Properties

Label 650.4.b.l
Level $650$
Weight $4$
Character orbit 650.b
Analytic conductor $38.351$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,4,Mod(599,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.599"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-16,0,-8,0,0,28,0,-100] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.3512415037\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{19})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 \beta_1 q^{2} + (\beta_{3} - \beta_1) q^{3} - 4 q^{4} + (2 \beta_{2} - 2) q^{6} + 6 \beta_{3} q^{7} + 8 \beta_1 q^{8} + (2 \beta_{2} + 7) q^{9} + (7 \beta_{2} - 25) q^{11} + ( - 4 \beta_{3} + 4 \beta_1) q^{12}+ \cdots + ( - \beta_{2} + 91) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} - 8 q^{6} + 28 q^{9} - 100 q^{11} + 64 q^{16} + 188 q^{19} - 456 q^{21} + 32 q^{24} - 104 q^{26} + 520 q^{29} - 804 q^{31} - 352 q^{34} - 112 q^{36} - 52 q^{39} - 1072 q^{41} + 400 q^{44}+ \cdots + 364 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 9x^{2} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 4\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 14\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} - 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 9 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{2} + 7\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
599.1
−2.17945 + 0.500000i
2.17945 + 0.500000i
2.17945 0.500000i
−2.17945 0.500000i
2.00000i 5.35890i −4.00000 0 −10.7178 26.1534i 8.00000i −1.71780 0
599.2 2.00000i 3.35890i −4.00000 0 6.71780 26.1534i 8.00000i 15.7178 0
599.3 2.00000i 3.35890i −4.00000 0 6.71780 26.1534i 8.00000i 15.7178 0
599.4 2.00000i 5.35890i −4.00000 0 −10.7178 26.1534i 8.00000i −1.71780 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.4.b.l 4
5.b even 2 1 inner 650.4.b.l 4
5.c odd 4 1 130.4.a.d 2
5.c odd 4 1 650.4.a.r 2
15.e even 4 1 1170.4.a.ba 2
20.e even 4 1 1040.4.a.i 2
65.h odd 4 1 1690.4.a.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.4.a.d 2 5.c odd 4 1
650.4.a.r 2 5.c odd 4 1
650.4.b.l 4 1.a even 1 1 trivial
650.4.b.l 4 5.b even 2 1 inner
1040.4.a.i 2 20.e even 4 1
1170.4.a.ba 2 15.e even 4 1
1690.4.a.s 2 65.h odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(650, [\chi])\):

\( T_{3}^{4} + 40T_{3}^{2} + 324 \) Copy content Toggle raw display
\( T_{7}^{2} + 684 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 40T^{2} + 324 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 684)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 50 T - 306)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 169)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 11320 T^{2} + 3196944 \) Copy content Toggle raw display
$19$ \( (T^{2} - 94 T - 2066)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 7784 T^{2} + 12602500 \) Copy content Toggle raw display
$29$ \( (T^{2} - 260 T + 7704)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 402 T + 40382)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 90112 T^{2} + 37748736 \) Copy content Toggle raw display
$41$ \( (T^{2} + 536 T + 49860)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 22361613444 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 19453554576 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 71513456400 \) Copy content Toggle raw display
$59$ \( (T^{2} - 330 T + 24014)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 620 T + 13336)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 57237691536 \) Copy content Toggle raw display
$71$ \( (T^{2} + 734 T + 131478)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 210717721600 \) Copy content Toggle raw display
$79$ \( (T^{2} - 924 T - 51112)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 1759390016400 \) Copy content Toggle raw display
$89$ \( (T^{2} - 748 T + 71476)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 79625552400 \) Copy content Toggle raw display
show more
show less