Properties

Label 1040.4.a.i.1.2
Level $1040$
Weight $4$
Character 1040.1
Self dual yes
Analytic conductor $61.362$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,4,Mod(1,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,-10,0,0,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.3619864060\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{19}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.35890\) of defining polynomial
Character \(\chi\) \(=\) 1040.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.35890 q^{3} -5.00000 q^{5} -26.1534 q^{7} -15.7178 q^{9} -5.51229 q^{11} +13.0000 q^{13} -16.7945 q^{15} -105.025 q^{17} +112.383 q^{19} -87.8466 q^{21} +74.0767 q^{23} +25.0000 q^{25} -143.485 q^{27} -225.896 q^{29} +205.359 q^{31} -18.5152 q^{33} +130.767 q^{35} +299.485 q^{37} +43.6657 q^{39} -416.203 q^{41} +418.942 q^{43} +78.5890 q^{45} -419.589 q^{47} +341.000 q^{49} -352.767 q^{51} +655.786 q^{53} +27.5615 q^{55} +377.485 q^{57} +221.666 q^{59} +597.687 q^{61} +411.074 q^{63} -65.0000 q^{65} +310.503 q^{67} +248.816 q^{69} +310.334 q^{71} -486.859 q^{73} +83.9725 q^{75} +144.165 q^{77} -52.3501 q^{79} -57.5703 q^{81} +1125.85 q^{83} +525.123 q^{85} -758.761 q^{87} -112.466 q^{89} -339.994 q^{91} +689.780 q^{93} -561.917 q^{95} +159.963 q^{97} +86.6411 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 10 q^{5} - 14 q^{9} + 50 q^{11} + 26 q^{13} + 10 q^{15} - 88 q^{17} + 94 q^{19} - 228 q^{21} + 122 q^{23} + 50 q^{25} - 8 q^{27} - 260 q^{29} + 402 q^{31} - 316 q^{33} + 320 q^{37} - 26 q^{39}+ \cdots + 182 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.35890 0.646420 0.323210 0.946327i \(-0.395238\pi\)
0.323210 + 0.946327i \(0.395238\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −26.1534 −1.41215 −0.706075 0.708137i \(-0.749536\pi\)
−0.706075 + 0.708137i \(0.749536\pi\)
\(8\) 0 0
\(9\) −15.7178 −0.582141
\(10\) 0 0
\(11\) −5.51229 −0.151093 −0.0755463 0.997142i \(-0.524070\pi\)
−0.0755463 + 0.997142i \(0.524070\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) −16.7945 −0.289088
\(16\) 0 0
\(17\) −105.025 −1.49836 −0.749182 0.662364i \(-0.769553\pi\)
−0.749182 + 0.662364i \(0.769553\pi\)
\(18\) 0 0
\(19\) 112.383 1.35698 0.678488 0.734612i \(-0.262636\pi\)
0.678488 + 0.734612i \(0.262636\pi\)
\(20\) 0 0
\(21\) −87.8466 −0.912843
\(22\) 0 0
\(23\) 74.0767 0.671568 0.335784 0.941939i \(-0.390999\pi\)
0.335784 + 0.941939i \(0.390999\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −143.485 −1.02273
\(28\) 0 0
\(29\) −225.896 −1.44648 −0.723238 0.690599i \(-0.757347\pi\)
−0.723238 + 0.690599i \(0.757347\pi\)
\(30\) 0 0
\(31\) 205.359 1.18979 0.594896 0.803803i \(-0.297193\pi\)
0.594896 + 0.803803i \(0.297193\pi\)
\(32\) 0 0
\(33\) −18.5152 −0.0976693
\(34\) 0 0
\(35\) 130.767 0.631533
\(36\) 0 0
\(37\) 299.485 1.33068 0.665338 0.746542i \(-0.268288\pi\)
0.665338 + 0.746542i \(0.268288\pi\)
\(38\) 0 0
\(39\) 43.6657 0.179285
\(40\) 0 0
\(41\) −416.203 −1.58536 −0.792682 0.609635i \(-0.791316\pi\)
−0.792682 + 0.609635i \(0.791316\pi\)
\(42\) 0 0
\(43\) 418.942 1.48577 0.742884 0.669420i \(-0.233457\pi\)
0.742884 + 0.669420i \(0.233457\pi\)
\(44\) 0 0
\(45\) 78.5890 0.260341
\(46\) 0 0
\(47\) −419.589 −1.30220 −0.651099 0.758992i \(-0.725692\pi\)
−0.651099 + 0.758992i \(0.725692\pi\)
\(48\) 0 0
\(49\) 341.000 0.994169
\(50\) 0 0
\(51\) −352.767 −0.968574
\(52\) 0 0
\(53\) 655.786 1.69961 0.849803 0.527101i \(-0.176721\pi\)
0.849803 + 0.527101i \(0.176721\pi\)
\(54\) 0 0
\(55\) 27.5615 0.0675707
\(56\) 0 0
\(57\) 377.485 0.877177
\(58\) 0 0
\(59\) 221.666 0.489126 0.244563 0.969633i \(-0.421356\pi\)
0.244563 + 0.969633i \(0.421356\pi\)
\(60\) 0 0
\(61\) 597.687 1.25452 0.627262 0.778808i \(-0.284175\pi\)
0.627262 + 0.778808i \(0.284175\pi\)
\(62\) 0 0
\(63\) 411.074 0.822070
\(64\) 0 0
\(65\) −65.0000 −0.124035
\(66\) 0 0
\(67\) 310.503 0.566180 0.283090 0.959093i \(-0.408641\pi\)
0.283090 + 0.959093i \(0.408641\pi\)
\(68\) 0 0
\(69\) 248.816 0.434115
\(70\) 0 0
\(71\) 310.334 0.518731 0.259366 0.965779i \(-0.416487\pi\)
0.259366 + 0.965779i \(0.416487\pi\)
\(72\) 0 0
\(73\) −486.859 −0.780583 −0.390292 0.920691i \(-0.627626\pi\)
−0.390292 + 0.920691i \(0.627626\pi\)
\(74\) 0 0
\(75\) 83.9725 0.129284
\(76\) 0 0
\(77\) 144.165 0.213366
\(78\) 0 0
\(79\) −52.3501 −0.0745550 −0.0372775 0.999305i \(-0.511869\pi\)
−0.0372775 + 0.999305i \(0.511869\pi\)
\(80\) 0 0
\(81\) −57.5703 −0.0789716
\(82\) 0 0
\(83\) 1125.85 1.48889 0.744444 0.667685i \(-0.232715\pi\)
0.744444 + 0.667685i \(0.232715\pi\)
\(84\) 0 0
\(85\) 525.123 0.670089
\(86\) 0 0
\(87\) −758.761 −0.935031
\(88\) 0 0
\(89\) −112.466 −0.133948 −0.0669740 0.997755i \(-0.521334\pi\)
−0.0669740 + 0.997755i \(0.521334\pi\)
\(90\) 0 0
\(91\) −339.994 −0.391660
\(92\) 0 0
\(93\) 689.780 0.769106
\(94\) 0 0
\(95\) −561.917 −0.606858
\(96\) 0 0
\(97\) 159.963 0.167441 0.0837203 0.996489i \(-0.473320\pi\)
0.0837203 + 0.996489i \(0.473320\pi\)
\(98\) 0 0
\(99\) 86.6411 0.0879572
\(100\) 0 0
\(101\) 408.663 0.402609 0.201304 0.979529i \(-0.435482\pi\)
0.201304 + 0.979529i \(0.435482\pi\)
\(102\) 0 0
\(103\) 1534.30 1.46776 0.733881 0.679278i \(-0.237707\pi\)
0.733881 + 0.679278i \(0.237707\pi\)
\(104\) 0 0
\(105\) 439.233 0.408236
\(106\) 0 0
\(107\) 35.7876 0.0323338 0.0161669 0.999869i \(-0.494854\pi\)
0.0161669 + 0.999869i \(0.494854\pi\)
\(108\) 0 0
\(109\) 717.265 0.630289 0.315144 0.949044i \(-0.397947\pi\)
0.315144 + 0.949044i \(0.397947\pi\)
\(110\) 0 0
\(111\) 1005.94 0.860176
\(112\) 0 0
\(113\) −901.835 −0.750774 −0.375387 0.926868i \(-0.622490\pi\)
−0.375387 + 0.926868i \(0.622490\pi\)
\(114\) 0 0
\(115\) −370.383 −0.300334
\(116\) 0 0
\(117\) −204.331 −0.161457
\(118\) 0 0
\(119\) 2746.75 2.11592
\(120\) 0 0
\(121\) −1300.61 −0.977171
\(122\) 0 0
\(123\) −1397.98 −1.02481
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −1763.63 −1.23226 −0.616129 0.787645i \(-0.711300\pi\)
−0.616129 + 0.787645i \(0.711300\pi\)
\(128\) 0 0
\(129\) 1407.18 0.960431
\(130\) 0 0
\(131\) −415.497 −0.277115 −0.138558 0.990354i \(-0.544247\pi\)
−0.138558 + 0.990354i \(0.544247\pi\)
\(132\) 0 0
\(133\) −2939.21 −1.91625
\(134\) 0 0
\(135\) 717.424 0.457378
\(136\) 0 0
\(137\) 574.527 0.358286 0.179143 0.983823i \(-0.442668\pi\)
0.179143 + 0.983823i \(0.442668\pi\)
\(138\) 0 0
\(139\) −2136.85 −1.30392 −0.651962 0.758251i \(-0.726054\pi\)
−0.651962 + 0.758251i \(0.726054\pi\)
\(140\) 0 0
\(141\) −1409.36 −0.841768
\(142\) 0 0
\(143\) −71.6598 −0.0419056
\(144\) 0 0
\(145\) 1129.48 0.646884
\(146\) 0 0
\(147\) 1145.38 0.642651
\(148\) 0 0
\(149\) −222.295 −0.122222 −0.0611111 0.998131i \(-0.519464\pi\)
−0.0611111 + 0.998131i \(0.519464\pi\)
\(150\) 0 0
\(151\) −1185.07 −0.638674 −0.319337 0.947641i \(-0.603460\pi\)
−0.319337 + 0.947641i \(0.603460\pi\)
\(152\) 0 0
\(153\) 1650.76 0.872259
\(154\) 0 0
\(155\) −1026.79 −0.532091
\(156\) 0 0
\(157\) 2797.58 1.42211 0.711056 0.703136i \(-0.248217\pi\)
0.711056 + 0.703136i \(0.248217\pi\)
\(158\) 0 0
\(159\) 2202.72 1.09866
\(160\) 0 0
\(161\) −1937.36 −0.948355
\(162\) 0 0
\(163\) −1556.22 −0.747808 −0.373904 0.927467i \(-0.621981\pi\)
−0.373904 + 0.927467i \(0.621981\pi\)
\(164\) 0 0
\(165\) 92.5762 0.0436791
\(166\) 0 0
\(167\) 2743.80 1.27139 0.635693 0.771942i \(-0.280714\pi\)
0.635693 + 0.771942i \(0.280714\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) −1766.42 −0.789951
\(172\) 0 0
\(173\) 3563.32 1.56598 0.782989 0.622035i \(-0.213694\pi\)
0.782989 + 0.622035i \(0.213694\pi\)
\(174\) 0 0
\(175\) −653.835 −0.282430
\(176\) 0 0
\(177\) 744.553 0.316181
\(178\) 0 0
\(179\) −481.054 −0.200870 −0.100435 0.994944i \(-0.532023\pi\)
−0.100435 + 0.994944i \(0.532023\pi\)
\(180\) 0 0
\(181\) 4736.18 1.94496 0.972479 0.232989i \(-0.0748505\pi\)
0.972479 + 0.232989i \(0.0748505\pi\)
\(182\) 0 0
\(183\) 2007.57 0.810951
\(184\) 0 0
\(185\) −1497.42 −0.595096
\(186\) 0 0
\(187\) 578.926 0.226392
\(188\) 0 0
\(189\) 3752.61 1.44425
\(190\) 0 0
\(191\) −1700.58 −0.644238 −0.322119 0.946699i \(-0.604395\pi\)
−0.322119 + 0.946699i \(0.604395\pi\)
\(192\) 0 0
\(193\) −1455.94 −0.543009 −0.271505 0.962437i \(-0.587521\pi\)
−0.271505 + 0.962437i \(0.587521\pi\)
\(194\) 0 0
\(195\) −218.328 −0.0801786
\(196\) 0 0
\(197\) −3617.28 −1.30822 −0.654112 0.756397i \(-0.726958\pi\)
−0.654112 + 0.756397i \(0.726958\pi\)
\(198\) 0 0
\(199\) 3445.88 1.22750 0.613749 0.789501i \(-0.289661\pi\)
0.613749 + 0.789501i \(0.289661\pi\)
\(200\) 0 0
\(201\) 1042.95 0.365990
\(202\) 0 0
\(203\) 5907.94 2.04264
\(204\) 0 0
\(205\) 2081.01 0.708996
\(206\) 0 0
\(207\) −1164.32 −0.390947
\(208\) 0 0
\(209\) −619.491 −0.205029
\(210\) 0 0
\(211\) 4173.44 1.36166 0.680832 0.732440i \(-0.261618\pi\)
0.680832 + 0.732440i \(0.261618\pi\)
\(212\) 0 0
\(213\) 1042.38 0.335318
\(214\) 0 0
\(215\) −2094.71 −0.664456
\(216\) 0 0
\(217\) −5370.83 −1.68017
\(218\) 0 0
\(219\) −1635.31 −0.504585
\(220\) 0 0
\(221\) −1365.32 −0.415572
\(222\) 0 0
\(223\) −1103.24 −0.331292 −0.165646 0.986185i \(-0.552971\pi\)
−0.165646 + 0.986185i \(0.552971\pi\)
\(224\) 0 0
\(225\) −392.945 −0.116428
\(226\) 0 0
\(227\) −2494.39 −0.729333 −0.364667 0.931138i \(-0.618817\pi\)
−0.364667 + 0.931138i \(0.618817\pi\)
\(228\) 0 0
\(229\) −2443.33 −0.705066 −0.352533 0.935799i \(-0.614680\pi\)
−0.352533 + 0.935799i \(0.614680\pi\)
\(230\) 0 0
\(231\) 484.236 0.137924
\(232\) 0 0
\(233\) 6343.70 1.78365 0.891823 0.452385i \(-0.149427\pi\)
0.891823 + 0.452385i \(0.149427\pi\)
\(234\) 0 0
\(235\) 2097.94 0.582361
\(236\) 0 0
\(237\) −175.839 −0.0481939
\(238\) 0 0
\(239\) −2939.07 −0.795449 −0.397725 0.917505i \(-0.630200\pi\)
−0.397725 + 0.917505i \(0.630200\pi\)
\(240\) 0 0
\(241\) −4466.81 −1.19391 −0.596955 0.802275i \(-0.703623\pi\)
−0.596955 + 0.802275i \(0.703623\pi\)
\(242\) 0 0
\(243\) 3680.72 0.971679
\(244\) 0 0
\(245\) −1705.00 −0.444606
\(246\) 0 0
\(247\) 1460.99 0.376357
\(248\) 0 0
\(249\) 3781.60 0.962448
\(250\) 0 0
\(251\) 5118.30 1.28711 0.643554 0.765400i \(-0.277459\pi\)
0.643554 + 0.765400i \(0.277459\pi\)
\(252\) 0 0
\(253\) −408.332 −0.101469
\(254\) 0 0
\(255\) 1763.83 0.433159
\(256\) 0 0
\(257\) 747.695 0.181478 0.0907392 0.995875i \(-0.471077\pi\)
0.0907392 + 0.995875i \(0.471077\pi\)
\(258\) 0 0
\(259\) −7832.54 −1.87911
\(260\) 0 0
\(261\) 3550.58 0.842052
\(262\) 0 0
\(263\) 2135.10 0.500592 0.250296 0.968169i \(-0.419472\pi\)
0.250296 + 0.968169i \(0.419472\pi\)
\(264\) 0 0
\(265\) −3278.93 −0.760087
\(266\) 0 0
\(267\) −377.762 −0.0865868
\(268\) 0 0
\(269\) −780.553 −0.176919 −0.0884594 0.996080i \(-0.528194\pi\)
−0.0884594 + 0.996080i \(0.528194\pi\)
\(270\) 0 0
\(271\) 5412.95 1.21333 0.606667 0.794956i \(-0.292506\pi\)
0.606667 + 0.794956i \(0.292506\pi\)
\(272\) 0 0
\(273\) −1142.01 −0.253177
\(274\) 0 0
\(275\) −137.807 −0.0302185
\(276\) 0 0
\(277\) −1738.26 −0.377047 −0.188524 0.982069i \(-0.560370\pi\)
−0.188524 + 0.982069i \(0.560370\pi\)
\(278\) 0 0
\(279\) −3227.79 −0.692626
\(280\) 0 0
\(281\) 3923.08 0.832851 0.416426 0.909170i \(-0.363283\pi\)
0.416426 + 0.909170i \(0.363283\pi\)
\(282\) 0 0
\(283\) −356.775 −0.0749401 −0.0374701 0.999298i \(-0.511930\pi\)
−0.0374701 + 0.999298i \(0.511930\pi\)
\(284\) 0 0
\(285\) −1887.42 −0.392285
\(286\) 0 0
\(287\) 10885.1 2.23877
\(288\) 0 0
\(289\) 6117.16 1.24510
\(290\) 0 0
\(291\) 537.298 0.108237
\(292\) 0 0
\(293\) −6936.33 −1.38302 −0.691510 0.722367i \(-0.743054\pi\)
−0.691510 + 0.722367i \(0.743054\pi\)
\(294\) 0 0
\(295\) −1108.33 −0.218744
\(296\) 0 0
\(297\) 790.930 0.154527
\(298\) 0 0
\(299\) 962.997 0.186259
\(300\) 0 0
\(301\) −10956.8 −2.09813
\(302\) 0 0
\(303\) 1372.66 0.260254
\(304\) 0 0
\(305\) −2988.44 −0.561041
\(306\) 0 0
\(307\) 3919.02 0.728568 0.364284 0.931288i \(-0.381314\pi\)
0.364284 + 0.931288i \(0.381314\pi\)
\(308\) 0 0
\(309\) 5153.58 0.948792
\(310\) 0 0
\(311\) −1817.13 −0.331319 −0.165659 0.986183i \(-0.552975\pi\)
−0.165659 + 0.986183i \(0.552975\pi\)
\(312\) 0 0
\(313\) 1464.09 0.264394 0.132197 0.991223i \(-0.457797\pi\)
0.132197 + 0.991223i \(0.457797\pi\)
\(314\) 0 0
\(315\) −2055.37 −0.367641
\(316\) 0 0
\(317\) 4610.16 0.816821 0.408411 0.912798i \(-0.366083\pi\)
0.408411 + 0.912798i \(0.366083\pi\)
\(318\) 0 0
\(319\) 1245.20 0.218552
\(320\) 0 0
\(321\) 120.207 0.0209012
\(322\) 0 0
\(323\) −11803.0 −2.03324
\(324\) 0 0
\(325\) 325.000 0.0554700
\(326\) 0 0
\(327\) 2409.22 0.407432
\(328\) 0 0
\(329\) 10973.7 1.83890
\(330\) 0 0
\(331\) −2243.30 −0.372516 −0.186258 0.982501i \(-0.559636\pi\)
−0.186258 + 0.982501i \(0.559636\pi\)
\(332\) 0 0
\(333\) −4707.24 −0.774640
\(334\) 0 0
\(335\) −1552.52 −0.253203
\(336\) 0 0
\(337\) −6004.40 −0.970566 −0.485283 0.874357i \(-0.661283\pi\)
−0.485283 + 0.874357i \(0.661283\pi\)
\(338\) 0 0
\(339\) −3029.17 −0.485316
\(340\) 0 0
\(341\) −1132.00 −0.179769
\(342\) 0 0
\(343\) 52.3068 0.00823411
\(344\) 0 0
\(345\) −1244.08 −0.194142
\(346\) 0 0
\(347\) −1757.95 −0.271964 −0.135982 0.990711i \(-0.543419\pi\)
−0.135982 + 0.990711i \(0.543419\pi\)
\(348\) 0 0
\(349\) −5774.74 −0.885715 −0.442857 0.896592i \(-0.646035\pi\)
−0.442857 + 0.896592i \(0.646035\pi\)
\(350\) 0 0
\(351\) −1865.30 −0.283654
\(352\) 0 0
\(353\) 286.265 0.0431625 0.0215812 0.999767i \(-0.493130\pi\)
0.0215812 + 0.999767i \(0.493130\pi\)
\(354\) 0 0
\(355\) −1551.67 −0.231984
\(356\) 0 0
\(357\) 9226.05 1.36777
\(358\) 0 0
\(359\) 6004.87 0.882799 0.441399 0.897311i \(-0.354482\pi\)
0.441399 + 0.897311i \(0.354482\pi\)
\(360\) 0 0
\(361\) 5771.05 0.841383
\(362\) 0 0
\(363\) −4368.63 −0.631663
\(364\) 0 0
\(365\) 2434.30 0.349087
\(366\) 0 0
\(367\) 3793.70 0.539590 0.269795 0.962918i \(-0.413044\pi\)
0.269795 + 0.962918i \(0.413044\pi\)
\(368\) 0 0
\(369\) 6541.79 0.922905
\(370\) 0 0
\(371\) −17151.0 −2.40010
\(372\) 0 0
\(373\) 8923.03 1.23865 0.619326 0.785134i \(-0.287406\pi\)
0.619326 + 0.785134i \(0.287406\pi\)
\(374\) 0 0
\(375\) −419.862 −0.0578176
\(376\) 0 0
\(377\) −2936.65 −0.401180
\(378\) 0 0
\(379\) 10977.5 1.48781 0.743903 0.668287i \(-0.232972\pi\)
0.743903 + 0.668287i \(0.232972\pi\)
\(380\) 0 0
\(381\) −5923.86 −0.796557
\(382\) 0 0
\(383\) −10570.4 −1.41024 −0.705121 0.709087i \(-0.749107\pi\)
−0.705121 + 0.709087i \(0.749107\pi\)
\(384\) 0 0
\(385\) −720.826 −0.0954200
\(386\) 0 0
\(387\) −6584.85 −0.864926
\(388\) 0 0
\(389\) 517.213 0.0674132 0.0337066 0.999432i \(-0.489269\pi\)
0.0337066 + 0.999432i \(0.489269\pi\)
\(390\) 0 0
\(391\) −7779.87 −1.00625
\(392\) 0 0
\(393\) −1395.61 −0.179133
\(394\) 0 0
\(395\) 261.750 0.0333420
\(396\) 0 0
\(397\) 6979.33 0.882323 0.441162 0.897428i \(-0.354567\pi\)
0.441162 + 0.897428i \(0.354567\pi\)
\(398\) 0 0
\(399\) −9872.51 −1.23871
\(400\) 0 0
\(401\) 3751.66 0.467204 0.233602 0.972332i \(-0.424949\pi\)
0.233602 + 0.972332i \(0.424949\pi\)
\(402\) 0 0
\(403\) 2669.67 0.329989
\(404\) 0 0
\(405\) 287.851 0.0353172
\(406\) 0 0
\(407\) −1650.85 −0.201055
\(408\) 0 0
\(409\) −5059.92 −0.611729 −0.305864 0.952075i \(-0.598945\pi\)
−0.305864 + 0.952075i \(0.598945\pi\)
\(410\) 0 0
\(411\) 1929.78 0.231603
\(412\) 0 0
\(413\) −5797.31 −0.690719
\(414\) 0 0
\(415\) −5629.23 −0.665851
\(416\) 0 0
\(417\) −7177.48 −0.842884
\(418\) 0 0
\(419\) −1758.72 −0.205057 −0.102529 0.994730i \(-0.532693\pi\)
−0.102529 + 0.994730i \(0.532693\pi\)
\(420\) 0 0
\(421\) 3013.57 0.348866 0.174433 0.984669i \(-0.444191\pi\)
0.174433 + 0.984669i \(0.444191\pi\)
\(422\) 0 0
\(423\) 6595.01 0.758063
\(424\) 0 0
\(425\) −2625.61 −0.299673
\(426\) 0 0
\(427\) −15631.6 −1.77158
\(428\) 0 0
\(429\) −240.698 −0.0270886
\(430\) 0 0
\(431\) −9218.86 −1.03029 −0.515147 0.857102i \(-0.672263\pi\)
−0.515147 + 0.857102i \(0.672263\pi\)
\(432\) 0 0
\(433\) −14908.9 −1.65468 −0.827340 0.561701i \(-0.810147\pi\)
−0.827340 + 0.561701i \(0.810147\pi\)
\(434\) 0 0
\(435\) 3793.81 0.418159
\(436\) 0 0
\(437\) 8325.00 0.911301
\(438\) 0 0
\(439\) 14586.5 1.58582 0.792910 0.609339i \(-0.208565\pi\)
0.792910 + 0.609339i \(0.208565\pi\)
\(440\) 0 0
\(441\) −5359.77 −0.578746
\(442\) 0 0
\(443\) −1461.45 −0.156740 −0.0783698 0.996924i \(-0.524971\pi\)
−0.0783698 + 0.996924i \(0.524971\pi\)
\(444\) 0 0
\(445\) 562.330 0.0599034
\(446\) 0 0
\(447\) −746.667 −0.0790070
\(448\) 0 0
\(449\) −580.289 −0.0609923 −0.0304961 0.999535i \(-0.509709\pi\)
−0.0304961 + 0.999535i \(0.509709\pi\)
\(450\) 0 0
\(451\) 2294.23 0.239537
\(452\) 0 0
\(453\) −3980.54 −0.412852
\(454\) 0 0
\(455\) 1699.97 0.175156
\(456\) 0 0
\(457\) −21.7638 −0.00222772 −0.00111386 0.999999i \(-0.500355\pi\)
−0.00111386 + 0.999999i \(0.500355\pi\)
\(458\) 0 0
\(459\) 15069.4 1.53242
\(460\) 0 0
\(461\) −14548.5 −1.46983 −0.734917 0.678157i \(-0.762779\pi\)
−0.734917 + 0.678157i \(0.762779\pi\)
\(462\) 0 0
\(463\) −5988.97 −0.601147 −0.300574 0.953759i \(-0.597178\pi\)
−0.300574 + 0.953759i \(0.597178\pi\)
\(464\) 0 0
\(465\) −3448.90 −0.343955
\(466\) 0 0
\(467\) 6294.85 0.623749 0.311875 0.950123i \(-0.399043\pi\)
0.311875 + 0.950123i \(0.399043\pi\)
\(468\) 0 0
\(469\) −8120.72 −0.799531
\(470\) 0 0
\(471\) 9396.80 0.919282
\(472\) 0 0
\(473\) −2309.33 −0.224489
\(474\) 0 0
\(475\) 2809.59 0.271395
\(476\) 0 0
\(477\) −10307.5 −0.989409
\(478\) 0 0
\(479\) −5353.36 −0.510649 −0.255325 0.966855i \(-0.582182\pi\)
−0.255325 + 0.966855i \(0.582182\pi\)
\(480\) 0 0
\(481\) 3893.30 0.369063
\(482\) 0 0
\(483\) −6507.39 −0.613036
\(484\) 0 0
\(485\) −799.813 −0.0748817
\(486\) 0 0
\(487\) 15339.9 1.42735 0.713673 0.700479i \(-0.247030\pi\)
0.713673 + 0.700479i \(0.247030\pi\)
\(488\) 0 0
\(489\) −5227.19 −0.483398
\(490\) 0 0
\(491\) −16288.5 −1.49713 −0.748563 0.663063i \(-0.769256\pi\)
−0.748563 + 0.663063i \(0.769256\pi\)
\(492\) 0 0
\(493\) 23724.6 2.16735
\(494\) 0 0
\(495\) −433.206 −0.0393356
\(496\) 0 0
\(497\) −8116.30 −0.732526
\(498\) 0 0
\(499\) −5857.06 −0.525447 −0.262723 0.964871i \(-0.584621\pi\)
−0.262723 + 0.964871i \(0.584621\pi\)
\(500\) 0 0
\(501\) 9216.14 0.821850
\(502\) 0 0
\(503\) 4444.45 0.393972 0.196986 0.980406i \(-0.436885\pi\)
0.196986 + 0.980406i \(0.436885\pi\)
\(504\) 0 0
\(505\) −2043.31 −0.180052
\(506\) 0 0
\(507\) 567.654 0.0497246
\(508\) 0 0
\(509\) −19485.0 −1.69677 −0.848385 0.529379i \(-0.822425\pi\)
−0.848385 + 0.529379i \(0.822425\pi\)
\(510\) 0 0
\(511\) 12733.0 1.10230
\(512\) 0 0
\(513\) −16125.3 −1.38782
\(514\) 0 0
\(515\) −7671.52 −0.656403
\(516\) 0 0
\(517\) 2312.90 0.196753
\(518\) 0 0
\(519\) 11968.8 1.01228
\(520\) 0 0
\(521\) 12935.7 1.08776 0.543879 0.839164i \(-0.316955\pi\)
0.543879 + 0.839164i \(0.316955\pi\)
\(522\) 0 0
\(523\) −10562.9 −0.883142 −0.441571 0.897226i \(-0.645579\pi\)
−0.441571 + 0.897226i \(0.645579\pi\)
\(524\) 0 0
\(525\) −2196.17 −0.182569
\(526\) 0 0
\(527\) −21567.7 −1.78274
\(528\) 0 0
\(529\) −6679.64 −0.548997
\(530\) 0 0
\(531\) −3484.10 −0.284740
\(532\) 0 0
\(533\) −5410.63 −0.439701
\(534\) 0 0
\(535\) −178.938 −0.0144601
\(536\) 0 0
\(537\) −1615.81 −0.129846
\(538\) 0 0
\(539\) −1879.69 −0.150212
\(540\) 0 0
\(541\) −13076.9 −1.03922 −0.519610 0.854403i \(-0.673923\pi\)
−0.519610 + 0.854403i \(0.673923\pi\)
\(542\) 0 0
\(543\) 15908.4 1.25726
\(544\) 0 0
\(545\) −3586.32 −0.281874
\(546\) 0 0
\(547\) 12729.9 0.995049 0.497524 0.867450i \(-0.334243\pi\)
0.497524 + 0.867450i \(0.334243\pi\)
\(548\) 0 0
\(549\) −9394.33 −0.730310
\(550\) 0 0
\(551\) −25387.0 −1.96283
\(552\) 0 0
\(553\) 1369.13 0.105283
\(554\) 0 0
\(555\) −5029.70 −0.384682
\(556\) 0 0
\(557\) 14621.7 1.11228 0.556142 0.831087i \(-0.312281\pi\)
0.556142 + 0.831087i \(0.312281\pi\)
\(558\) 0 0
\(559\) 5446.25 0.412078
\(560\) 0 0
\(561\) 1944.55 0.146344
\(562\) 0 0
\(563\) −11104.7 −0.831271 −0.415636 0.909531i \(-0.636441\pi\)
−0.415636 + 0.909531i \(0.636441\pi\)
\(564\) 0 0
\(565\) 4509.17 0.335756
\(566\) 0 0
\(567\) 1505.66 0.111520
\(568\) 0 0
\(569\) −26150.1 −1.92666 −0.963331 0.268316i \(-0.913533\pi\)
−0.963331 + 0.268316i \(0.913533\pi\)
\(570\) 0 0
\(571\) 6762.85 0.495651 0.247825 0.968805i \(-0.420284\pi\)
0.247825 + 0.968805i \(0.420284\pi\)
\(572\) 0 0
\(573\) −5712.07 −0.416449
\(574\) 0 0
\(575\) 1851.92 0.134314
\(576\) 0 0
\(577\) −58.4468 −0.00421693 −0.00210847 0.999998i \(-0.500671\pi\)
−0.00210847 + 0.999998i \(0.500671\pi\)
\(578\) 0 0
\(579\) −4890.35 −0.351012
\(580\) 0 0
\(581\) −29444.7 −2.10253
\(582\) 0 0
\(583\) −3614.88 −0.256798
\(584\) 0 0
\(585\) 1021.66 0.0722057
\(586\) 0 0
\(587\) −11211.0 −0.788290 −0.394145 0.919048i \(-0.628959\pi\)
−0.394145 + 0.919048i \(0.628959\pi\)
\(588\) 0 0
\(589\) 23078.9 1.61452
\(590\) 0 0
\(591\) −12150.1 −0.845663
\(592\) 0 0
\(593\) 5124.35 0.354860 0.177430 0.984133i \(-0.443222\pi\)
0.177430 + 0.984133i \(0.443222\pi\)
\(594\) 0 0
\(595\) −13733.7 −0.946267
\(596\) 0 0
\(597\) 11574.4 0.793479
\(598\) 0 0
\(599\) 9235.37 0.629961 0.314981 0.949098i \(-0.398002\pi\)
0.314981 + 0.949098i \(0.398002\pi\)
\(600\) 0 0
\(601\) −26519.4 −1.79992 −0.899958 0.435977i \(-0.856403\pi\)
−0.899958 + 0.435977i \(0.856403\pi\)
\(602\) 0 0
\(603\) −4880.43 −0.329596
\(604\) 0 0
\(605\) 6503.07 0.437004
\(606\) 0 0
\(607\) 8337.23 0.557492 0.278746 0.960365i \(-0.410081\pi\)
0.278746 + 0.960365i \(0.410081\pi\)
\(608\) 0 0
\(609\) 19844.2 1.32041
\(610\) 0 0
\(611\) −5454.66 −0.361165
\(612\) 0 0
\(613\) 7475.93 0.492578 0.246289 0.969196i \(-0.420789\pi\)
0.246289 + 0.969196i \(0.420789\pi\)
\(614\) 0 0
\(615\) 6989.91 0.458310
\(616\) 0 0
\(617\) 21101.5 1.37684 0.688422 0.725310i \(-0.258304\pi\)
0.688422 + 0.725310i \(0.258304\pi\)
\(618\) 0 0
\(619\) −19468.7 −1.26416 −0.632080 0.774903i \(-0.717799\pi\)
−0.632080 + 0.774903i \(0.717799\pi\)
\(620\) 0 0
\(621\) −10628.9 −0.686831
\(622\) 0 0
\(623\) 2941.37 0.189155
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −2080.81 −0.132535
\(628\) 0 0
\(629\) −31453.3 −1.99384
\(630\) 0 0
\(631\) 6405.28 0.404105 0.202052 0.979375i \(-0.435239\pi\)
0.202052 + 0.979375i \(0.435239\pi\)
\(632\) 0 0
\(633\) 14018.1 0.880208
\(634\) 0 0
\(635\) 8818.15 0.551083
\(636\) 0 0
\(637\) 4433.00 0.275733
\(638\) 0 0
\(639\) −4877.77 −0.301974
\(640\) 0 0
\(641\) −3794.20 −0.233794 −0.116897 0.993144i \(-0.537295\pi\)
−0.116897 + 0.993144i \(0.537295\pi\)
\(642\) 0 0
\(643\) 22637.5 1.38839 0.694196 0.719786i \(-0.255760\pi\)
0.694196 + 0.719786i \(0.255760\pi\)
\(644\) 0 0
\(645\) −7035.92 −0.429518
\(646\) 0 0
\(647\) 26719.3 1.62356 0.811780 0.583964i \(-0.198499\pi\)
0.811780 + 0.583964i \(0.198499\pi\)
\(648\) 0 0
\(649\) −1221.89 −0.0739033
\(650\) 0 0
\(651\) −18040.1 −1.08609
\(652\) 0 0
\(653\) 26866.7 1.61007 0.805036 0.593226i \(-0.202146\pi\)
0.805036 + 0.593226i \(0.202146\pi\)
\(654\) 0 0
\(655\) 2077.48 0.123930
\(656\) 0 0
\(657\) 7652.36 0.454409
\(658\) 0 0
\(659\) 14165.9 0.837368 0.418684 0.908132i \(-0.362491\pi\)
0.418684 + 0.908132i \(0.362491\pi\)
\(660\) 0 0
\(661\) −14186.8 −0.834799 −0.417399 0.908723i \(-0.637058\pi\)
−0.417399 + 0.908723i \(0.637058\pi\)
\(662\) 0 0
\(663\) −4585.97 −0.268634
\(664\) 0 0
\(665\) 14696.0 0.856975
\(666\) 0 0
\(667\) −16733.6 −0.971406
\(668\) 0 0
\(669\) −3705.66 −0.214154
\(670\) 0 0
\(671\) −3294.63 −0.189549
\(672\) 0 0
\(673\) 23199.0 1.32876 0.664380 0.747395i \(-0.268696\pi\)
0.664380 + 0.747395i \(0.268696\pi\)
\(674\) 0 0
\(675\) −3587.12 −0.204546
\(676\) 0 0
\(677\) 28477.3 1.61665 0.808324 0.588738i \(-0.200375\pi\)
0.808324 + 0.588738i \(0.200375\pi\)
\(678\) 0 0
\(679\) −4183.56 −0.236451
\(680\) 0 0
\(681\) −8378.42 −0.471456
\(682\) 0 0
\(683\) 29441.0 1.64938 0.824691 0.565583i \(-0.191349\pi\)
0.824691 + 0.565583i \(0.191349\pi\)
\(684\) 0 0
\(685\) −2872.63 −0.160230
\(686\) 0 0
\(687\) −8206.91 −0.455769
\(688\) 0 0
\(689\) 8525.21 0.471386
\(690\) 0 0
\(691\) −10587.3 −0.582863 −0.291431 0.956592i \(-0.594132\pi\)
−0.291431 + 0.956592i \(0.594132\pi\)
\(692\) 0 0
\(693\) −2265.96 −0.124209
\(694\) 0 0
\(695\) 10684.3 0.583133
\(696\) 0 0
\(697\) 43711.5 2.37545
\(698\) 0 0
\(699\) 21307.8 1.15298
\(700\) 0 0
\(701\) −2837.65 −0.152891 −0.0764456 0.997074i \(-0.524357\pi\)
−0.0764456 + 0.997074i \(0.524357\pi\)
\(702\) 0 0
\(703\) 33657.1 1.80569
\(704\) 0 0
\(705\) 7046.79 0.376450
\(706\) 0 0
\(707\) −10687.9 −0.568544
\(708\) 0 0
\(709\) 20574.7 1.08984 0.544921 0.838487i \(-0.316560\pi\)
0.544921 + 0.838487i \(0.316560\pi\)
\(710\) 0 0
\(711\) 822.828 0.0434015
\(712\) 0 0
\(713\) 15212.3 0.799026
\(714\) 0 0
\(715\) 358.299 0.0187407
\(716\) 0 0
\(717\) −9872.03 −0.514195
\(718\) 0 0
\(719\) 23117.7 1.19909 0.599544 0.800342i \(-0.295349\pi\)
0.599544 + 0.800342i \(0.295349\pi\)
\(720\) 0 0
\(721\) −40127.3 −2.07270
\(722\) 0 0
\(723\) −15003.6 −0.771768
\(724\) 0 0
\(725\) −5647.39 −0.289295
\(726\) 0 0
\(727\) 34214.3 1.74545 0.872723 0.488216i \(-0.162352\pi\)
0.872723 + 0.488216i \(0.162352\pi\)
\(728\) 0 0
\(729\) 13917.6 0.707085
\(730\) 0 0
\(731\) −43999.2 −2.22622
\(732\) 0 0
\(733\) −9083.99 −0.457742 −0.228871 0.973457i \(-0.573503\pi\)
−0.228871 + 0.973457i \(0.573503\pi\)
\(734\) 0 0
\(735\) −5726.92 −0.287402
\(736\) 0 0
\(737\) −1711.59 −0.0855456
\(738\) 0 0
\(739\) 13479.4 0.670971 0.335485 0.942045i \(-0.391100\pi\)
0.335485 + 0.942045i \(0.391100\pi\)
\(740\) 0 0
\(741\) 4907.30 0.243285
\(742\) 0 0
\(743\) −27595.0 −1.36253 −0.681266 0.732036i \(-0.738570\pi\)
−0.681266 + 0.732036i \(0.738570\pi\)
\(744\) 0 0
\(745\) 1111.48 0.0546595
\(746\) 0 0
\(747\) −17695.8 −0.866742
\(748\) 0 0
\(749\) −935.966 −0.0456602
\(750\) 0 0
\(751\) −1384.29 −0.0672618 −0.0336309 0.999434i \(-0.510707\pi\)
−0.0336309 + 0.999434i \(0.510707\pi\)
\(752\) 0 0
\(753\) 17191.9 0.832013
\(754\) 0 0
\(755\) 5925.36 0.285624
\(756\) 0 0
\(757\) −16314.4 −0.783301 −0.391650 0.920114i \(-0.628096\pi\)
−0.391650 + 0.920114i \(0.628096\pi\)
\(758\) 0 0
\(759\) −1371.55 −0.0655916
\(760\) 0 0
\(761\) 1939.46 0.0923856 0.0461928 0.998933i \(-0.485291\pi\)
0.0461928 + 0.998933i \(0.485291\pi\)
\(762\) 0 0
\(763\) −18758.9 −0.890063
\(764\) 0 0
\(765\) −8253.78 −0.390086
\(766\) 0 0
\(767\) 2881.65 0.135659
\(768\) 0 0
\(769\) −11834.6 −0.554961 −0.277480 0.960731i \(-0.589499\pi\)
−0.277480 + 0.960731i \(0.589499\pi\)
\(770\) 0 0
\(771\) 2511.43 0.117311
\(772\) 0 0
\(773\) −33715.5 −1.56878 −0.784388 0.620271i \(-0.787023\pi\)
−0.784388 + 0.620271i \(0.787023\pi\)
\(774\) 0 0
\(775\) 5133.97 0.237958
\(776\) 0 0
\(777\) −26308.7 −1.21470
\(778\) 0 0
\(779\) −46774.3 −2.15130
\(780\) 0 0
\(781\) −1710.65 −0.0783764
\(782\) 0 0
\(783\) 32412.6 1.47935
\(784\) 0 0
\(785\) −13987.9 −0.635987
\(786\) 0 0
\(787\) 25730.6 1.16543 0.582716 0.812676i \(-0.301990\pi\)
0.582716 + 0.812676i \(0.301990\pi\)
\(788\) 0 0
\(789\) 7171.57 0.323593
\(790\) 0 0
\(791\) 23586.0 1.06021
\(792\) 0 0
\(793\) 7769.94 0.347943
\(794\) 0 0
\(795\) −11013.6 −0.491336
\(796\) 0 0
\(797\) 19638.7 0.872823 0.436412 0.899747i \(-0.356249\pi\)
0.436412 + 0.899747i \(0.356249\pi\)
\(798\) 0 0
\(799\) 44067.2 1.95117
\(800\) 0 0
\(801\) 1767.72 0.0779766
\(802\) 0 0
\(803\) 2683.71 0.117940
\(804\) 0 0
\(805\) 9686.79 0.424117
\(806\) 0 0
\(807\) −2621.80 −0.114364
\(808\) 0 0
\(809\) 6908.35 0.300228 0.150114 0.988669i \(-0.452036\pi\)
0.150114 + 0.988669i \(0.452036\pi\)
\(810\) 0 0
\(811\) −11961.9 −0.517929 −0.258964 0.965887i \(-0.583381\pi\)
−0.258964 + 0.965887i \(0.583381\pi\)
\(812\) 0 0
\(813\) 18181.6 0.784324
\(814\) 0 0
\(815\) 7781.11 0.334430
\(816\) 0 0
\(817\) 47082.2 2.01615
\(818\) 0 0
\(819\) 5343.96 0.228001
\(820\) 0 0
\(821\) 44644.7 1.89782 0.948909 0.315549i \(-0.102189\pi\)
0.948909 + 0.315549i \(0.102189\pi\)
\(822\) 0 0
\(823\) −46052.2 −1.95052 −0.975260 0.221063i \(-0.929047\pi\)
−0.975260 + 0.221063i \(0.929047\pi\)
\(824\) 0 0
\(825\) −462.881 −0.0195339
\(826\) 0 0
\(827\) 24966.6 1.04979 0.524894 0.851168i \(-0.324105\pi\)
0.524894 + 0.851168i \(0.324105\pi\)
\(828\) 0 0
\(829\) 1562.61 0.0654665 0.0327333 0.999464i \(-0.489579\pi\)
0.0327333 + 0.999464i \(0.489579\pi\)
\(830\) 0 0
\(831\) −5838.65 −0.243731
\(832\) 0 0
\(833\) −35813.4 −1.48963
\(834\) 0 0
\(835\) −13719.0 −0.568581
\(836\) 0 0
\(837\) −29465.9 −1.21683
\(838\) 0 0
\(839\) 13249.3 0.545191 0.272596 0.962129i \(-0.412118\pi\)
0.272596 + 0.962129i \(0.412118\pi\)
\(840\) 0 0
\(841\) 26639.9 1.09229
\(842\) 0 0
\(843\) 13177.2 0.538372
\(844\) 0 0
\(845\) −845.000 −0.0344010
\(846\) 0 0
\(847\) 34015.5 1.37991
\(848\) 0 0
\(849\) −1198.37 −0.0484428
\(850\) 0 0
\(851\) 22184.8 0.893639
\(852\) 0 0
\(853\) 39445.1 1.58332 0.791662 0.610959i \(-0.209216\pi\)
0.791662 + 0.610959i \(0.209216\pi\)
\(854\) 0 0
\(855\) 8832.10 0.353277
\(856\) 0 0
\(857\) 14494.7 0.577749 0.288874 0.957367i \(-0.406719\pi\)
0.288874 + 0.957367i \(0.406719\pi\)
\(858\) 0 0
\(859\) −22349.5 −0.887724 −0.443862 0.896095i \(-0.646392\pi\)
−0.443862 + 0.896095i \(0.646392\pi\)
\(860\) 0 0
\(861\) 36562.0 1.44719
\(862\) 0 0
\(863\) 12406.4 0.489360 0.244680 0.969604i \(-0.421317\pi\)
0.244680 + 0.969604i \(0.421317\pi\)
\(864\) 0 0
\(865\) −17816.6 −0.700327
\(866\) 0 0
\(867\) 20546.9 0.804856
\(868\) 0 0
\(869\) 288.569 0.0112647
\(870\) 0 0
\(871\) 4036.55 0.157030
\(872\) 0 0
\(873\) −2514.26 −0.0974740
\(874\) 0 0
\(875\) 3269.17 0.126307
\(876\) 0 0
\(877\) −28964.4 −1.11523 −0.557616 0.830099i \(-0.688284\pi\)
−0.557616 + 0.830099i \(0.688284\pi\)
\(878\) 0 0
\(879\) −23298.4 −0.894013
\(880\) 0 0
\(881\) 33358.6 1.27569 0.637844 0.770166i \(-0.279827\pi\)
0.637844 + 0.770166i \(0.279827\pi\)
\(882\) 0 0
\(883\) 17482.9 0.666303 0.333151 0.942873i \(-0.391888\pi\)
0.333151 + 0.942873i \(0.391888\pi\)
\(884\) 0 0
\(885\) −3722.76 −0.141400
\(886\) 0 0
\(887\) 39666.1 1.50153 0.750766 0.660568i \(-0.229685\pi\)
0.750766 + 0.660568i \(0.229685\pi\)
\(888\) 0 0
\(889\) 46124.9 1.74014
\(890\) 0 0
\(891\) 317.344 0.0119320
\(892\) 0 0
\(893\) −47154.9 −1.76705
\(894\) 0 0
\(895\) 2405.27 0.0898316
\(896\) 0 0
\(897\) 3234.61 0.120402
\(898\) 0 0
\(899\) −46389.7 −1.72100
\(900\) 0 0
\(901\) −68873.6 −2.54663
\(902\) 0 0
\(903\) −36802.6 −1.35627
\(904\) 0 0
\(905\) −23680.9 −0.869812
\(906\) 0 0
\(907\) 16181.4 0.592388 0.296194 0.955128i \(-0.404283\pi\)
0.296194 + 0.955128i \(0.404283\pi\)
\(908\) 0 0
\(909\) −6423.28 −0.234375
\(910\) 0 0
\(911\) −22957.0 −0.834906 −0.417453 0.908699i \(-0.637077\pi\)
−0.417453 + 0.908699i \(0.637077\pi\)
\(912\) 0 0
\(913\) −6206.00 −0.224960
\(914\) 0 0
\(915\) −10037.9 −0.362668
\(916\) 0 0
\(917\) 10866.6 0.391328
\(918\) 0 0
\(919\) 7028.37 0.252279 0.126140 0.992012i \(-0.459741\pi\)
0.126140 + 0.992012i \(0.459741\pi\)
\(920\) 0 0
\(921\) 13163.6 0.470961
\(922\) 0 0
\(923\) 4034.35 0.143870
\(924\) 0 0
\(925\) 7487.12 0.266135
\(926\) 0 0
\(927\) −24115.9 −0.854444
\(928\) 0 0
\(929\) 6014.14 0.212398 0.106199 0.994345i \(-0.466132\pi\)
0.106199 + 0.994345i \(0.466132\pi\)
\(930\) 0 0
\(931\) 38322.8 1.34906
\(932\) 0 0
\(933\) −6103.56 −0.214171
\(934\) 0 0
\(935\) −2894.63 −0.101246
\(936\) 0 0
\(937\) −35125.0 −1.22464 −0.612318 0.790612i \(-0.709763\pi\)
−0.612318 + 0.790612i \(0.709763\pi\)
\(938\) 0 0
\(939\) 4917.74 0.170910
\(940\) 0 0
\(941\) −22190.2 −0.768736 −0.384368 0.923180i \(-0.625581\pi\)
−0.384368 + 0.923180i \(0.625581\pi\)
\(942\) 0 0
\(943\) −30830.9 −1.06468
\(944\) 0 0
\(945\) −18763.1 −0.645886
\(946\) 0 0
\(947\) 43661.7 1.49822 0.749111 0.662445i \(-0.230481\pi\)
0.749111 + 0.662445i \(0.230481\pi\)
\(948\) 0 0
\(949\) −6329.17 −0.216495
\(950\) 0 0
\(951\) 15485.1 0.528010
\(952\) 0 0
\(953\) −11102.5 −0.377381 −0.188691 0.982037i \(-0.560424\pi\)
−0.188691 + 0.982037i \(0.560424\pi\)
\(954\) 0 0
\(955\) 8502.89 0.288112
\(956\) 0 0
\(957\) 4182.51 0.141276
\(958\) 0 0
\(959\) −15025.8 −0.505953
\(960\) 0 0
\(961\) 12381.3 0.415605
\(962\) 0 0
\(963\) −562.502 −0.0188228
\(964\) 0 0
\(965\) 7279.70 0.242841
\(966\) 0 0
\(967\) −36593.6 −1.21693 −0.608465 0.793581i \(-0.708214\pi\)
−0.608465 + 0.793581i \(0.708214\pi\)
\(968\) 0 0
\(969\) −39645.2 −1.31433
\(970\) 0 0
\(971\) −34303.3 −1.13372 −0.566861 0.823813i \(-0.691842\pi\)
−0.566861 + 0.823813i \(0.691842\pi\)
\(972\) 0 0
\(973\) 55886.0 1.84134
\(974\) 0 0
\(975\) 1091.64 0.0358570
\(976\) 0 0
\(977\) 14168.1 0.463948 0.231974 0.972722i \(-0.425482\pi\)
0.231974 + 0.972722i \(0.425482\pi\)
\(978\) 0 0
\(979\) 619.946 0.0202386
\(980\) 0 0
\(981\) −11273.8 −0.366917
\(982\) 0 0
\(983\) 49509.4 1.60641 0.803207 0.595700i \(-0.203125\pi\)
0.803207 + 0.595700i \(0.203125\pi\)
\(984\) 0 0
\(985\) 18086.4 0.585056
\(986\) 0 0
\(987\) 36859.5 1.18870
\(988\) 0 0
\(989\) 31033.8 0.997794
\(990\) 0 0
\(991\) −45392.1 −1.45502 −0.727511 0.686096i \(-0.759323\pi\)
−0.727511 + 0.686096i \(0.759323\pi\)
\(992\) 0 0
\(993\) −7535.01 −0.240802
\(994\) 0 0
\(995\) −17229.4 −0.548954
\(996\) 0 0
\(997\) 40408.9 1.28361 0.641807 0.766866i \(-0.278185\pi\)
0.641807 + 0.766866i \(0.278185\pi\)
\(998\) 0 0
\(999\) −42971.5 −1.36092
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.4.a.i.1.2 2
4.3 odd 2 130.4.a.d.1.1 2
12.11 even 2 1170.4.a.ba.1.2 2
20.3 even 4 650.4.b.l.599.3 4
20.7 even 4 650.4.b.l.599.2 4
20.19 odd 2 650.4.a.r.1.2 2
52.51 odd 2 1690.4.a.s.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.4.a.d.1.1 2 4.3 odd 2
650.4.a.r.1.2 2 20.19 odd 2
650.4.b.l.599.2 4 20.7 even 4
650.4.b.l.599.3 4 20.3 even 4
1040.4.a.i.1.2 2 1.1 even 1 trivial
1170.4.a.ba.1.2 2 12.11 even 2
1690.4.a.s.1.1 2 52.51 odd 2