Properties

Label 650.4.b.l.599.2
Level $650$
Weight $4$
Character 650.599
Analytic conductor $38.351$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,4,Mod(599,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.599"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-16,0,-8,0,0,28,0,-100] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.3512415037\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{19})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.2
Root \(2.17945 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 650.599
Dual form 650.4.b.l.599.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} +3.35890i q^{3} -4.00000 q^{4} +6.71780 q^{6} +26.1534i q^{7} +8.00000i q^{8} +15.7178 q^{9} +5.51229 q^{11} -13.4356i q^{12} -13.0000i q^{13} +52.3068 q^{14} +16.0000 q^{16} -105.025i q^{17} -31.4356i q^{18} +112.383 q^{19} -87.8466 q^{21} -11.0246i q^{22} +74.0767i q^{23} -26.8712 q^{24} -26.0000 q^{26} +143.485i q^{27} -104.614i q^{28} +225.896 q^{29} -205.359 q^{31} -32.0000i q^{32} +18.5152i q^{33} -210.049 q^{34} -62.8712 q^{36} +299.485i q^{37} -224.767i q^{38} +43.6657 q^{39} -416.203 q^{41} +175.693i q^{42} +418.942i q^{43} -22.0492 q^{44} +148.153 q^{46} +419.589i q^{47} +53.7424i q^{48} -341.000 q^{49} +352.767 q^{51} +52.0000i q^{52} -655.786i q^{53} +286.970 q^{54} -209.227 q^{56} +377.485i q^{57} -451.792i q^{58} +221.666 q^{59} +597.687 q^{61} +410.718i q^{62} +411.074i q^{63} -64.0000 q^{64} +37.0305 q^{66} -310.503i q^{67} +420.098i q^{68} -248.816 q^{69} -310.334 q^{71} +125.742i q^{72} +486.859i q^{73} +598.970 q^{74} -449.534 q^{76} +144.165i q^{77} -87.3314i q^{78} -52.3501 q^{79} -57.5703 q^{81} +832.405i q^{82} +1125.85i q^{83} +351.386 q^{84} +837.884 q^{86} +758.761i q^{87} +44.0983i q^{88} +112.466 q^{89} +339.994 q^{91} -296.307i q^{92} -689.780i q^{93} +839.178 q^{94} +107.485 q^{96} +159.963i q^{97} +682.000i q^{98} +86.6411 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} - 8 q^{6} + 28 q^{9} - 100 q^{11} + 64 q^{16} + 188 q^{19} - 456 q^{21} + 32 q^{24} - 104 q^{26} + 520 q^{29} - 804 q^{31} - 352 q^{34} - 112 q^{36} - 52 q^{39} - 1072 q^{41} + 400 q^{44}+ \cdots + 364 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 0.707107i
\(3\) 3.35890i 0.646420i 0.946327 + 0.323210i \(0.104762\pi\)
−0.946327 + 0.323210i \(0.895238\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) 6.71780 0.457088
\(7\) 26.1534i 1.41215i 0.708137 + 0.706075i \(0.249536\pi\)
−0.708137 + 0.706075i \(0.750464\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 15.7178 0.582141
\(10\) 0 0
\(11\) 5.51229 0.151093 0.0755463 0.997142i \(-0.475930\pi\)
0.0755463 + 0.997142i \(0.475930\pi\)
\(12\) − 13.4356i − 0.323210i
\(13\) − 13.0000i − 0.277350i
\(14\) 52.3068 0.998541
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) − 105.025i − 1.49836i −0.662364 0.749182i \(-0.730447\pi\)
0.662364 0.749182i \(-0.269553\pi\)
\(18\) − 31.4356i − 0.411636i
\(19\) 112.383 1.35698 0.678488 0.734612i \(-0.262636\pi\)
0.678488 + 0.734612i \(0.262636\pi\)
\(20\) 0 0
\(21\) −87.8466 −0.912843
\(22\) − 11.0246i − 0.106839i
\(23\) 74.0767i 0.671568i 0.941939 + 0.335784i \(0.109001\pi\)
−0.941939 + 0.335784i \(0.890999\pi\)
\(24\) −26.8712 −0.228544
\(25\) 0 0
\(26\) −26.0000 −0.196116
\(27\) 143.485i 1.02273i
\(28\) − 104.614i − 0.706075i
\(29\) 225.896 1.44648 0.723238 0.690599i \(-0.242653\pi\)
0.723238 + 0.690599i \(0.242653\pi\)
\(30\) 0 0
\(31\) −205.359 −1.18979 −0.594896 0.803803i \(-0.702807\pi\)
−0.594896 + 0.803803i \(0.702807\pi\)
\(32\) − 32.0000i − 0.176777i
\(33\) 18.5152i 0.0976693i
\(34\) −210.049 −1.05950
\(35\) 0 0
\(36\) −62.8712 −0.291070
\(37\) 299.485i 1.33068i 0.746542 + 0.665338i \(0.231712\pi\)
−0.746542 + 0.665338i \(0.768288\pi\)
\(38\) − 224.767i − 0.959527i
\(39\) 43.6657 0.179285
\(40\) 0 0
\(41\) −416.203 −1.58536 −0.792682 0.609635i \(-0.791316\pi\)
−0.792682 + 0.609635i \(0.791316\pi\)
\(42\) 175.693i 0.645477i
\(43\) 418.942i 1.48577i 0.669420 + 0.742884i \(0.266543\pi\)
−0.669420 + 0.742884i \(0.733457\pi\)
\(44\) −22.0492 −0.0755463
\(45\) 0 0
\(46\) 148.153 0.474870
\(47\) 419.589i 1.30220i 0.758992 + 0.651099i \(0.225692\pi\)
−0.758992 + 0.651099i \(0.774308\pi\)
\(48\) 53.7424i 0.161605i
\(49\) −341.000 −0.994169
\(50\) 0 0
\(51\) 352.767 0.968574
\(52\) 52.0000i 0.138675i
\(53\) − 655.786i − 1.69961i −0.527101 0.849803i \(-0.676721\pi\)
0.527101 0.849803i \(-0.323279\pi\)
\(54\) 286.970 0.723178
\(55\) 0 0
\(56\) −209.227 −0.499271
\(57\) 377.485i 0.877177i
\(58\) − 451.792i − 1.02281i
\(59\) 221.666 0.489126 0.244563 0.969633i \(-0.421356\pi\)
0.244563 + 0.969633i \(0.421356\pi\)
\(60\) 0 0
\(61\) 597.687 1.25452 0.627262 0.778808i \(-0.284175\pi\)
0.627262 + 0.778808i \(0.284175\pi\)
\(62\) 410.718i 0.841310i
\(63\) 411.074i 0.822070i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 37.0305 0.0690627
\(67\) − 310.503i − 0.566180i −0.959093 0.283090i \(-0.908641\pi\)
0.959093 0.283090i \(-0.0913595\pi\)
\(68\) 420.098i 0.749182i
\(69\) −248.816 −0.434115
\(70\) 0 0
\(71\) −310.334 −0.518731 −0.259366 0.965779i \(-0.583513\pi\)
−0.259366 + 0.965779i \(0.583513\pi\)
\(72\) 125.742i 0.205818i
\(73\) 486.859i 0.780583i 0.920691 + 0.390292i \(0.127626\pi\)
−0.920691 + 0.390292i \(0.872374\pi\)
\(74\) 598.970 0.940930
\(75\) 0 0
\(76\) −449.534 −0.678488
\(77\) 144.165i 0.213366i
\(78\) − 87.3314i − 0.126773i
\(79\) −52.3501 −0.0745550 −0.0372775 0.999305i \(-0.511869\pi\)
−0.0372775 + 0.999305i \(0.511869\pi\)
\(80\) 0 0
\(81\) −57.5703 −0.0789716
\(82\) 832.405i 1.12102i
\(83\) 1125.85i 1.48889i 0.667685 + 0.744444i \(0.267285\pi\)
−0.667685 + 0.744444i \(0.732715\pi\)
\(84\) 351.386 0.456421
\(85\) 0 0
\(86\) 837.884 1.05060
\(87\) 758.761i 0.935031i
\(88\) 44.0983i 0.0534193i
\(89\) 112.466 0.133948 0.0669740 0.997755i \(-0.478666\pi\)
0.0669740 + 0.997755i \(0.478666\pi\)
\(90\) 0 0
\(91\) 339.994 0.391660
\(92\) − 296.307i − 0.335784i
\(93\) − 689.780i − 0.769106i
\(94\) 839.178 0.920794
\(95\) 0 0
\(96\) 107.485 0.114272
\(97\) 159.963i 0.167441i 0.996489 + 0.0837203i \(0.0266802\pi\)
−0.996489 + 0.0837203i \(0.973320\pi\)
\(98\) 682.000i 0.702984i
\(99\) 86.6411 0.0879572
\(100\) 0 0
\(101\) 408.663 0.402609 0.201304 0.979529i \(-0.435482\pi\)
0.201304 + 0.979529i \(0.435482\pi\)
\(102\) − 705.534i − 0.684885i
\(103\) 1534.30i 1.46776i 0.679278 + 0.733881i \(0.262293\pi\)
−0.679278 + 0.733881i \(0.737707\pi\)
\(104\) 104.000 0.0980581
\(105\) 0 0
\(106\) −1311.57 −1.20180
\(107\) − 35.7876i − 0.0323338i −0.999869 0.0161669i \(-0.994854\pi\)
0.999869 0.0161669i \(-0.00514630\pi\)
\(108\) − 573.939i − 0.511364i
\(109\) −717.265 −0.630289 −0.315144 0.949044i \(-0.602053\pi\)
−0.315144 + 0.949044i \(0.602053\pi\)
\(110\) 0 0
\(111\) −1005.94 −0.860176
\(112\) 418.454i 0.353038i
\(113\) 901.835i 0.750774i 0.926868 + 0.375387i \(0.122490\pi\)
−0.926868 + 0.375387i \(0.877510\pi\)
\(114\) 754.970 0.620258
\(115\) 0 0
\(116\) −903.583 −0.723238
\(117\) − 204.331i − 0.161457i
\(118\) − 443.331i − 0.345864i
\(119\) 2746.75 2.11592
\(120\) 0 0
\(121\) −1300.61 −0.977171
\(122\) − 1195.37i − 0.887083i
\(123\) − 1397.98i − 1.02481i
\(124\) 821.436 0.594896
\(125\) 0 0
\(126\) 822.148 0.581291
\(127\) 1763.63i 1.23226i 0.787645 + 0.616129i \(0.211300\pi\)
−0.787645 + 0.616129i \(0.788700\pi\)
\(128\) 128.000i 0.0883883i
\(129\) −1407.18 −0.960431
\(130\) 0 0
\(131\) 415.497 0.277115 0.138558 0.990354i \(-0.455753\pi\)
0.138558 + 0.990354i \(0.455753\pi\)
\(132\) − 74.0609i − 0.0488347i
\(133\) 2939.21i 1.91625i
\(134\) −621.007 −0.400349
\(135\) 0 0
\(136\) 840.197 0.529752
\(137\) 574.527i 0.358286i 0.983823 + 0.179143i \(0.0573324\pi\)
−0.983823 + 0.179143i \(0.942668\pi\)
\(138\) 497.632i 0.306966i
\(139\) −2136.85 −1.30392 −0.651962 0.758251i \(-0.726054\pi\)
−0.651962 + 0.758251i \(0.726054\pi\)
\(140\) 0 0
\(141\) −1409.36 −0.841768
\(142\) 620.669i 0.366798i
\(143\) − 71.6598i − 0.0419056i
\(144\) 251.485 0.145535
\(145\) 0 0
\(146\) 973.719 0.551956
\(147\) − 1145.38i − 0.642651i
\(148\) − 1197.94i − 0.665338i
\(149\) 222.295 0.122222 0.0611111 0.998131i \(-0.480536\pi\)
0.0611111 + 0.998131i \(0.480536\pi\)
\(150\) 0 0
\(151\) 1185.07 0.638674 0.319337 0.947641i \(-0.396540\pi\)
0.319337 + 0.947641i \(0.396540\pi\)
\(152\) 899.068i 0.479763i
\(153\) − 1650.76i − 0.872259i
\(154\) 288.330 0.150872
\(155\) 0 0
\(156\) −174.663 −0.0896424
\(157\) 2797.58i 1.42211i 0.703136 + 0.711056i \(0.251783\pi\)
−0.703136 + 0.711056i \(0.748217\pi\)
\(158\) 104.700i 0.0527183i
\(159\) 2202.72 1.09866
\(160\) 0 0
\(161\) −1937.36 −0.948355
\(162\) 115.141i 0.0558413i
\(163\) − 1556.22i − 0.747808i −0.927467 0.373904i \(-0.878019\pi\)
0.927467 0.373904i \(-0.121981\pi\)
\(164\) 1664.81 0.792682
\(165\) 0 0
\(166\) 2251.69 1.05280
\(167\) − 2743.80i − 1.27139i −0.771942 0.635693i \(-0.780714\pi\)
0.771942 0.635693i \(-0.219286\pi\)
\(168\) − 702.773i − 0.322739i
\(169\) −169.000 −0.0769231
\(170\) 0 0
\(171\) 1766.42 0.789951
\(172\) − 1675.77i − 0.742884i
\(173\) − 3563.32i − 1.56598i −0.622035 0.782989i \(-0.713694\pi\)
0.622035 0.782989i \(-0.286306\pi\)
\(174\) 1517.52 0.661167
\(175\) 0 0
\(176\) 88.1967 0.0377732
\(177\) 744.553i 0.316181i
\(178\) − 224.932i − 0.0947156i
\(179\) −481.054 −0.200870 −0.100435 0.994944i \(-0.532023\pi\)
−0.100435 + 0.994944i \(0.532023\pi\)
\(180\) 0 0
\(181\) 4736.18 1.94496 0.972479 0.232989i \(-0.0748505\pi\)
0.972479 + 0.232989i \(0.0748505\pi\)
\(182\) − 679.988i − 0.276946i
\(183\) 2007.57i 0.810951i
\(184\) −592.614 −0.237435
\(185\) 0 0
\(186\) −1379.56 −0.543840
\(187\) − 578.926i − 0.226392i
\(188\) − 1678.36i − 0.651099i
\(189\) −3752.61 −1.44425
\(190\) 0 0
\(191\) 1700.58 0.644238 0.322119 0.946699i \(-0.395605\pi\)
0.322119 + 0.946699i \(0.395605\pi\)
\(192\) − 214.970i − 0.0808026i
\(193\) 1455.94i 0.543009i 0.962437 + 0.271505i \(0.0875212\pi\)
−0.962437 + 0.271505i \(0.912479\pi\)
\(194\) 319.925 0.118398
\(195\) 0 0
\(196\) 1364.00 0.497085
\(197\) − 3617.28i − 1.30822i −0.756397 0.654112i \(-0.773042\pi\)
0.756397 0.654112i \(-0.226958\pi\)
\(198\) − 173.282i − 0.0621951i
\(199\) 3445.88 1.22750 0.613749 0.789501i \(-0.289661\pi\)
0.613749 + 0.789501i \(0.289661\pi\)
\(200\) 0 0
\(201\) 1042.95 0.365990
\(202\) − 817.325i − 0.284687i
\(203\) 5907.94i 2.04264i
\(204\) −1411.07 −0.484287
\(205\) 0 0
\(206\) 3068.61 1.03786
\(207\) 1164.32i 0.390947i
\(208\) − 208.000i − 0.0693375i
\(209\) 619.491 0.205029
\(210\) 0 0
\(211\) −4173.44 −1.36166 −0.680832 0.732440i \(-0.738382\pi\)
−0.680832 + 0.732440i \(0.738382\pi\)
\(212\) 2623.14i 0.849803i
\(213\) − 1042.38i − 0.335318i
\(214\) −71.5751 −0.0228634
\(215\) 0 0
\(216\) −1147.88 −0.361589
\(217\) − 5370.83i − 1.68017i
\(218\) 1434.53i 0.445682i
\(219\) −1635.31 −0.504585
\(220\) 0 0
\(221\) −1365.32 −0.415572
\(222\) 2011.88i 0.608236i
\(223\) − 1103.24i − 0.331292i −0.986185 0.165646i \(-0.947029\pi\)
0.986185 0.165646i \(-0.0529709\pi\)
\(224\) 836.909 0.249635
\(225\) 0 0
\(226\) 1803.67 0.530878
\(227\) 2494.39i 0.729333i 0.931138 + 0.364667i \(0.118817\pi\)
−0.931138 + 0.364667i \(0.881183\pi\)
\(228\) − 1509.94i − 0.438588i
\(229\) 2443.33 0.705066 0.352533 0.935799i \(-0.385320\pi\)
0.352533 + 0.935799i \(0.385320\pi\)
\(230\) 0 0
\(231\) −484.236 −0.137924
\(232\) 1807.17i 0.511406i
\(233\) − 6343.70i − 1.78365i −0.452385 0.891823i \(-0.649427\pi\)
0.452385 0.891823i \(-0.350573\pi\)
\(234\) −408.663 −0.114167
\(235\) 0 0
\(236\) −886.663 −0.244563
\(237\) − 175.839i − 0.0481939i
\(238\) − 5493.50i − 1.49618i
\(239\) −2939.07 −0.795449 −0.397725 0.917505i \(-0.630200\pi\)
−0.397725 + 0.917505i \(0.630200\pi\)
\(240\) 0 0
\(241\) −4466.81 −1.19391 −0.596955 0.802275i \(-0.703623\pi\)
−0.596955 + 0.802275i \(0.703623\pi\)
\(242\) 2601.23i 0.690964i
\(243\) 3680.72i 0.971679i
\(244\) −2390.75 −0.627262
\(245\) 0 0
\(246\) −2795.96 −0.724651
\(247\) − 1460.99i − 0.376357i
\(248\) − 1642.87i − 0.420655i
\(249\) −3781.60 −0.962448
\(250\) 0 0
\(251\) −5118.30 −1.28711 −0.643554 0.765400i \(-0.722541\pi\)
−0.643554 + 0.765400i \(0.722541\pi\)
\(252\) − 1644.30i − 0.411035i
\(253\) 408.332i 0.101469i
\(254\) 3527.26 0.871339
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 747.695i 0.181478i 0.995875 + 0.0907392i \(0.0289230\pi\)
−0.995875 + 0.0907392i \(0.971077\pi\)
\(258\) 2814.37i 0.679127i
\(259\) −7832.54 −1.87911
\(260\) 0 0
\(261\) 3550.58 0.842052
\(262\) − 830.993i − 0.195950i
\(263\) 2135.10i 0.500592i 0.968169 + 0.250296i \(0.0805279\pi\)
−0.968169 + 0.250296i \(0.919472\pi\)
\(264\) −148.122 −0.0345313
\(265\) 0 0
\(266\) 5878.42 1.35500
\(267\) 377.762i 0.0865868i
\(268\) 1242.01i 0.283090i
\(269\) 780.553 0.176919 0.0884594 0.996080i \(-0.471806\pi\)
0.0884594 + 0.996080i \(0.471806\pi\)
\(270\) 0 0
\(271\) −5412.95 −1.21333 −0.606667 0.794956i \(-0.707494\pi\)
−0.606667 + 0.794956i \(0.707494\pi\)
\(272\) − 1680.39i − 0.374591i
\(273\) 1142.01i 0.253177i
\(274\) 1149.05 0.253346
\(275\) 0 0
\(276\) 995.265 0.217058
\(277\) − 1738.26i − 0.377047i −0.982069 0.188524i \(-0.939630\pi\)
0.982069 0.188524i \(-0.0603702\pi\)
\(278\) 4273.71i 0.922014i
\(279\) −3227.79 −0.692626
\(280\) 0 0
\(281\) 3923.08 0.832851 0.416426 0.909170i \(-0.363283\pi\)
0.416426 + 0.909170i \(0.363283\pi\)
\(282\) 2818.71i 0.595220i
\(283\) − 356.775i − 0.0749401i −0.999298 0.0374701i \(-0.988070\pi\)
0.999298 0.0374701i \(-0.0119299\pi\)
\(284\) 1241.34 0.259366
\(285\) 0 0
\(286\) −143.320 −0.0296317
\(287\) − 10885.1i − 2.23877i
\(288\) − 502.970i − 0.102909i
\(289\) −6117.16 −1.24510
\(290\) 0 0
\(291\) −537.298 −0.108237
\(292\) − 1947.44i − 0.390292i
\(293\) 6936.33i 1.38302i 0.722367 + 0.691510i \(0.243054\pi\)
−0.722367 + 0.691510i \(0.756946\pi\)
\(294\) −2290.77 −0.454423
\(295\) 0 0
\(296\) −2395.88 −0.470465
\(297\) 790.930i 0.154527i
\(298\) − 444.590i − 0.0864242i
\(299\) 962.997 0.186259
\(300\) 0 0
\(301\) −10956.8 −2.09813
\(302\) − 2370.14i − 0.451611i
\(303\) 1372.66i 0.260254i
\(304\) 1798.14 0.339244
\(305\) 0 0
\(306\) −3301.51 −0.616780
\(307\) − 3919.02i − 0.728568i −0.931288 0.364284i \(-0.881314\pi\)
0.931288 0.364284i \(-0.118686\pi\)
\(308\) − 576.661i − 0.106683i
\(309\) −5153.58 −0.948792
\(310\) 0 0
\(311\) 1817.13 0.331319 0.165659 0.986183i \(-0.447025\pi\)
0.165659 + 0.986183i \(0.447025\pi\)
\(312\) 349.325i 0.0633867i
\(313\) − 1464.09i − 0.264394i −0.991223 0.132197i \(-0.957797\pi\)
0.991223 0.132197i \(-0.0422032\pi\)
\(314\) 5595.17 1.00558
\(315\) 0 0
\(316\) 209.400 0.0372775
\(317\) 4610.16i 0.816821i 0.912798 + 0.408411i \(0.133917\pi\)
−0.912798 + 0.408411i \(0.866083\pi\)
\(318\) − 4405.44i − 0.776870i
\(319\) 1245.20 0.218552
\(320\) 0 0
\(321\) 120.207 0.0209012
\(322\) 3874.71i 0.670588i
\(323\) − 11803.0i − 2.03324i
\(324\) 230.281 0.0394858
\(325\) 0 0
\(326\) −3112.44 −0.528780
\(327\) − 2409.22i − 0.407432i
\(328\) − 3329.62i − 0.560511i
\(329\) −10973.7 −1.83890
\(330\) 0 0
\(331\) 2243.30 0.372516 0.186258 0.982501i \(-0.440364\pi\)
0.186258 + 0.982501i \(0.440364\pi\)
\(332\) − 4503.39i − 0.744444i
\(333\) 4707.24i 0.774640i
\(334\) −5487.59 −0.899005
\(335\) 0 0
\(336\) −1405.55 −0.228211
\(337\) − 6004.40i − 0.970566i −0.874357 0.485283i \(-0.838717\pi\)
0.874357 0.485283i \(-0.161283\pi\)
\(338\) 338.000i 0.0543928i
\(339\) −3029.17 −0.485316
\(340\) 0 0
\(341\) −1132.00 −0.179769
\(342\) − 3532.84i − 0.558580i
\(343\) 52.3068i 0.00823411i
\(344\) −3351.54 −0.525299
\(345\) 0 0
\(346\) −7126.64 −1.10731
\(347\) 1757.95i 0.271964i 0.990711 + 0.135982i \(0.0434189\pi\)
−0.990711 + 0.135982i \(0.956581\pi\)
\(348\) − 3035.04i − 0.467516i
\(349\) 5774.74 0.885715 0.442857 0.896592i \(-0.353965\pi\)
0.442857 + 0.896592i \(0.353965\pi\)
\(350\) 0 0
\(351\) 1865.30 0.283654
\(352\) − 176.393i − 0.0267097i
\(353\) − 286.265i − 0.0431625i −0.999767 0.0215812i \(-0.993130\pi\)
0.999767 0.0215812i \(-0.00687006\pi\)
\(354\) 1489.11 0.223574
\(355\) 0 0
\(356\) −449.864 −0.0669740
\(357\) 9226.05i 1.36777i
\(358\) 962.108i 0.142036i
\(359\) 6004.87 0.882799 0.441399 0.897311i \(-0.354482\pi\)
0.441399 + 0.897311i \(0.354482\pi\)
\(360\) 0 0
\(361\) 5771.05 0.841383
\(362\) − 9472.36i − 1.37529i
\(363\) − 4368.63i − 0.631663i
\(364\) −1359.98 −0.195830
\(365\) 0 0
\(366\) 4015.14 0.573429
\(367\) − 3793.70i − 0.539590i −0.962918 0.269795i \(-0.913044\pi\)
0.962918 0.269795i \(-0.0869559\pi\)
\(368\) 1185.23i 0.167892i
\(369\) −6541.79 −0.922905
\(370\) 0 0
\(371\) 17151.0 2.40010
\(372\) 2759.12i 0.384553i
\(373\) − 8923.03i − 1.23865i −0.785134 0.619326i \(-0.787406\pi\)
0.785134 0.619326i \(-0.212594\pi\)
\(374\) −1157.85 −0.160083
\(375\) 0 0
\(376\) −3356.71 −0.460397
\(377\) − 2936.65i − 0.401180i
\(378\) 7505.23i 1.02124i
\(379\) 10977.5 1.48781 0.743903 0.668287i \(-0.232972\pi\)
0.743903 + 0.668287i \(0.232972\pi\)
\(380\) 0 0
\(381\) −5923.86 −0.796557
\(382\) − 3401.16i − 0.455545i
\(383\) − 10570.4i − 1.41024i −0.709087 0.705121i \(-0.750893\pi\)
0.709087 0.705121i \(-0.249107\pi\)
\(384\) −429.939 −0.0571360
\(385\) 0 0
\(386\) 2911.88 0.383966
\(387\) 6584.85i 0.864926i
\(388\) − 639.850i − 0.0837203i
\(389\) −517.213 −0.0674132 −0.0337066 0.999432i \(-0.510731\pi\)
−0.0337066 + 0.999432i \(0.510731\pi\)
\(390\) 0 0
\(391\) 7779.87 1.00625
\(392\) − 2728.00i − 0.351492i
\(393\) 1395.61i 0.179133i
\(394\) −7234.55 −0.925055
\(395\) 0 0
\(396\) −346.564 −0.0439786
\(397\) 6979.33i 0.882323i 0.897428 + 0.441162i \(0.145433\pi\)
−0.897428 + 0.441162i \(0.854567\pi\)
\(398\) − 6891.76i − 0.867972i
\(399\) −9872.51 −1.23871
\(400\) 0 0
\(401\) 3751.66 0.467204 0.233602 0.972332i \(-0.424949\pi\)
0.233602 + 0.972332i \(0.424949\pi\)
\(402\) − 2085.90i − 0.258794i
\(403\) 2669.67i 0.329989i
\(404\) −1634.65 −0.201304
\(405\) 0 0
\(406\) 11815.9 1.44437
\(407\) 1650.85i 0.201055i
\(408\) 2822.14i 0.342442i
\(409\) 5059.92 0.611729 0.305864 0.952075i \(-0.401055\pi\)
0.305864 + 0.952075i \(0.401055\pi\)
\(410\) 0 0
\(411\) −1929.78 −0.231603
\(412\) − 6137.22i − 0.733881i
\(413\) 5797.31i 0.690719i
\(414\) 2328.65 0.276441
\(415\) 0 0
\(416\) −416.000 −0.0490290
\(417\) − 7177.48i − 0.842884i
\(418\) − 1238.98i − 0.144977i
\(419\) −1758.72 −0.205057 −0.102529 0.994730i \(-0.532693\pi\)
−0.102529 + 0.994730i \(0.532693\pi\)
\(420\) 0 0
\(421\) 3013.57 0.348866 0.174433 0.984669i \(-0.444191\pi\)
0.174433 + 0.984669i \(0.444191\pi\)
\(422\) 8346.87i 0.962842i
\(423\) 6595.01i 0.758063i
\(424\) 5246.29 0.600901
\(425\) 0 0
\(426\) −2084.76 −0.237106
\(427\) 15631.6i 1.77158i
\(428\) 143.150i 0.0161669i
\(429\) 240.698 0.0270886
\(430\) 0 0
\(431\) 9218.86 1.03029 0.515147 0.857102i \(-0.327737\pi\)
0.515147 + 0.857102i \(0.327737\pi\)
\(432\) 2295.76i 0.255682i
\(433\) 14908.9i 1.65468i 0.561701 + 0.827340i \(0.310147\pi\)
−0.561701 + 0.827340i \(0.689853\pi\)
\(434\) −10741.7 −1.18806
\(435\) 0 0
\(436\) 2869.06 0.315144
\(437\) 8325.00i 0.911301i
\(438\) 3270.62i 0.356795i
\(439\) 14586.5 1.58582 0.792910 0.609339i \(-0.208565\pi\)
0.792910 + 0.609339i \(0.208565\pi\)
\(440\) 0 0
\(441\) −5359.77 −0.578746
\(442\) 2730.64i 0.293854i
\(443\) − 1461.45i − 0.156740i −0.996924 0.0783698i \(-0.975029\pi\)
0.996924 0.0783698i \(-0.0249715\pi\)
\(444\) 4023.76 0.430088
\(445\) 0 0
\(446\) −2206.47 −0.234259
\(447\) 746.667i 0.0790070i
\(448\) − 1673.82i − 0.176519i
\(449\) 580.289 0.0609923 0.0304961 0.999535i \(-0.490291\pi\)
0.0304961 + 0.999535i \(0.490291\pi\)
\(450\) 0 0
\(451\) −2294.23 −0.239537
\(452\) − 3607.34i − 0.375387i
\(453\) 3980.54i 0.412852i
\(454\) 4988.79 0.515717
\(455\) 0 0
\(456\) −3019.88 −0.310129
\(457\) − 21.7638i − 0.00222772i −0.999999 0.00111386i \(-0.999645\pi\)
0.999999 0.00111386i \(-0.000354553\pi\)
\(458\) − 4886.67i − 0.498557i
\(459\) 15069.4 1.53242
\(460\) 0 0
\(461\) −14548.5 −1.46983 −0.734917 0.678157i \(-0.762779\pi\)
−0.734917 + 0.678157i \(0.762779\pi\)
\(462\) 968.472i 0.0975269i
\(463\) − 5988.97i − 0.601147i −0.953759 0.300574i \(-0.902822\pi\)
0.953759 0.300574i \(-0.0971781\pi\)
\(464\) 3614.33 0.361619
\(465\) 0 0
\(466\) −12687.4 −1.26123
\(467\) − 6294.85i − 0.623749i −0.950123 0.311875i \(-0.899043\pi\)
0.950123 0.311875i \(-0.100957\pi\)
\(468\) 817.325i 0.0807284i
\(469\) 8120.72 0.799531
\(470\) 0 0
\(471\) −9396.80 −0.919282
\(472\) 1773.33i 0.172932i
\(473\) 2309.33i 0.224489i
\(474\) −351.677 −0.0340782
\(475\) 0 0
\(476\) −10987.0 −1.05796
\(477\) − 10307.5i − 0.989409i
\(478\) 5878.13i 0.562468i
\(479\) −5353.36 −0.510649 −0.255325 0.966855i \(-0.582182\pi\)
−0.255325 + 0.966855i \(0.582182\pi\)
\(480\) 0 0
\(481\) 3893.30 0.369063
\(482\) 8933.61i 0.844222i
\(483\) − 6507.39i − 0.613036i
\(484\) 5202.46 0.488586
\(485\) 0 0
\(486\) 7361.43 0.687081
\(487\) − 15339.9i − 1.42735i −0.700479 0.713673i \(-0.747030\pi\)
0.700479 0.713673i \(-0.252970\pi\)
\(488\) 4781.50i 0.443542i
\(489\) 5227.19 0.483398
\(490\) 0 0
\(491\) 16288.5 1.49713 0.748563 0.663063i \(-0.230744\pi\)
0.748563 + 0.663063i \(0.230744\pi\)
\(492\) 5591.93i 0.512406i
\(493\) − 23724.6i − 2.16735i
\(494\) −2921.97 −0.266125
\(495\) 0 0
\(496\) −3285.74 −0.297448
\(497\) − 8116.30i − 0.732526i
\(498\) 7563.21i 0.680553i
\(499\) −5857.06 −0.525447 −0.262723 0.964871i \(-0.584621\pi\)
−0.262723 + 0.964871i \(0.584621\pi\)
\(500\) 0 0
\(501\) 9216.14 0.821850
\(502\) 10236.6i 0.910123i
\(503\) 4444.45i 0.393972i 0.980406 + 0.196986i \(0.0631154\pi\)
−0.980406 + 0.196986i \(0.936885\pi\)
\(504\) −3288.59 −0.290646
\(505\) 0 0
\(506\) 816.665 0.0717494
\(507\) − 567.654i − 0.0497246i
\(508\) − 7054.52i − 0.616129i
\(509\) 19485.0 1.69677 0.848385 0.529379i \(-0.177575\pi\)
0.848385 + 0.529379i \(0.177575\pi\)
\(510\) 0 0
\(511\) −12733.0 −1.10230
\(512\) − 512.000i − 0.0441942i
\(513\) 16125.3i 1.38782i
\(514\) 1495.39 0.128325
\(515\) 0 0
\(516\) 5628.74 0.480216
\(517\) 2312.90i 0.196753i
\(518\) 15665.1i 1.32873i
\(519\) 11968.8 1.01228
\(520\) 0 0
\(521\) 12935.7 1.08776 0.543879 0.839164i \(-0.316955\pi\)
0.543879 + 0.839164i \(0.316955\pi\)
\(522\) − 7101.17i − 0.595421i
\(523\) − 10562.9i − 0.883142i −0.897226 0.441571i \(-0.854421\pi\)
0.897226 0.441571i \(-0.145579\pi\)
\(524\) −1661.99 −0.138558
\(525\) 0 0
\(526\) 4270.19 0.353972
\(527\) 21567.7i 1.78274i
\(528\) 296.244i 0.0244173i
\(529\) 6679.64 0.548997
\(530\) 0 0
\(531\) 3484.10 0.284740
\(532\) − 11756.8i − 0.958127i
\(533\) 5410.63i 0.439701i
\(534\) 755.524 0.0612261
\(535\) 0 0
\(536\) 2484.03 0.200175
\(537\) − 1615.81i − 0.129846i
\(538\) − 1561.11i − 0.125100i
\(539\) −1879.69 −0.150212
\(540\) 0 0
\(541\) −13076.9 −1.03922 −0.519610 0.854403i \(-0.673923\pi\)
−0.519610 + 0.854403i \(0.673923\pi\)
\(542\) 10825.9i 0.857957i
\(543\) 15908.4i 1.25726i
\(544\) −3360.79 −0.264876
\(545\) 0 0
\(546\) 2284.01 0.179023
\(547\) − 12729.9i − 0.995049i −0.867450 0.497524i \(-0.834243\pi\)
0.867450 0.497524i \(-0.165757\pi\)
\(548\) − 2298.11i − 0.179143i
\(549\) 9394.33 0.730310
\(550\) 0 0
\(551\) 25387.0 1.96283
\(552\) − 1990.53i − 0.153483i
\(553\) − 1369.13i − 0.105283i
\(554\) −3476.53 −0.266613
\(555\) 0 0
\(556\) 8547.41 0.651962
\(557\) 14621.7i 1.11228i 0.831087 + 0.556142i \(0.187719\pi\)
−0.831087 + 0.556142i \(0.812281\pi\)
\(558\) 6455.58i 0.489761i
\(559\) 5446.25 0.412078
\(560\) 0 0
\(561\) 1944.55 0.146344
\(562\) − 7846.16i − 0.588915i
\(563\) − 11104.7i − 0.831271i −0.909531 0.415636i \(-0.863559\pi\)
0.909531 0.415636i \(-0.136441\pi\)
\(564\) 5637.43 0.420884
\(565\) 0 0
\(566\) −713.549 −0.0529907
\(567\) − 1505.66i − 0.111520i
\(568\) − 2482.67i − 0.183399i
\(569\) 26150.1 1.92666 0.963331 0.268316i \(-0.0864670\pi\)
0.963331 + 0.268316i \(0.0864670\pi\)
\(570\) 0 0
\(571\) −6762.85 −0.495651 −0.247825 0.968805i \(-0.579716\pi\)
−0.247825 + 0.968805i \(0.579716\pi\)
\(572\) 286.639i 0.0209528i
\(573\) 5712.07i 0.416449i
\(574\) −21770.2 −1.58305
\(575\) 0 0
\(576\) −1005.94 −0.0727676
\(577\) − 58.4468i − 0.00421693i −0.999998 0.00210847i \(-0.999329\pi\)
0.999998 0.00210847i \(-0.000671146\pi\)
\(578\) 12234.3i 0.880417i
\(579\) −4890.35 −0.351012
\(580\) 0 0
\(581\) −29444.7 −2.10253
\(582\) 1074.60i 0.0765351i
\(583\) − 3614.88i − 0.256798i
\(584\) −3894.88 −0.275978
\(585\) 0 0
\(586\) 13872.7 0.977943
\(587\) 11211.0i 0.788290i 0.919048 + 0.394145i \(0.128959\pi\)
−0.919048 + 0.394145i \(0.871041\pi\)
\(588\) 4581.54i 0.321326i
\(589\) −23078.9 −1.61452
\(590\) 0 0
\(591\) 12150.1 0.845663
\(592\) 4791.76i 0.332669i
\(593\) − 5124.35i − 0.354860i −0.984133 0.177430i \(-0.943222\pi\)
0.984133 0.177430i \(-0.0567783\pi\)
\(594\) 1581.86 0.109267
\(595\) 0 0
\(596\) −889.180 −0.0611111
\(597\) 11574.4i 0.793479i
\(598\) − 1925.99i − 0.131705i
\(599\) 9235.37 0.629961 0.314981 0.949098i \(-0.398002\pi\)
0.314981 + 0.949098i \(0.398002\pi\)
\(600\) 0 0
\(601\) −26519.4 −1.79992 −0.899958 0.435977i \(-0.856403\pi\)
−0.899958 + 0.435977i \(0.856403\pi\)
\(602\) 21913.5i 1.48360i
\(603\) − 4880.43i − 0.329596i
\(604\) −4740.29 −0.319337
\(605\) 0 0
\(606\) 2745.31 0.184028
\(607\) − 8337.23i − 0.557492i −0.960365 0.278746i \(-0.910081\pi\)
0.960365 0.278746i \(-0.0899188\pi\)
\(608\) − 3596.27i − 0.239882i
\(609\) −19844.2 −1.32041
\(610\) 0 0
\(611\) 5454.66 0.361165
\(612\) 6603.02i 0.436130i
\(613\) − 7475.93i − 0.492578i −0.969196 0.246289i \(-0.920789\pi\)
0.969196 0.246289i \(-0.0792112\pi\)
\(614\) −7838.04 −0.515175
\(615\) 0 0
\(616\) −1153.32 −0.0754361
\(617\) 21101.5i 1.37684i 0.725310 + 0.688422i \(0.241696\pi\)
−0.725310 + 0.688422i \(0.758304\pi\)
\(618\) 10307.2i 0.670897i
\(619\) −19468.7 −1.26416 −0.632080 0.774903i \(-0.717799\pi\)
−0.632080 + 0.774903i \(0.717799\pi\)
\(620\) 0 0
\(621\) −10628.9 −0.686831
\(622\) − 3634.27i − 0.234278i
\(623\) 2941.37i 0.189155i
\(624\) 698.651 0.0448212
\(625\) 0 0
\(626\) −2928.18 −0.186955
\(627\) 2080.81i 0.132535i
\(628\) − 11190.3i − 0.711056i
\(629\) 31453.3 1.99384
\(630\) 0 0
\(631\) −6405.28 −0.404105 −0.202052 0.979375i \(-0.564761\pi\)
−0.202052 + 0.979375i \(0.564761\pi\)
\(632\) − 418.801i − 0.0263592i
\(633\) − 14018.1i − 0.880208i
\(634\) 9220.32 0.577580
\(635\) 0 0
\(636\) −8810.87 −0.549330
\(637\) 4433.00i 0.275733i
\(638\) − 2490.41i − 0.154539i
\(639\) −4877.77 −0.301974
\(640\) 0 0
\(641\) −3794.20 −0.233794 −0.116897 0.993144i \(-0.537295\pi\)
−0.116897 + 0.993144i \(0.537295\pi\)
\(642\) − 240.414i − 0.0147794i
\(643\) 22637.5i 1.38839i 0.719786 + 0.694196i \(0.244240\pi\)
−0.719786 + 0.694196i \(0.755760\pi\)
\(644\) 7749.43 0.474177
\(645\) 0 0
\(646\) −23606.1 −1.43772
\(647\) − 26719.3i − 1.62356i −0.583964 0.811780i \(-0.698499\pi\)
0.583964 0.811780i \(-0.301501\pi\)
\(648\) − 460.562i − 0.0279207i
\(649\) 1221.89 0.0739033
\(650\) 0 0
\(651\) 18040.1 1.08609
\(652\) 6224.89i 0.373904i
\(653\) − 26866.7i − 1.61007i −0.593226 0.805036i \(-0.702146\pi\)
0.593226 0.805036i \(-0.297854\pi\)
\(654\) −4818.44 −0.288098
\(655\) 0 0
\(656\) −6659.24 −0.396341
\(657\) 7652.36i 0.454409i
\(658\) 21947.4i 1.30030i
\(659\) 14165.9 0.837368 0.418684 0.908132i \(-0.362491\pi\)
0.418684 + 0.908132i \(0.362491\pi\)
\(660\) 0 0
\(661\) −14186.8 −0.834799 −0.417399 0.908723i \(-0.637058\pi\)
−0.417399 + 0.908723i \(0.637058\pi\)
\(662\) − 4486.60i − 0.263409i
\(663\) − 4585.97i − 0.268634i
\(664\) −9006.77 −0.526401
\(665\) 0 0
\(666\) 9414.48 0.547753
\(667\) 16733.6i 0.971406i
\(668\) 10975.2i 0.635693i
\(669\) 3705.66 0.214154
\(670\) 0 0
\(671\) 3294.63 0.189549
\(672\) 2811.09i 0.161369i
\(673\) − 23199.0i − 1.32876i −0.747395 0.664380i \(-0.768696\pi\)
0.747395 0.664380i \(-0.231304\pi\)
\(674\) −12008.8 −0.686294
\(675\) 0 0
\(676\) 676.000 0.0384615
\(677\) 28477.3i 1.61665i 0.588738 + 0.808324i \(0.299625\pi\)
−0.588738 + 0.808324i \(0.700375\pi\)
\(678\) 6058.34i 0.343170i
\(679\) −4183.56 −0.236451
\(680\) 0 0
\(681\) −8378.42 −0.471456
\(682\) 2264.00i 0.127116i
\(683\) 29441.0i 1.64938i 0.565583 + 0.824691i \(0.308651\pi\)
−0.565583 + 0.824691i \(0.691349\pi\)
\(684\) −7065.68 −0.394975
\(685\) 0 0
\(686\) 104.614 0.00582240
\(687\) 8206.91i 0.455769i
\(688\) 6703.07i 0.371442i
\(689\) −8525.21 −0.471386
\(690\) 0 0
\(691\) 10587.3 0.582863 0.291431 0.956592i \(-0.405868\pi\)
0.291431 + 0.956592i \(0.405868\pi\)
\(692\) 14253.3i 0.782989i
\(693\) 2265.96i 0.124209i
\(694\) 3515.89 0.192308
\(695\) 0 0
\(696\) −6070.09 −0.330584
\(697\) 43711.5i 2.37545i
\(698\) − 11549.5i − 0.626295i
\(699\) 21307.8 1.15298
\(700\) 0 0
\(701\) −2837.65 −0.152891 −0.0764456 0.997074i \(-0.524357\pi\)
−0.0764456 + 0.997074i \(0.524357\pi\)
\(702\) − 3730.60i − 0.200573i
\(703\) 33657.1i 1.80569i
\(704\) −352.787 −0.0188866
\(705\) 0 0
\(706\) −572.530 −0.0305205
\(707\) 10687.9i 0.568544i
\(708\) − 2978.21i − 0.158090i
\(709\) −20574.7 −1.08984 −0.544921 0.838487i \(-0.683440\pi\)
−0.544921 + 0.838487i \(0.683440\pi\)
\(710\) 0 0
\(711\) −822.828 −0.0434015
\(712\) 899.729i 0.0473578i
\(713\) − 15212.3i − 0.799026i
\(714\) 18452.1 0.967161
\(715\) 0 0
\(716\) 1924.22 0.100435
\(717\) − 9872.03i − 0.514195i
\(718\) − 12009.7i − 0.624233i
\(719\) 23117.7 1.19909 0.599544 0.800342i \(-0.295349\pi\)
0.599544 + 0.800342i \(0.295349\pi\)
\(720\) 0 0
\(721\) −40127.3 −2.07270
\(722\) − 11542.1i − 0.594948i
\(723\) − 15003.6i − 0.771768i
\(724\) −18944.7 −0.972479
\(725\) 0 0
\(726\) −8737.27 −0.446653
\(727\) − 34214.3i − 1.74545i −0.488216 0.872723i \(-0.662352\pi\)
0.488216 0.872723i \(-0.337648\pi\)
\(728\) 2719.95i 0.138473i
\(729\) −13917.6 −0.707085
\(730\) 0 0
\(731\) 43999.2 2.22622
\(732\) − 8030.29i − 0.405475i
\(733\) 9083.99i 0.457742i 0.973457 + 0.228871i \(0.0735034\pi\)
−0.973457 + 0.228871i \(0.926497\pi\)
\(734\) −7587.40 −0.381548
\(735\) 0 0
\(736\) 2370.45 0.118718
\(737\) − 1711.59i − 0.0855456i
\(738\) 13083.6i 0.652592i
\(739\) 13479.4 0.670971 0.335485 0.942045i \(-0.391100\pi\)
0.335485 + 0.942045i \(0.391100\pi\)
\(740\) 0 0
\(741\) 4907.30 0.243285
\(742\) − 34302.0i − 1.69713i
\(743\) − 27595.0i − 1.36253i −0.732036 0.681266i \(-0.761430\pi\)
0.732036 0.681266i \(-0.238570\pi\)
\(744\) 5518.24 0.271920
\(745\) 0 0
\(746\) −17846.1 −0.875859
\(747\) 17695.8i 0.866742i
\(748\) 2315.70i 0.113196i
\(749\) 935.966 0.0456602
\(750\) 0 0
\(751\) 1384.29 0.0672618 0.0336309 0.999434i \(-0.489293\pi\)
0.0336309 + 0.999434i \(0.489293\pi\)
\(752\) 6713.42i 0.325550i
\(753\) − 17191.9i − 0.832013i
\(754\) −5873.29 −0.283677
\(755\) 0 0
\(756\) 15010.5 0.722123
\(757\) − 16314.4i − 0.783301i −0.920114 0.391650i \(-0.871904\pi\)
0.920114 0.391650i \(-0.128096\pi\)
\(758\) − 21955.1i − 1.05204i
\(759\) −1371.55 −0.0655916
\(760\) 0 0
\(761\) 1939.46 0.0923856 0.0461928 0.998933i \(-0.485291\pi\)
0.0461928 + 0.998933i \(0.485291\pi\)
\(762\) 11847.7i 0.563251i
\(763\) − 18758.9i − 0.890063i
\(764\) −6802.31 −0.322119
\(765\) 0 0
\(766\) −21140.8 −0.997192
\(767\) − 2881.65i − 0.135659i
\(768\) 859.878i 0.0404013i
\(769\) 11834.6 0.554961 0.277480 0.960731i \(-0.410501\pi\)
0.277480 + 0.960731i \(0.410501\pi\)
\(770\) 0 0
\(771\) −2511.43 −0.117311
\(772\) − 5823.76i − 0.271505i
\(773\) 33715.5i 1.56878i 0.620271 + 0.784388i \(0.287023\pi\)
−0.620271 + 0.784388i \(0.712977\pi\)
\(774\) 13169.7 0.611595
\(775\) 0 0
\(776\) −1279.70 −0.0591992
\(777\) − 26308.7i − 1.21470i
\(778\) 1034.43i 0.0476684i
\(779\) −46774.3 −2.15130
\(780\) 0 0
\(781\) −1710.65 −0.0783764
\(782\) − 15559.7i − 0.711529i
\(783\) 32412.6i 1.47935i
\(784\) −5456.00 −0.248542
\(785\) 0 0
\(786\) 2791.22 0.126666
\(787\) − 25730.6i − 1.16543i −0.812676 0.582716i \(-0.801990\pi\)
0.812676 0.582716i \(-0.198010\pi\)
\(788\) 14469.1i 0.654112i
\(789\) −7171.57 −0.323593
\(790\) 0 0
\(791\) −23586.0 −1.06021
\(792\) 693.129i 0.0310976i
\(793\) − 7769.94i − 0.347943i
\(794\) 13958.7 0.623897
\(795\) 0 0
\(796\) −13783.5 −0.613749
\(797\) 19638.7i 0.872823i 0.899747 + 0.436412i \(0.143751\pi\)
−0.899747 + 0.436412i \(0.856249\pi\)
\(798\) 19745.0i 0.875897i
\(799\) 44067.2 1.95117
\(800\) 0 0
\(801\) 1767.72 0.0779766
\(802\) − 7503.32i − 0.330363i
\(803\) 2683.71i 0.117940i
\(804\) −4171.80 −0.182995
\(805\) 0 0
\(806\) 5339.33 0.233337
\(807\) 2621.80i 0.114364i
\(808\) 3269.30i 0.142344i
\(809\) −6908.35 −0.300228 −0.150114 0.988669i \(-0.547964\pi\)
−0.150114 + 0.988669i \(0.547964\pi\)
\(810\) 0 0
\(811\) 11961.9 0.517929 0.258964 0.965887i \(-0.416619\pi\)
0.258964 + 0.965887i \(0.416619\pi\)
\(812\) − 23631.8i − 1.02132i
\(813\) − 18181.6i − 0.784324i
\(814\) 3301.70 0.142168
\(815\) 0 0
\(816\) 5644.27 0.242143
\(817\) 47082.2i 2.01615i
\(818\) − 10119.8i − 0.432558i
\(819\) 5343.96 0.228001
\(820\) 0 0
\(821\) 44644.7 1.89782 0.948909 0.315549i \(-0.102189\pi\)
0.948909 + 0.315549i \(0.102189\pi\)
\(822\) 3859.56i 0.163768i
\(823\) − 46052.2i − 1.95052i −0.221063 0.975260i \(-0.570953\pi\)
0.221063 0.975260i \(-0.429047\pi\)
\(824\) −12274.4 −0.518932
\(825\) 0 0
\(826\) 11594.6 0.488412
\(827\) − 24966.6i − 1.04979i −0.851168 0.524894i \(-0.824105\pi\)
0.851168 0.524894i \(-0.175895\pi\)
\(828\) − 4657.29i − 0.195473i
\(829\) −1562.61 −0.0654665 −0.0327333 0.999464i \(-0.510421\pi\)
−0.0327333 + 0.999464i \(0.510421\pi\)
\(830\) 0 0
\(831\) 5838.65 0.243731
\(832\) 832.000i 0.0346688i
\(833\) 35813.4i 1.48963i
\(834\) −14355.0 −0.596009
\(835\) 0 0
\(836\) −2477.96 −0.102515
\(837\) − 29465.9i − 1.21683i
\(838\) 3517.44i 0.144997i
\(839\) 13249.3 0.545191 0.272596 0.962129i \(-0.412118\pi\)
0.272596 + 0.962129i \(0.412118\pi\)
\(840\) 0 0
\(841\) 26639.9 1.09229
\(842\) − 6027.14i − 0.246685i
\(843\) 13177.2i 0.538372i
\(844\) 16693.7 0.680832
\(845\) 0 0
\(846\) 13190.0 0.536031
\(847\) − 34015.5i − 1.37991i
\(848\) − 10492.6i − 0.424901i
\(849\) 1198.37 0.0484428
\(850\) 0 0
\(851\) −22184.8 −0.893639
\(852\) 4169.53i 0.167659i
\(853\) − 39445.1i − 1.58332i −0.610959 0.791662i \(-0.709216\pi\)
0.610959 0.791662i \(-0.290784\pi\)
\(854\) 31263.1 1.25269
\(855\) 0 0
\(856\) 286.300 0.0114317
\(857\) 14494.7i 0.577749i 0.957367 + 0.288874i \(0.0932810\pi\)
−0.957367 + 0.288874i \(0.906719\pi\)
\(858\) − 481.396i − 0.0191545i
\(859\) −22349.5 −0.887724 −0.443862 0.896095i \(-0.646392\pi\)
−0.443862 + 0.896095i \(0.646392\pi\)
\(860\) 0 0
\(861\) 36562.0 1.44719
\(862\) − 18437.7i − 0.728528i
\(863\) 12406.4i 0.489360i 0.969604 + 0.244680i \(0.0786829\pi\)
−0.969604 + 0.244680i \(0.921317\pi\)
\(864\) 4591.51 0.180794
\(865\) 0 0
\(866\) 29817.8 1.17004
\(867\) − 20546.9i − 0.804856i
\(868\) 21483.3i 0.840083i
\(869\) −288.569 −0.0112647
\(870\) 0 0
\(871\) −4036.55 −0.157030
\(872\) − 5738.12i − 0.222841i
\(873\) 2514.26i 0.0974740i
\(874\) 16650.0 0.644387
\(875\) 0 0
\(876\) 6541.25 0.252293
\(877\) − 28964.4i − 1.11523i −0.830099 0.557616i \(-0.811716\pi\)
0.830099 0.557616i \(-0.188284\pi\)
\(878\) − 29173.0i − 1.12134i
\(879\) −23298.4 −0.894013
\(880\) 0 0
\(881\) 33358.6 1.27569 0.637844 0.770166i \(-0.279827\pi\)
0.637844 + 0.770166i \(0.279827\pi\)
\(882\) 10719.5i 0.409235i
\(883\) 17482.9i 0.666303i 0.942873 + 0.333151i \(0.108112\pi\)
−0.942873 + 0.333151i \(0.891888\pi\)
\(884\) 5461.28 0.207786
\(885\) 0 0
\(886\) −2922.90 −0.110832
\(887\) − 39666.1i − 1.50153i −0.660568 0.750766i \(-0.729685\pi\)
0.660568 0.750766i \(-0.270315\pi\)
\(888\) − 8047.51i − 0.304118i
\(889\) −46124.9 −1.74014
\(890\) 0 0
\(891\) −317.344 −0.0119320
\(892\) 4412.94i 0.165646i
\(893\) 47154.9i 1.76705i
\(894\) 1493.33 0.0558664
\(895\) 0 0
\(896\) −3347.63 −0.124818
\(897\) 3234.61i 0.120402i
\(898\) − 1160.58i − 0.0431281i
\(899\) −46389.7 −1.72100
\(900\) 0 0
\(901\) −68873.6 −2.54663
\(902\) 4588.46i 0.169378i
\(903\) − 36802.6i − 1.35627i
\(904\) −7214.68 −0.265439
\(905\) 0 0
\(906\) 7961.07 0.291930
\(907\) − 16181.4i − 0.592388i −0.955128 0.296194i \(-0.904283\pi\)
0.955128 0.296194i \(-0.0957174\pi\)
\(908\) − 9977.57i − 0.364667i
\(909\) 6423.28 0.234375
\(910\) 0 0
\(911\) 22957.0 0.834906 0.417453 0.908699i \(-0.362923\pi\)
0.417453 + 0.908699i \(0.362923\pi\)
\(912\) 6039.76i 0.219294i
\(913\) 6206.00i 0.224960i
\(914\) −43.5276 −0.00157524
\(915\) 0 0
\(916\) −9773.33 −0.352533
\(917\) 10866.6i 0.391328i
\(918\) − 30138.9i − 1.08358i
\(919\) 7028.37 0.252279 0.126140 0.992012i \(-0.459741\pi\)
0.126140 + 0.992012i \(0.459741\pi\)
\(920\) 0 0
\(921\) 13163.6 0.470961
\(922\) 29097.1i 1.03933i
\(923\) 4034.35i 0.143870i
\(924\) 1936.94 0.0689619
\(925\) 0 0
\(926\) −11977.9 −0.425075
\(927\) 24115.9i 0.854444i
\(928\) − 7228.66i − 0.255703i
\(929\) −6014.14 −0.212398 −0.106199 0.994345i \(-0.533868\pi\)
−0.106199 + 0.994345i \(0.533868\pi\)
\(930\) 0 0
\(931\) −38322.8 −1.34906
\(932\) 25374.8i 0.891823i
\(933\) 6103.56i 0.214171i
\(934\) −12589.7 −0.441057
\(935\) 0 0
\(936\) 1634.65 0.0570836
\(937\) − 35125.0i − 1.22464i −0.790612 0.612318i \(-0.790237\pi\)
0.790612 0.612318i \(-0.209763\pi\)
\(938\) − 16241.4i − 0.565354i
\(939\) 4917.74 0.170910
\(940\) 0 0
\(941\) −22190.2 −0.768736 −0.384368 0.923180i \(-0.625581\pi\)
−0.384368 + 0.923180i \(0.625581\pi\)
\(942\) 18793.6i 0.650030i
\(943\) − 30830.9i − 1.06468i
\(944\) 3546.65 0.122281
\(945\) 0 0
\(946\) 4618.66 0.158737
\(947\) − 43661.7i − 1.49822i −0.662445 0.749111i \(-0.730481\pi\)
0.662445 0.749111i \(-0.269519\pi\)
\(948\) 703.354i 0.0240969i
\(949\) 6329.17 0.216495
\(950\) 0 0
\(951\) −15485.1 −0.528010
\(952\) 21974.0i 0.748090i
\(953\) 11102.5i 0.377381i 0.982037 + 0.188691i \(0.0604243\pi\)
−0.982037 + 0.188691i \(0.939576\pi\)
\(954\) −20615.0 −0.699618
\(955\) 0 0
\(956\) 11756.3 0.397725
\(957\) 4182.51i 0.141276i
\(958\) 10706.7i 0.361084i
\(959\) −15025.8 −0.505953
\(960\) 0 0
\(961\) 12381.3 0.415605
\(962\) − 7786.60i − 0.260967i
\(963\) − 562.502i − 0.0188228i
\(964\) 17867.2 0.596955
\(965\) 0 0
\(966\) −13014.8 −0.433482
\(967\) 36593.6i 1.21693i 0.793581 + 0.608465i \(0.208214\pi\)
−0.793581 + 0.608465i \(0.791786\pi\)
\(968\) − 10404.9i − 0.345482i
\(969\) 39645.2 1.31433
\(970\) 0 0
\(971\) 34303.3 1.13372 0.566861 0.823813i \(-0.308158\pi\)
0.566861 + 0.823813i \(0.308158\pi\)
\(972\) − 14722.9i − 0.485840i
\(973\) − 55886.0i − 1.84134i
\(974\) −30679.8 −1.00929
\(975\) 0 0
\(976\) 9563.00 0.313631
\(977\) 14168.1i 0.463948i 0.972722 + 0.231974i \(0.0745184\pi\)
−0.972722 + 0.231974i \(0.925482\pi\)
\(978\) − 10454.4i − 0.341814i
\(979\) 619.946 0.0202386
\(980\) 0 0
\(981\) −11273.8 −0.366917
\(982\) − 32577.0i − 1.05863i
\(983\) 49509.4i 1.60641i 0.595700 + 0.803207i \(0.296875\pi\)
−0.595700 + 0.803207i \(0.703125\pi\)
\(984\) 11183.9 0.362326
\(985\) 0 0
\(986\) −47449.2 −1.53255
\(987\) − 36859.5i − 1.18870i
\(988\) 5843.94i 0.188179i
\(989\) −31033.8 −0.997794
\(990\) 0 0
\(991\) 45392.1 1.45502 0.727511 0.686096i \(-0.240677\pi\)
0.727511 + 0.686096i \(0.240677\pi\)
\(992\) 6571.48i 0.210327i
\(993\) 7535.01i 0.240802i
\(994\) −16232.6 −0.517974
\(995\) 0 0
\(996\) 15126.4 0.481224
\(997\) 40408.9i 1.28361i 0.766866 + 0.641807i \(0.221815\pi\)
−0.766866 + 0.641807i \(0.778185\pi\)
\(998\) 11714.1i 0.371547i
\(999\) −42971.5 −1.36092
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.4.b.l.599.2 4
5.2 odd 4 650.4.a.r.1.2 2
5.3 odd 4 130.4.a.d.1.1 2
5.4 even 2 inner 650.4.b.l.599.3 4
15.8 even 4 1170.4.a.ba.1.2 2
20.3 even 4 1040.4.a.i.1.2 2
65.38 odd 4 1690.4.a.s.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.4.a.d.1.1 2 5.3 odd 4
650.4.a.r.1.2 2 5.2 odd 4
650.4.b.l.599.2 4 1.1 even 1 trivial
650.4.b.l.599.3 4 5.4 even 2 inner
1040.4.a.i.1.2 2 20.3 even 4
1170.4.a.ba.1.2 2 15.8 even 4
1690.4.a.s.1.1 2 65.38 odd 4