Properties

Label 6525.2.a.bt
Level $6525$
Weight $2$
Character orbit 6525.a
Self dual yes
Analytic conductor $52.102$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6525,2,Mod(1,6525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6525.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6525, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,14,0,0,0,0,0,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.337383424.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 13x^{4} + 41x^{2} - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 2) q^{4} + ( - \beta_{5} - \beta_{4} + \beta_1) q^{7} + (\beta_{5} + \beta_{4} + 2 \beta_1) q^{8} + (\beta_{3} + 2) q^{11} + ( - \beta_{5} + 2 \beta_1) q^{13} + ( - 2 \beta_{3} - \beta_{2} + 1) q^{14}+ \cdots + ( - 4 \beta_{5} - 6 \beta_{4} + 5 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 14 q^{4} + 10 q^{11} + 8 q^{14} + 42 q^{16} + 16 q^{19} + 46 q^{26} + 6 q^{29} + 22 q^{31} + 20 q^{34} + 2 q^{44} - 44 q^{46} - 2 q^{49} - 16 q^{56} - 60 q^{59} + 12 q^{61} + 38 q^{64} - 12 q^{71}+ \cdots + 2 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 13x^{4} + 41x^{2} - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - 8\nu^{2} + 5 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} - 12\nu^{3} + 35\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} + 14\nu^{3} - 47\nu ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + \beta_{4} + 6\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{3} + 8\beta_{2} + 27 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 12\beta_{5} + 14\beta_{4} + 37\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.77035
−2.30229
−0.156785
0.156785
2.30229
2.77035
−2.77035 0 5.67486 0 0 1.86960 −10.1807 0 0
1.2 −2.30229 0 3.30056 0 0 −3.91261 −2.99427 0 0
1.3 −0.156785 0 −1.97542 0 0 −1.09364 0.623285 0 0
1.4 0.156785 0 −1.97542 0 0 1.09364 −0.623285 0 0
1.5 2.30229 0 3.30056 0 0 3.91261 2.99427 0 0
1.6 2.77035 0 5.67486 0 0 −1.86960 10.1807 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(29\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6525.2.a.bt 6
3.b odd 2 1 725.2.a.l 6
5.b even 2 1 inner 6525.2.a.bt 6
5.c odd 4 2 1305.2.c.h 6
15.d odd 2 1 725.2.a.l 6
15.e even 4 2 145.2.b.c 6
60.l odd 4 2 2320.2.d.g 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
145.2.b.c 6 15.e even 4 2
725.2.a.l 6 3.b odd 2 1
725.2.a.l 6 15.d odd 2 1
1305.2.c.h 6 5.c odd 4 2
2320.2.d.g 6 60.l odd 4 2
6525.2.a.bt 6 1.a even 1 1 trivial
6525.2.a.bt 6 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6525))\):

\( T_{2}^{6} - 13T_{2}^{4} + 41T_{2}^{2} - 1 \) Copy content Toggle raw display
\( T_{7}^{6} - 20T_{7}^{4} + 76T_{7}^{2} - 64 \) Copy content Toggle raw display
\( T_{11}^{3} - 5T_{11}^{2} - 6T_{11} + 38 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 13 T^{4} + \cdots - 1 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} - 20 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$11$ \( (T^{3} - 5 T^{2} - 6 T + 38)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} - 59 T^{4} + \cdots - 5776 \) Copy content Toggle raw display
$17$ \( T^{6} - 48 T^{4} + \cdots - 784 \) Copy content Toggle raw display
$19$ \( (T^{3} - 8 T^{2} + 6 T + 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} - 56 T^{4} + \cdots - 16 \) Copy content Toggle raw display
$29$ \( (T - 1)^{6} \) Copy content Toggle raw display
$31$ \( (T^{3} - 11 T^{2} + \cdots + 22)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} - 20 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$41$ \( T^{6} \) Copy content Toggle raw display
$43$ \( T^{6} - 127 T^{4} + \cdots - 196 \) Copy content Toggle raw display
$47$ \( T^{6} - 63 T^{4} + \cdots - 8836 \) Copy content Toggle raw display
$53$ \( T^{6} - 187 T^{4} + \cdots - 5776 \) Copy content Toggle raw display
$59$ \( (T + 10)^{6} \) Copy content Toggle raw display
$61$ \( (T^{3} - 6 T^{2} - 64 T - 64)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} - 140 T^{4} + \cdots - 92416 \) Copy content Toggle raw display
$71$ \( (T + 2)^{6} \) Copy content Toggle raw display
$73$ \( T^{6} - 188 T^{4} + \cdots - 3136 \) Copy content Toggle raw display
$79$ \( (T^{3} - T^{2} - 54 T - 98)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} - 48 T^{4} + \cdots - 784 \) Copy content Toggle raw display
$89$ \( (T^{3} - 16 T^{2} + \cdots + 304)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} - 476 T^{4} + \cdots - 7744 \) Copy content Toggle raw display
show more
show less