Properties

Label 1040.4.a.i
Level $1040$
Weight $4$
Character orbit 1040.a
Self dual yes
Analytic conductor $61.362$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,4,Mod(1,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,-10,0,0,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.3619864060\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{19}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{19}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{3} - 5 q^{5} - 6 \beta q^{7} + ( - 2 \beta - 7) q^{9} + ( - 7 \beta + 25) q^{11} + 13 q^{13} + ( - 5 \beta + 5) q^{15} + ( - 14 \beta - 44) q^{17} + (15 \beta + 47) q^{19} + (6 \beta - 114) q^{21} + \cdots + ( - \beta + 91) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 10 q^{5} - 14 q^{9} + 50 q^{11} + 26 q^{13} + 10 q^{15} - 88 q^{17} + 94 q^{19} - 228 q^{21} + 122 q^{23} + 50 q^{25} - 8 q^{27} - 260 q^{29} + 402 q^{31} - 316 q^{33} + 320 q^{37} - 26 q^{39}+ \cdots + 182 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.35890
4.35890
0 −5.35890 0 −5.00000 0 26.1534 0 1.71780 0
1.2 0 3.35890 0 −5.00000 0 −26.1534 0 −15.7178 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1040.4.a.i 2
4.b odd 2 1 130.4.a.d 2
12.b even 2 1 1170.4.a.ba 2
20.d odd 2 1 650.4.a.r 2
20.e even 4 2 650.4.b.l 4
52.b odd 2 1 1690.4.a.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.4.a.d 2 4.b odd 2 1
650.4.a.r 2 20.d odd 2 1
650.4.b.l 4 20.e even 4 2
1040.4.a.i 2 1.a even 1 1 trivial
1170.4.a.ba 2 12.b even 2 1
1690.4.a.s 2 52.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1040))\):

\( T_{3}^{2} + 2T_{3} - 18 \) Copy content Toggle raw display
\( T_{7}^{2} - 684 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2T - 18 \) Copy content Toggle raw display
$5$ \( (T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 684 \) Copy content Toggle raw display
$11$ \( T^{2} - 50T - 306 \) Copy content Toggle raw display
$13$ \( (T - 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 88T - 1788 \) Copy content Toggle raw display
$19$ \( T^{2} - 94T - 2066 \) Copy content Toggle raw display
$23$ \( T^{2} - 122T + 3550 \) Copy content Toggle raw display
$29$ \( T^{2} + 260T + 7704 \) Copy content Toggle raw display
$31$ \( T^{2} - 402T + 40382 \) Copy content Toggle raw display
$37$ \( T^{2} - 320T + 6144 \) Copy content Toggle raw display
$41$ \( T^{2} + 536T + 49860 \) Copy content Toggle raw display
$43$ \( T^{2} - 62T - 149538 \) Copy content Toggle raw display
$47$ \( T^{2} + 752T + 139476 \) Copy content Toggle raw display
$53$ \( T^{2} - 248T - 267420 \) Copy content Toggle raw display
$59$ \( T^{2} - 330T + 24014 \) Copy content Toggle raw display
$61$ \( T^{2} - 620T + 13336 \) Copy content Toggle raw display
$67$ \( T^{2} + 460T - 239244 \) Copy content Toggle raw display
$71$ \( T^{2} - 734T + 131478 \) Copy content Toggle raw display
$73$ \( T^{2} - 456T - 459040 \) Copy content Toggle raw display
$79$ \( T^{2} - 924T - 51112 \) Copy content Toggle raw display
$83$ \( T^{2} - 2304 T + 1326420 \) Copy content Toggle raw display
$89$ \( T^{2} + 748T + 71476 \) Copy content Toggle raw display
$97$ \( T^{2} - 1924 T + 282180 \) Copy content Toggle raw display
show more
show less