Properties

Label 1690.4.a.s
Level $1690$
Weight $4$
Character orbit 1690.a
Self dual yes
Analytic conductor $99.713$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,4,Mod(1,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1690.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,2,8,10,4,0,16,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.7132279097\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{19}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{19}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + (\beta + 1) q^{3} + 4 q^{4} + 5 q^{5} + (2 \beta + 2) q^{6} + 6 \beta q^{7} + 8 q^{8} + (2 \beta - 7) q^{9} + 10 q^{10} + (7 \beta + 25) q^{11} + (4 \beta + 4) q^{12} + 12 \beta q^{14} + (5 \beta + 5) q^{15}+ \cdots + (\beta + 91) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 2 q^{3} + 8 q^{4} + 10 q^{5} + 4 q^{6} + 16 q^{8} - 14 q^{9} + 20 q^{10} + 50 q^{11} + 8 q^{12} + 10 q^{15} + 32 q^{16} - 88 q^{17} - 28 q^{18} + 94 q^{19} + 40 q^{20} + 228 q^{21} + 100 q^{22}+ \cdots + 182 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.35890
4.35890
2.00000 −3.35890 4.00000 5.00000 −6.71780 −26.1534 8.00000 −15.7178 10.0000
1.2 2.00000 5.35890 4.00000 5.00000 10.7178 26.1534 8.00000 1.71780 10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1690.4.a.s 2
13.b even 2 1 130.4.a.d 2
39.d odd 2 1 1170.4.a.ba 2
52.b odd 2 1 1040.4.a.i 2
65.d even 2 1 650.4.a.r 2
65.h odd 4 2 650.4.b.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.4.a.d 2 13.b even 2 1
650.4.a.r 2 65.d even 2 1
650.4.b.l 4 65.h odd 4 2
1040.4.a.i 2 52.b odd 2 1
1170.4.a.ba 2 39.d odd 2 1
1690.4.a.s 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1690))\):

\( T_{3}^{2} - 2T_{3} - 18 \) Copy content Toggle raw display
\( T_{7}^{2} - 684 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2T - 18 \) Copy content Toggle raw display
$5$ \( (T - 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 684 \) Copy content Toggle raw display
$11$ \( T^{2} - 50T - 306 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 88T - 1788 \) Copy content Toggle raw display
$19$ \( T^{2} - 94T - 2066 \) Copy content Toggle raw display
$23$ \( T^{2} + 122T + 3550 \) Copy content Toggle raw display
$29$ \( T^{2} + 260T + 7704 \) Copy content Toggle raw display
$31$ \( T^{2} - 402T + 40382 \) Copy content Toggle raw display
$37$ \( T^{2} + 320T + 6144 \) Copy content Toggle raw display
$41$ \( T^{2} - 536T + 49860 \) Copy content Toggle raw display
$43$ \( T^{2} + 62T - 149538 \) Copy content Toggle raw display
$47$ \( T^{2} + 752T + 139476 \) Copy content Toggle raw display
$53$ \( T^{2} - 248T - 267420 \) Copy content Toggle raw display
$59$ \( T^{2} - 330T + 24014 \) Copy content Toggle raw display
$61$ \( T^{2} - 620T + 13336 \) Copy content Toggle raw display
$67$ \( T^{2} + 460T - 239244 \) Copy content Toggle raw display
$71$ \( T^{2} - 734T + 131478 \) Copy content Toggle raw display
$73$ \( T^{2} + 456T - 459040 \) Copy content Toggle raw display
$79$ \( T^{2} + 924T - 51112 \) Copy content Toggle raw display
$83$ \( T^{2} - 2304 T + 1326420 \) Copy content Toggle raw display
$89$ \( T^{2} - 748T + 71476 \) Copy content Toggle raw display
$97$ \( T^{2} + 1924 T + 282180 \) Copy content Toggle raw display
show more
show less