.0838236i \(0.973287\pi\)
\(384\) 0 0
\(385\) 8.80395 + 6.19450i 0.448691 + 0.315701i
\(386\) −3.58393 −0.182417
\(387\) 0 0
\(388\) 34.4070i 1.74675i
\(389\) −12.0000 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(390\) 0 0
\(391\) −4.85312 −0.245433
\(392\) 3.61752i 0.182712i
\(393\) 0 0
\(394\) −3.46042 −0.174333
\(395\) −7.13984 + 10.1475i −0.359244 + 0.510577i
\(396\) 0 0
\(397\) 36.3054i 1.82212i 0.412278 + 0.911058i \(0.364733\pi\)
−0.412278 + 0.911058i \(0.635267\pi\)
\(398\) 0.814661i 0.0408353i
\(399\) 0 0
\(400\) −6.50675 18.1335i −0.325337 0.906676i
\(401\) −26.0830 −1.30252 −0.651262 0.758853i \(-0.725760\pi\)
−0.651262 + 0.758853i \(0.725760\pi\)
\(402\) 0 0
\(403\) 25.4228i 1.26640i
\(404\) 25.1960 1.25355
\(405\) 0 0
\(406\) 0.171466 0.00850972
\(407\) 4.81418i 0.238630i
\(408\) 0 0
\(409\) −13.0486 −0.645210 −0.322605 0.946534i \(-0.604558\pi\)
−0.322605 + 0.946534i \(0.604558\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 10.1825i 0.501658i
\(413\) 10.9364i 0.538145i
\(414\) 0 0
\(415\) 11.3774 + 8.00519i 0.558494 + 0.392959i
\(416\) 7.34920 0.360324
\(417\) 0 0
\(418\) 4.81418i 0.235469i
\(419\) 35.8525 1.75151 0.875755 0.482756i \(-0.160364\pi\)
0.875755 + 0.482756i \(0.160364\pi\)
\(420\) 0 0
\(421\) 16.7056 0.814182 0.407091 0.913388i \(-0.366543\pi\)
0.407091 + 0.913388i \(0.366543\pi\)
\(422\) 0.258254i 0.0125716i
\(423\) 0 0
\(424\) 7.03446 0.341624
\(425\) 29.2791 10.5060i 1.42024 0.509618i
\(426\) 0 0
\(427\) 1.25428i 0.0606988i
\(428\) 2.16040i 0.104427i
\(429\) 0 0
\(430\) 0.0759733 0.107977i 0.00366376 0.00520713i
\(431\) 26.3135 1.26748 0.633739 0.773547i \(-0.281519\pi\)
0.633739 + 0.773547i \(0.281519\pi\)
\(432\) 0 0
\(433\) 10.7220i 0.515266i 0.966243 + 0.257633i \(0.0829425\pi\)
−0.966243 + 0.257633i \(0.917057\pi\)
\(434\) −1.09772 −0.0526923
\(435\) 0 0
\(436\) −30.2797 −1.45013
\(437\) 5.44131i 0.260293i
\(438\) 0 0
\(439\) −29.5587 −1.41076 −0.705381 0.708828i \(-0.749224\pi\)
−0.705381 + 0.708828i \(0.749224\pi\)
\(440\) 5.01753 + 3.53036i 0.239202 + 0.168303i
\(441\) 0 0
\(442\) 3.87347i 0.184242i
\(443\) 3.40697i 0.161870i 0.996719 + 0.0809349i \(0.0257906\pi\)
−0.996719 + 0.0809349i \(0.974209\pi\)
\(444\) 0 0
\(445\) 13.9017 19.7578i 0.659003 0.936609i
\(446\) −1.48560 −0.0703453
\(447\) 0 0
\(448\) 8.11051i 0.383186i
\(449\) 0.461020 0.0217569 0.0108784 0.999941i \(-0.496537\pi\)
0.0108784 + 0.999941i \(0.496537\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 14.3971i 0.677184i
\(453\) 0 0
\(454\) −0.898063 −0.0421482
\(455\) −5.58814 + 7.94216i −0.261976 + 0.372334i
\(456\) 0 0
\(457\) 1.37262i 0.0642084i −0.999485 0.0321042i \(-0.989779\pi\)
0.999485 0.0321042i \(-0.0102208\pi\)
\(458\) 2.37480i 0.110967i
\(459\) 0 0
\(460\) −2.81805 1.98279i −0.131392 0.0924481i
\(461\) −14.5875 −0.679409 −0.339705 0.940532i \(-0.610327\pi\)
−0.339705 + 0.940532i \(0.610327\pi\)
\(462\) 0 0
\(463\) 18.8517i 0.876112i −0.898948 0.438056i \(-0.855667\pi\)
0.898948 0.438056i \(-0.144333\pi\)
\(464\) −3.85312 −0.178876
\(465\) 0 0
\(466\) −0.112422 −0.00520785
\(467\) 29.9580i 1.38629i 0.720798 + 0.693145i \(0.243775\pi\)
−0.720798 + 0.693145i \(0.756225\pi\)
\(468\) 0 0
\(469\) 6.46102 0.298342
\(470\) 0.958489 1.36226i 0.0442118 0.0628362i
\(471\) 0 0
\(472\) 6.23285i 0.286890i
\(473\) 1.65776i 0.0762237i
\(474\) 0 0
\(475\) 11.7794 + 32.8277i 0.540475 + 1.50624i
\(476\) 13.4407 0.616051
\(477\) 0 0
\(478\) 0.313570i 0.0143423i
\(479\) −32.7647 −1.49706 −0.748528 0.663103i \(-0.769239\pi\)
−0.748528 + 0.663103i \(0.769239\pi\)
\(480\) 0 0
\(481\) −4.34293 −0.198021
\(482\) 2.71680i 0.123747i
\(483\) 0 0
\(484\) 16.5489 0.752221
\(485\) −31.8525 22.4116i −1.44635 1.01766i
\(486\) 0 0
\(487\) 14.1098i 0.639375i 0.947523 + 0.319688i \(0.103578\pi\)
−0.947523 + 0.319688i \(0.896422\pi\)
\(488\) 0.714836i 0.0323591i
\(489\) 0 0
\(490\) 1.66412 + 1.17088i 0.0751771 + 0.0528949i
\(491\) −4.10821 −0.185401 −0.0927004 0.995694i \(-0.529550\pi\)
−0.0927004 + 0.995694i \(0.529550\pi\)
\(492\) 0 0
\(493\) 6.22138i 0.280197i
\(494\) −4.34293 −0.195398
\(495\) 0 0
\(496\) 24.6676 1.10761
\(497\) 2.18728i 0.0981129i
\(498\) 0 0
\(499\) −30.0689 −1.34607 −0.673035 0.739611i \(-0.735010\pi\)
−0.673035 + 0.739611i \(0.735010\pi\)
\(500\) 21.2938 + 5.86176i 0.952286 + 0.262146i
\(501\) 0 0
\(502\) 4.07795i 0.182008i
\(503\) 14.8806i 0.663493i 0.943369 + 0.331746i \(0.107638\pi\)
−0.943369 + 0.331746i \(0.892362\pi\)
\(504\) 0 0
\(505\) −16.4119 + 23.3254i −0.730318 + 1.03797i
\(506\) 0.538375 0.0239337
\(507\) 0 0
\(508\) 35.0264i 1.55405i
\(509\) 1.93674 0.0858445 0.0429223 0.999078i \(-0.486333\pi\)
0.0429223 + 0.999078i \(0.486333\pi\)
\(510\) 0 0
\(511\) 9.53898 0.421980
\(512\) 11.9341i 0.527416i
\(513\) 0 0
\(514\) −2.35703 −0.103964
\(515\) 9.42656 + 6.63257i 0.415384 + 0.292266i
\(516\) 0 0
\(517\) 20.9145i 0.919817i
\(518\) 0.187522i 0.00823925i
\(519\) 0 0
\(520\) −3.18478 + 4.52638i −0.139662 + 0.198495i
\(521\) 4.23051 0.185342 0.0926710 0.995697i \(-0.470460\pi\)
0.0926710 + 0.995697i \(0.470460\pi\)
\(522\) 0 0
\(523\) 4.40144i 0.192462i −0.995359 0.0962308i \(-0.969321\pi\)
0.995359 0.0962308i \(-0.0306787\pi\)
\(524\) −14.4568 −0.631548
\(525\) 0 0
\(526\) −1.89179 −0.0824861
\(527\) 39.8292i 1.73499i
\(528\) 0 0
\(529\) 22.3915 0.973543
\(530\) −2.27684 + 3.23597i −0.0988996 + 0.140561i
\(531\) 0 0
\(532\) 15.0697i 0.653353i
\(533\) 0 0
\(534\) 0 0
\(535\) 2.00000 + 1.40721i 0.0864675 + 0.0608390i
\(536\) 3.68225 0.159049
\(537\) 0 0
\(538\) 1.70160i 0.0733613i
\(539\) 25.5489 1.10047
\(540\) 0 0
\(541\) −32.4119 −1.39349 −0.696747 0.717317i \(-0.745370\pi\)
−0.696747 + 0.717317i \(0.745370\pi\)
\(542\) 1.99821i 0.0858304i
\(543\) 0 0
\(544\) 11.5138 0.493650
\(545\) 19.7232 28.0316i 0.844847 1.20074i
\(546\) 0 0
\(547\) 12.9093i 0.551961i 0.961163 + 0.275980i \(0.0890024\pi\)
−0.961163 + 0.275980i \(0.910998\pi\)
\(548\) 19.3374i 0.826051i
\(549\) 0 0
\(550\) −3.24804 + 1.16548i −0.138497 + 0.0496961i
\(551\) 6.97542 0.297163
\(552\) 0 0
\(553\) 6.06845i 0.258057i
\(554\) −3.14688 −0.133698
\(555\) 0 0
\(556\) 5.44186 0.230786
\(557\) 23.0195i 0.975369i 0.873020 + 0.487685i \(0.162158\pi\)
−0.873020 + 0.487685i \(0.837842\pi\)
\(558\) 0 0
\(559\) 1.49548 0.0632522
\(560\) 7.70623 + 5.42214i 0.325648 + 0.229127i
\(561\) 0 0
\(562\) 3.28247i 0.138463i
\(563\) 27.3234i 1.15154i 0.817611 + 0.575771i \(0.195298\pi\)
−0.817611 + 0.575771i \(0.804702\pi\)
\(564\) 0 0
\(565\) 13.3282 + 9.37781i 0.560723 + 0.394527i
\(566\) 2.66068 0.111837
\(567\) 0 0
\(568\) 1.24657i 0.0523049i
\(569\) −0.803952 −0.0337034 −0.0168517 0.999858i \(-0.505364\pi\)
−0.0168517 + 0.999858i \(0.505364\pi\)
\(570\) 0 0
\(571\) 43.4604 1.81876 0.909381 0.415964i \(-0.136556\pi\)
0.909381 + 0.415964i \(0.136556\pi\)
\(572\) 34.5315i 1.44384i
\(573\) 0 0
\(574\) 0 0
\(575\) 3.67116 1.31730i 0.153098 0.0549353i
\(576\) 0 0
\(577\) 1.27345i 0.0530146i 0.999649 + 0.0265073i \(0.00843852\pi\)
−0.999649 + 0.0265073i \(0.991561\pi\)
\(578\) 3.40311i 0.141551i
\(579\) 0 0
\(580\) 2.54181 3.61256i 0.105543 0.150003i
\(581\) −6.80395 −0.282276
\(582\) 0 0
\(583\) 49.6812i 2.05758i
\(584\) 5.43644 0.224961
\(585\) 0 0
\(586\) 1.48560 0.0613696
\(587\) 31.8678i 1.31533i 0.753312 + 0.657663i \(0.228455\pi\)
−0.753312 + 0.657663i \(0.771545\pi\)
\(588\) 0 0
\(589\) −44.6565 −1.84004
\(590\) 2.86721 + 2.01738i 0.118041 + 0.0830543i
\(591\) 0 0
\(592\) 4.21392i 0.173191i
\(593\) 1.21043i 0.0497064i −0.999691 0.0248532i \(-0.992088\pi\)
0.999691 0.0248532i \(-0.00791183\pi\)
\(594\) 0 0
\(595\) −8.75479 + 12.4428i −0.358911 + 0.510104i
\(596\) −8.93735 −0.366088
\(597\) 0 0
\(598\) 0.485676i 0.0198608i
\(599\) 24.2053 0.989003 0.494501 0.869177i \(-0.335351\pi\)
0.494501 + 0.869177i \(0.335351\pi\)
\(600\) 0 0
\(601\) 4.68586 0.191140 0.0955702 0.995423i \(-0.469533\pi\)
0.0955702 + 0.995423i \(0.469533\pi\)
\(602\) 0.0645730i 0.00263180i
\(603\) 0 0
\(604\) 5.53898 0.225378
\(605\) −10.7794 + 15.3202i −0.438244 + 0.622855i
\(606\) 0 0
\(607\) 0.502641i 0.0204016i −0.999948 0.0102008i \(-0.996753\pi\)
0.999948 0.0102008i \(-0.00324707\pi\)
\(608\) 12.9093i 0.523540i
\(609\) 0 0
\(610\) −0.328836 0.231371i −0.0133142 0.00936792i
\(611\) 18.8672 0.763286
\(612\) 0 0
\(613\) 22.9142i 0.925496i −0.886490 0.462748i \(-0.846863\pi\)
0.886490 0.462748i \(-0.153137\pi\)
\(614\) −3.03868 −0.122631
\(615\) 0 0
\(616\) −3.00060 −0.120898
\(617\) 15.8574i 0.638397i 0.947688 + 0.319198i \(0.103414\pi\)
−0.947688 + 0.319198i \(0.896586\pi\)
\(618\) 0 0
\(619\) 35.4014 1.42290 0.711451 0.702736i \(-0.248039\pi\)
0.711451 + 0.702736i \(0.248039\pi\)
\(620\) −16.2726 + 23.1275i −0.653524 + 0.928823i
\(621\) 0 0
\(622\) 1.45327i 0.0582707i
\(623\) 11.8156i 0.473383i
\(624\) 0 0
\(625\) −19.2966 + 15.8947i −0.771864 + 0.635788i
\(626\) −2.27846 −0.0910658
\(627\) 0 0
\(628\) 9.82734i 0.392154i
\(629\) −6.80395 −0.271291
\(630\) 0 0
\(631\) 44.7056 1.77970 0.889851 0.456250i \(-0.150808\pi\)
0.889851 + 0.456250i \(0.150808\pi\)
\(632\) 3.45852i 0.137573i
\(633\) 0 0
\(634\) −3.51379 −0.139551
\(635\) 32.4260 + 22.8150i 1.28678 + 0.905388i
\(636\) 0 0
\(637\) 23.0480i 0.913194i
\(638\) 0.690163i 0.0273238i
\(639\) 0 0
\(640\) 8.89523 + 6.25872i 0.351615 + 0.247398i
\(641\) −10.0689 −0.397699 −0.198849 0.980030i \(-0.563720\pi\)
−0.198849 + 0.980030i \(0.563720\pi\)
\(642\) 0 0
\(643\) 13.9760i 0.551161i −0.961278 0.275580i \(-0.911130\pi\)
0.961278 0.275580i \(-0.0888700\pi\)
\(644\) 1.68526 0.0664085
\(645\) 0 0
\(646\) −6.80395 −0.267698
\(647\) 31.1607i 1.22505i −0.790450 0.612527i \(-0.790153\pi\)
0.790450 0.612527i \(-0.209847\pi\)
\(648\) 0 0
\(649\) 44.0198 1.72793
\(650\) −1.05139 2.93010i −0.0412390 0.114928i
\(651\) 0 0
\(652\) 41.0127i 1.60618i
\(653\) 26.1129i 1.02188i −0.859617 0.510939i \(-0.829298\pi\)
0.859617 0.510939i \(-0.170702\pi\)
\(654\) 0 0
\(655\) 9.41668 13.3835i 0.367940 0.522936i
\(656\) 0 0
\(657\) 0 0
\(658\) 0.814661i 0.0317588i
\(659\) −28.5974 −1.11400 −0.556999 0.830513i \(-0.688047\pi\)
−0.556999 + 0.830513i \(0.688047\pi\)
\(660\) 0 0
\(661\) −38.9994 −1.51690 −0.758450 0.651731i \(-0.774043\pi\)
−0.758450 + 0.651731i \(0.774043\pi\)
\(662\) 1.23731i 0.0480895i
\(663\) 0 0
\(664\) −3.87770 −0.150484
\(665\) −13.9508 9.81587i −0.540990 0.380643i
\(666\) 0 0
\(667\) 0.780070i 0.0302044i
\(668\) 43.2976i 1.67523i
\(669\) 0 0
\(670\) −1.19183 + 1.69390i −0.0460445 + 0.0654409i
\(671\) −5.04856 −0.194897
\(672\) 0 0
\(673\) 38.6725i 1.49072i 0.666665 + 0.745358i \(0.267721\pi\)
−0.666665 + 0.745358i \(0.732279\pi\)
\(674\) −5.24100 −0.201876
\(675\) 0 0
\(676\) −5.47090 −0.210419
\(677\) 28.4800i 1.09458i −0.836944 0.547288i \(-0.815660\pi\)
0.836944 0.547288i \(-0.184340\pi\)
\(678\) 0 0
\(679\) 19.0486 0.731017
\(680\) −4.98951 + 7.09136i −0.191339 + 0.271941i
\(681\) 0 0
\(682\) 4.41841i 0.169190i
\(683\) 12.4159i 0.475081i 0.971378 + 0.237540i \(0.0763412\pi\)
−0.971378 + 0.237540i \(0.923659\pi\)
\(684\) 0 0
\(685\) −17.9017 12.5957i −0.683988 0.481257i
\(686\) −2.19544 −0.0838224
\(687\) 0 0
\(688\) 1.45106i 0.0553211i
\(689\) −44.8180 −1.70743
\(690\) 0 0
\(691\) 10.8040 0.411002 0.205501 0.978657i \(-0.434118\pi\)
0.205501 + 0.978657i \(0.434118\pi\)
\(692\) 6.42808i 0.244359i
\(693\) 0 0
\(694\) 4.87709 0.185132
\(695\) −3.54465 + 5.03784i −0.134456 + 0.191096i
\(696\) 0 0
\(697\) 0 0
\(698\) 0.904568i 0.0342384i
\(699\) 0 0
\(700\) −10.1673 + 3.64825i −0.384286 + 0.137891i
\(701\) −8.47512 −0.320101 −0.160050 0.987109i \(-0.551166\pi\)
−0.160050 + 0.987109i \(0.551166\pi\)
\(702\) 0 0
\(703\) 7.62859i 0.287718i
\(704\) 32.6454 1.23037
\(705\) 0 0
\(706\) 2.11809 0.0797153
\(707\) 13.9491i 0.524612i
\(708\) 0 0
\(709\) 32.8180 1.23251 0.616254 0.787548i \(-0.288650\pi\)
0.616254 + 0.787548i \(0.288650\pi\)
\(710\) −0.573442 0.403477i −0.0215209 0.0151422i
\(711\) 0 0
\(712\) 6.73394i 0.252365i
\(713\) 4.99399i 0.187026i
\(714\) 0 0
\(715\) −31.9678 22.4927i −1.19553 0.841178i
\(716\) −14.2152 −0.531247
\(717\) 0 0
\(718\) 0.181363i 0.00676842i
\(719\) 39.7542 1.48258 0.741290 0.671184i \(-0.234214\pi\)
0.741290 + 0.671184i \(0.234214\pi\)
\(720\) 0 0
\(721\) −5.63731 −0.209944
\(722\) 4.64968i 0.173043i
\(723\) 0 0
\(724\) 25.7485 0.956936
\(725\) 1.68870 + 4.70620i 0.0627166 + 0.174784i
\(726\) 0 0
\(727\) 49.4844i 1.83527i −0.397419 0.917637i \(-0.630094\pi\)
0.397419 0.917637i \(-0.369906\pi\)
\(728\) 2.70689i 0.100324i
\(729\) 0 0
\(730\) −1.75961 + 2.50085i −0.0651260 + 0.0925606i
\(731\) 2.34293 0.0866565
\(732\) 0 0
\(733\) 46.2381i 1.70784i −0.520403 0.853921i \(-0.674218\pi\)
0.520403 0.853921i \(-0.325782\pi\)
\(734\) 1.66128 0.0613191
\(735\) 0 0
\(736\) 1.44366 0.0532140
\(737\) 26.0061i 0.957946i
\(738\) 0 0
\(739\) −28.7155 −1.05632 −0.528159 0.849146i \(-0.677117\pi\)
−0.528159 + 0.849146i \(0.677117\pi\)
\(740\) −3.95084 2.77983i −0.145236 0.102188i
\(741\) 0 0
\(742\) 1.93518i 0.0710428i
\(743\) 27.0536i 0.992502i −0.868179 0.496251i \(-0.834710\pi\)
0.868179 0.496251i \(-0.165290\pi\)
\(744\) 0 0
\(745\) 5.82149 8.27380i 0.213283 0.303129i
\(746\) −1.11303 −0.0407508
\(747\) 0 0
\(748\) 54.0996i 1.97808i
\(749\) −1.19605 −0.0437026
\(750\) 0 0
\(751\) −26.8771 −0.980759 −0.490380 0.871509i \(-0.663142\pi\)
−0.490380 + 0.871509i \(0.663142\pi\)
\(752\) 18.3067i 0.667578i
\(753\) 0 0
\(754\) −0.622605 −0.0226739
\(755\) −3.60790 + 5.12775i −0.131305 + 0.186618i
\(756\) 0 0
\(757\) 7.28814i 0.264892i 0.991190 + 0.132446i \(0.0422831\pi\)
−0.991190 + 0.132446i \(0.957717\pi\)
\(758\) 2.84130i 0.103201i
\(759\) 0 0
\(760\) −7.95084 5.59425i −0.288407 0.202925i
\(761\) 31.6079 1.14579 0.572893 0.819630i \(-0.305821\pi\)
0.572893 + 0.819630i \(0.305821\pi\)
\(762\) 0 0
\(763\) 16.7636i 0.606882i
\(764\) 19.9958 0.723422
\(765\) 0 0
\(766\) 0.514398 0.0185860
\(767\) 39.7108i 1.43387i
\(768\) 0 0
\(769\) 0.293769 0.0105936 0.00529679 0.999986i \(-0.498314\pi\)
0.00529679 + 0.999986i \(0.498314\pi\)
\(770\) 0.971204 1.38033i 0.0349997 0.0497435i
\(771\) 0 0
\(772\) 45.1559i 1.62520i
\(773\) 28.4877i 1.02463i −0.858797 0.512316i \(-0.828788\pi\)
0.858797 0.512316i \(-0.171212\pi\)
\(774\) 0 0
\(775\) −10.8110 30.1290i −0.388343 1.08226i
\(776\) 10.8561 0.389712
\(777\) 0 0
\(778\) 1.88142i 0.0674521i
\(779\) 0 0
\(780\) 0 0
\(781\) −8.80395 −0.315030
\(782\) 0.760895i 0.0272095i
\(783\) 0 0
\(784\) 22.3633 0.798689
\(785\) −9.09772 6.40120i −0.324712 0.228469i
\(786\) 0 0
\(787\) 32.9883i 1.17591i 0.808895 + 0.587954i \(0.200066\pi\)
−0.808895 + 0.587954i \(0.799934\pi\)
\(788\) 43.5997i 1.55317i
\(789\) 0 0
\(790\) 1.59098 + 1.11942i 0.0566044 + 0.0398271i
\(791\) −7.97060 −0.283402
\(792\) 0 0
\(793\) 4.55437i 0.161731i
\(794\) 5.69213 0.202006
\(795\) 0 0
\(796\) −10.2644 −0.363811
\(797\) 30.9194i 1.09522i −0.836733 0.547611i \(-0.815537\pi\)
0.836733 0.547611i \(-0.184463\pi\)
\(798\) 0 0
\(799\) 29.5587 1.04571
\(800\) −8.70967 + 3.12524i −0.307933 + 0.110494i
\(801\) 0 0
\(802\) 4.08942i 0.144402i
\(803\) 38.3951i 1.35493i
\(804\) 0 0
\(805\) −1.09772 + 1.56014i −0.0386896 + 0.0549877i
\(806\) 3.98590 0.140397
\(807\) 0 0
\(808\) 7.94987i 0.279675i
\(809\) 21.0977 0.741756 0.370878 0.928682i \(-0.379057\pi\)
0.370878 + 0.928682i \(0.379057\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 2.16040i 0.0758150i
\(813\) 0 0
\(814\) 0.754790 0.0264554
\(815\) 37.9678 + 26.7143i 1.32995 + 0.935761i
\(816\) 0 0
\(817\) 2.62690i 0.0919035i
\(818\) 2.04582i 0.0715303i
\(819\) 0 0
\(820\) 0 0
\(821\) 15.2791 0.533243 0.266622 0.963801i \(-0.414093\pi\)
0.266622 + 0.963801i \(0.414093\pi\)
\(822\) 0 0
\(823\) 7.78152i 0.271247i 0.990760 + 0.135623i \(0.0433037\pi\)
−0.990760 + 0.135623i \(0.956696\pi\)
\(824\) −3.21280 −0.111923
\(825\) 0 0
\(826\) −1.71466 −0.0596607
\(827\) 0.376593i 0.0130954i 0.999979 + 0.00654772i \(0.00208422\pi\)
−0.999979 + 0.00654772i \(0.997916\pi\)
\(828\) 0 0
\(829\) 49.8723 1.73214 0.866068 0.499927i \(-0.166640\pi\)
0.866068 + 0.499927i \(0.166640\pi\)
\(830\) 1.25509 1.78380i 0.0435649 0.0619167i
\(831\) 0 0
\(832\) 29.4498i 1.02099i
\(833\) 36.1086i 1.25109i
\(834\) 0 0
\(835\) 40.0830 + 28.2026i 1.38713 + 0.975991i
\(836\) −60.6565 −2.09785
\(837\) 0 0
\(838\) 5.62113i 0.194179i
\(839\) −0.0590441 −0.00203843 −0.00101921 0.999999i \(-0.500324\pi\)
−0.00101921 + 0.999999i \(0.500324\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 2.61919i 0.0902632i
\(843\) 0 0
\(844\) 3.25388 0.112003
\(845\) 3.56356 5.06472i 0.122590 0.174232i
\(846\) 0 0
\(847\) 9.16185i 0.314805i
\(848\) 43.4867i 1.49334i
\(849\) 0 0
\(850\) −1.64719 4.59051i −0.0564980 0.157453i
\(851\) −0.853115 −0.0292444
\(852\) 0 0
\(853\) 2.77983i 0.0951795i −0.998867 0.0475897i \(-0.984846\pi\)
0.998867 0.0475897i \(-0.0151540\pi\)
\(854\) 0.196652 0.00672929
\(855\) 0 0
\(856\) −0.681649 −0.0232983
\(857\) 0.850802i 0.0290628i −0.999894 0.0145314i \(-0.995374\pi\)
0.999894 0.0145314i \(-0.00462566\pi\)
\(858\) 0 0
\(859\) −7.35342 −0.250895 −0.125448 0.992100i \(-0.540037\pi\)
−0.125448 + 0.992100i \(0.540037\pi\)
\(860\) 1.36047 + 0.957230i 0.0463915 + 0.0326413i
\(861\) 0 0
\(862\) 4.12556i 0.140517i
\(863\) 42.6167i 1.45069i 0.688386 + 0.725345i \(0.258320\pi\)
−0.688386 + 0.725345i \(0.741680\pi\)
\(864\) 0 0
\(865\) 5.95084 + 4.18704i 0.202335 + 0.142364i
\(866\) 1.68105 0.0571242
\(867\) 0 0
\(868\) 13.8308i 0.469448i
\(869\) 24.4260 0.828594
\(870\) 0 0
\(871\) −23.4604 −0.794926
\(872\) 9.55386i 0.323535i
\(873\) 0 0
\(874\) −0.853115 −0.0288571
\(875\) 3.24521 11.7887i 0.109708 0.398532i
\(876\) 0 0
\(877\) 13.4196i 0.453148i 0.973994 + 0.226574i \(0.0727526\pi\)
−0.973994 + 0.226574i \(0.927247\pi\)
\(878\) 4.63436i 0.156402i
\(879\) 0 0
\(880\) −21.8245 + 31.0181i −0.735703 + 1.04562i
\(881\) 38.3135 1.29082 0.645408 0.763838i \(-0.276687\pi\)
0.645408 + 0.763838i \(0.276687\pi\)
\(882\) 0 0
\(883\) 31.5542i 1.06188i 0.847408 + 0.530942i \(0.178162\pi\)
−0.847408 + 0.530942i \(0.821838\pi\)
\(884\) −48.8040 −1.64145
\(885\) 0 0
\(886\) 0.534161 0.0179455
\(887\) 23.3961i 0.785565i −0.919631 0.392783i \(-0.871512\pi\)
0.919631 0.392783i \(-0.128488\pi\)
\(888\) 0 0
\(889\) −19.3915 −0.650370
\(890\) −3.09772 2.17957i −0.103836 0.0730594i
\(891\) 0 0
\(892\) 18.7179i 0.626722i
\(893\) 33.1413i 1.10903i
\(894\) 0 0
\(895\) 9.25931 13.1598i 0.309504 0.439884i
\(896\) −5.31956 −0.177714
\(897\) 0 0
\(898\) 0.0722810i 0.00241205i
\(899\) −6.40198 −0.213518
\(900\) 0 0
\(901\) −70.2152 −2.33921
\(902\) 0 0
\(903\) 0 0
\(904\) −4.54259 −0.151084
\(905\) −16.7717 + 23.8369i −0.557511 + 0.792364i
\(906\) 0 0
\(907\) 32.4150i 1.07632i 0.842842 + 0.538161i \(0.180881\pi\)
−0.842842 + 0.538161i \(0.819119\pi\)
\(908\) 11.3152i 0.375508i
\(909\) 0 0
\(910\) 1.24521 + 0.876136i 0.0412783 + 0.0290436i
\(911\) 45.2749 1.50002 0.750011 0.661425i \(-0.230048\pi\)
0.750011 + 0.661425i \(0.230048\pi\)
\(912\) 0 0
\(913\) 27.3864i 0.906357i
\(914\) −0.215206 −0.00711837
\(915\) 0 0
\(916\) −29.9214 −0.988632
\(917\) 8.00364i 0.264303i
\(918\) 0 0
\(919\) 5.90167 0.194678 0.0973391 0.995251i \(-0.468967\pi\)
0.0973391 + 0.995251i \(0.468967\pi\)
\(920\) −0.625612 + 0.889152i −0.0206258 + 0.0293145i
\(921\) 0 0
\(922\) 2.28710i 0.0753218i
\(923\) 7.94216i 0.261419i
\(924\) 0 0
\(925\) 5.14688 1.84683i 0.169229 0.0607233i
\(926\) −2.95566 −0.0971289
\(927\) 0 0
\(928\) 1.85068i 0.0607516i
\(929\) −6.00000 −0.196854 −0.0984268 0.995144i \(-0.531381\pi\)
−0.0984268 + 0.995144i \(0.531381\pi\)
\(930\) 0 0
\(931\) −40.4850 −1.32684
\(932\) 1.41647i 0.0463979i
\(933\) 0 0
\(934\) 4.69695 0.153689
\(935\) −50.0830 35.2386i −1.63789 1.15243i
\(936\) 0 0
\(937\) 43.0755i 1.40721i 0.710589 + 0.703607i \(0.248429\pi\)
−0.710589 + 0.703607i \(0.751571\pi\)
\(938\) 1.01299i 0.0330753i
\(939\) 0 0
\(940\) 17.1638 + 12.0765i 0.559822 + 0.393893i
\(941\) −2.91637 −0.0950711 −0.0475355 0.998870i \(-0.515137\pi\)
−0.0475355 + 0.998870i \(0.515137\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 38.5312 1.25408
\(945\) 0 0
\(946\) −0.259911 −0.00845043
\(947\) 0.556407i 0.0180808i −0.999959 0.00904041i \(-0.997122\pi\)
0.999959 0.00904041i \(-0.00287769\pi\)
\(948\) 0 0
\(949\) −34.6367 −1.12435
\(950\) 5.14688 1.84683i 0.166987 0.0599190i
\(951\) 0 0
\(952\) 4.24080i 0.137445i
\(953\) 37.1661i 1.20393i −0.798523 0.601964i \(-0.794385\pi\)
0.798523 0.601964i \(-0.205615\pi\)
\(954\) 0 0
\(955\) −13.0246 + 18.5112i −0.421466 + 0.599009i
\(956\) −3.95084 −0.127779
\(957\) 0 0
\(958\) 5.13700i 0.165969i
\(959\) 10.7056 0.345703
\(960\) 0 0
\(961\) 9.98530 0.322106
\(962\) 0.680906i 0.0219533i
\(963\) 0 0
\(964\) 34.2305 1.10249
\(965\) 41.8033 + 29.4130i 1.34570 + 0.946839i
\(966\) 0 0
\(967\) 24.2754i 0.780643i −0.920679 0.390322i \(-0.872364\pi\)
0.920679 0.390322i \(-0.127636\pi\)
\(968\) 5.22151i 0.167826i
\(969\) 0 0
\(970\) −3.51379 + 4.99399i −0.112821 + 0.160347i
\(971\) 17.1709 0.551039 0.275520 0.961295i \(-0.411150\pi\)
0.275520 + 0.961295i \(0.411150\pi\)
\(972\) 0 0
\(973\) 3.01275i 0.0965842i
\(974\) 2.21220 0.0708834
\(975\) 0 0
\(976\) −4.41908 −0.141451
\(977\) 4.95785i 0.158616i 0.996850 + 0.0793078i \(0.0252710\pi\)
−0.996850 + 0.0793078i \(0.974729\pi\)
\(978\) 0 0
\(979\) −47.5587 −1.51998
\(980\) −14.7526 + 20.9671i −0.471253 + 0.669770i
\(981\) 0 0
\(982\) 0.644104i 0.0205542i
\(983\) 11.5651i 0.368869i −0.982845 0.184434i \(-0.940955\pi\)
0.982845 0.184434i \(-0.0590453\pi\)
\(984\) 0 0
\(985\) 40.3627 + 28.3994i 1.28606 + 0.904879i
\(986\) −0.975419 −0.0310637
\(987\) 0 0
\(988\) 54.7190i 1.74084i
\(989\) 0.293769 0.00934132
\(990\) 0 0
\(991\) −18.3429 −0.582682 −0.291341 0.956619i \(-0.594102\pi\)
−0.291341 + 0.956619i \(0.594102\pi\)
\(992\) 11.8480i 0.376175i
\(993\) 0 0
\(994\) 0.342932 0.0108771
\(995\) 6.68586 9.50230i 0.211956 0.301243i
\(996\) 0 0
\(997\) 32.2997i 1.02294i 0.859300 + 0.511471i \(0.170899\pi\)
−0.859300 + 0.511471i \(0.829101\pi\)
\(998\) 4.71435i 0.149230i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.c.h.784.3 6
3.2 odd 2 145.2.b.c.59.4 yes 6
5.2 odd 4 6525.2.a.bt.1.4 6
5.3 odd 4 6525.2.a.bt.1.3 6
5.4 even 2 inner 1305.2.c.h.784.4 6
12.11 even 2 2320.2.d.g.929.2 6
15.2 even 4 725.2.a.l.1.3 6
15.8 even 4 725.2.a.l.1.4 6
15.14 odd 2 145.2.b.c.59.3 6
60.59 even 2 2320.2.d.g.929.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.b.c.59.3 6 15.14 odd 2
145.2.b.c.59.4 yes 6 3.2 odd 2
725.2.a.l.1.3 6 15.2 even 4
725.2.a.l.1.4 6 15.8 even 4
1305.2.c.h.784.3 6 1.1 even 1 trivial
1305.2.c.h.784.4 6 5.4 even 2 inner
2320.2.d.g.929.2 6 12.11 even 2
2320.2.d.g.929.5 6 60.59 even 2
6525.2.a.bt.1.3 6 5.3 odd 4
6525.2.a.bt.1.4 6 5.2 odd 4