Properties

Label 650.4.b
Level $650$
Weight $4$
Character orbit 650.b
Rep. character $\chi_{650}(599,\cdot)$
Character field $\Q$
Dimension $54$
Newform subspaces $16$
Sturm bound $420$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 16 \)
Sturm bound: \(420\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(650, [\chi])\).

Total New Old
Modular forms 326 54 272
Cusp forms 302 54 248
Eisenstein series 24 0 24

Trace form

\( 54 q - 216 q^{4} + 8 q^{6} - 414 q^{9} - 68 q^{11} - 176 q^{14} + 864 q^{16} - 76 q^{19} + 280 q^{21} - 32 q^{24} + 156 q^{26} + 360 q^{29} - 760 q^{31} - 272 q^{34} + 1656 q^{36} + 1608 q^{41} + 272 q^{44}+ \cdots + 7432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(650, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
650.4.b.a 650.b 5.b $2$ $38.351$ \(\Q(\sqrt{-1}) \) None 130.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}+4 i q^{3}-4 q^{4}-8 q^{6}+\cdots\)
650.4.b.b 650.b 5.b $2$ $38.351$ \(\Q(\sqrt{-1}) \) None 26.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}+3 i q^{3}-4 q^{4}-6 q^{6}+\cdots\)
650.4.b.c 650.b 5.b $2$ $38.351$ \(\Q(\sqrt{-1}) \) None 650.4.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}+3 i q^{3}-4 q^{4}-6 q^{6}+\cdots\)
650.4.b.d 650.b 5.b $2$ $38.351$ \(\Q(\sqrt{-1}) \) None 26.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}+i q^{3}-4 q^{4}-2 q^{6}-35 i q^{7}+\cdots\)
650.4.b.e 650.b 5.b $2$ $38.351$ \(\Q(\sqrt{-1}) \) None 130.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2 i q^{2}+2 i q^{3}-4 q^{4}+4 q^{6}+\cdots\)
650.4.b.f 650.b 5.b $2$ $38.351$ \(\Q(\sqrt{-1}) \) None 26.4.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2 i q^{2}+4 i q^{3}-4 q^{4}+8 q^{6}+\cdots\)
650.4.b.g 650.b 5.b $2$ $38.351$ \(\Q(\sqrt{-1}) \) None 650.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2 i q^{2}+7 i q^{3}-4 q^{4}+14 q^{6}+\cdots\)
650.4.b.h 650.b 5.b $4$ $38.351$ \(\Q(i, \sqrt{454})\) None 650.4.a.n \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta _{1}q^{2}+4\beta _{1}q^{3}-4q^{4}-8q^{6}+\cdots\)
650.4.b.i 650.b 5.b $4$ $38.351$ \(\Q(i, \sqrt{105})\) None 650.4.a.m \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2\beta _{2}q^{2}+(\beta _{1}-3\beta _{2})q^{3}-4q^{4}+(-8+\cdots)q^{6}+\cdots\)
650.4.b.j 650.b 5.b $4$ $38.351$ \(\Q(i, \sqrt{145})\) None 650.4.a.l \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2\beta _{2}q^{2}+(\beta _{1}-\beta _{2})q^{3}-4q^{4}+(-4+\cdots)q^{6}+\cdots\)
650.4.b.k 650.b 5.b $4$ $38.351$ \(\Q(i, \sqrt{5})\) None 130.4.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta _{1}q^{2}+(\beta _{1}-3\beta _{2})q^{3}-4q^{4}+(-2+\cdots)q^{6}+\cdots\)
650.4.b.l 650.b 5.b $4$ $38.351$ \(\Q(i, \sqrt{19})\) None 130.4.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2\beta _{1}q^{2}+(-\beta _{1}+\beta _{3})q^{3}-4q^{4}+\cdots\)
650.4.b.m 650.b 5.b $4$ $38.351$ \(\Q(i, \sqrt{51})\) None 130.4.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta _{1}q^{2}+(-\beta _{1}-\beta _{3})q^{3}-4q^{4}+\cdots\)
650.4.b.n 650.b 5.b $4$ $38.351$ \(\Q(i, \sqrt{30})\) None 130.4.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2\beta _{1}q^{2}+(4\beta _{1}-\beta _{2})q^{3}-4q^{4}+(8+\cdots)q^{6}+\cdots\)
650.4.b.o 650.b 5.b $4$ $38.351$ \(\Q(i, \sqrt{10})\) None 130.4.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2\beta _{1}q^{2}+(6\beta _{1}-\beta _{2})q^{3}-4q^{4}+(12+\cdots)q^{6}+\cdots\)
650.4.b.p 650.b 5.b $8$ $38.351$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 650.4.a.w \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2\beta _{2}q^{2}+\beta _{1}q^{3}-4q^{4}-2\beta _{3}q^{6}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(650, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(650, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 2}\)