gp: [N,k,chi] = [650,2,Mod(193,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([9, 7]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.193");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,2,-6,-2,0,-6,-6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 12 \zeta_{12} ζ 1 2 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 650 Z ) × \left(\mathbb{Z}/650\mathbb{Z}\right)^\times ( Z / 6 5 0 Z ) × .
n n n
27 27 2 7
301 301 3 0 1
χ ( n ) \chi(n) χ ( n )
ζ 12 3 \zeta_{12}^{3} ζ 1 2 3
ζ 12 \zeta_{12} ζ 1 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 4 + 6 T 3 3 + 18 T 3 2 + 36 T 3 + 36 T_{3}^{4} + 6T_{3}^{3} + 18T_{3}^{2} + 36T_{3} + 36 T 3 4 + 6 T 3 3 + 1 8 T 3 2 + 3 6 T 3 + 3 6
T3^4 + 6*T3^3 + 18*T3^2 + 36*T3 + 36
acting on S 2 n e w ( 650 , [ χ ] ) S_{2}^{\mathrm{new}}(650, [\chi]) S 2 n e w ( 6 5 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 − T + 1 ) 2 (T^{2} - T + 1)^{2} ( T 2 − T + 1 ) 2
(T^2 - T + 1)^2
3 3 3
T 4 + 6 T 3 + ⋯ + 36 T^{4} + 6 T^{3} + \cdots + 36 T 4 + 6 T 3 + ⋯ + 3 6
T^4 + 6*T^3 + 18*T^2 + 36*T + 36
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 + 6 T 3 + ⋯ + 1 T^{4} + 6 T^{3} + \cdots + 1 T 4 + 6 T 3 + ⋯ + 1
T^4 + 6*T^3 + 11*T^2 - 6*T + 1
11 11 1 1
T 4 − 4 T 3 + ⋯ + 1 T^{4} - 4 T^{3} + \cdots + 1 T 4 − 4 T 3 + ⋯ + 1
T^4 - 4*T^3 + 5*T^2 - 2*T + 1
13 13 1 3
( T 2 + 7 T + 13 ) 2 (T^{2} + 7 T + 13)^{2} ( T 2 + 7 T + 1 3 ) 2
(T^2 + 7*T + 13)^2
17 17 1 7
T 4 + 10 T 3 + ⋯ + 4 T^{4} + 10 T^{3} + \cdots + 4 T 4 + 1 0 T 3 + ⋯ + 4
T^4 + 10*T^3 + 26*T^2 - 4*T + 4
19 19 1 9
T 4 − 12 T 3 + ⋯ + 1521 T^{4} - 12 T^{3} + \cdots + 1521 T 4 − 1 2 T 3 + ⋯ + 1 5 2 1
T^4 - 12*T^3 + 45*T^2 - 234*T + 1521
23 23 2 3
T 4 − 10 T 3 + ⋯ + 484 T^{4} - 10 T^{3} + \cdots + 484 T 4 − 1 0 T 3 + ⋯ + 4 8 4
T^4 - 10*T^3 + 74*T^2 - 308*T + 484
29 29 2 9
T 4 + 12 T 3 + ⋯ + 576 T^{4} + 12 T^{3} + \cdots + 576 T 4 + 1 2 T 3 + ⋯ + 5 7 6
T^4 + 12*T^3 + 24*T^2 - 288*T + 576
31 31 3 1
( T 2 − 6 T + 18 ) 2 (T^{2} - 6 T + 18)^{2} ( T 2 − 6 T + 1 8 ) 2
(T^2 - 6*T + 18)^2
37 37 3 7
T 4 − 6 T 3 + ⋯ + 1 T^{4} - 6 T^{3} + \cdots + 1 T 4 − 6 T 3 + ⋯ + 1
T^4 - 6*T^3 + 11*T^2 + 6*T + 1
41 41 4 1
T 4 − 10 T 3 + ⋯ + 4 T^{4} - 10 T^{3} + \cdots + 4 T 4 − 1 0 T 3 + ⋯ + 4
T^4 - 10*T^3 + 26*T^2 + 4*T + 4
43 43 4 3
T 4 − 12 T 3 + ⋯ + 5184 T^{4} - 12 T^{3} + \cdots + 5184 T 4 − 1 2 T 3 + ⋯ + 5 1 8 4
T^4 - 12*T^3 + 72*T^2 - 864*T + 5184
47 47 4 7
( T 2 + 49 ) 2 (T^{2} + 49)^{2} ( T 2 + 4 9 ) 2
(T^2 + 49)^2
53 53 5 3
T 4 − 22 T 3 + ⋯ + 3481 T^{4} - 22 T^{3} + \cdots + 3481 T 4 − 2 2 T 3 + ⋯ + 3 4 8 1
T^4 - 22*T^3 + 242*T^2 - 1298*T + 3481
59 59 5 9
T 4 − 6 T 3 + ⋯ + 36 T^{4} - 6 T^{3} + \cdots + 36 T 4 − 6 T 3 + ⋯ + 3 6
T^4 - 6*T^3 + 90*T^2 - 108*T + 36
61 61 6 1
T 4 + 22 T 3 + ⋯ + 13924 T^{4} + 22 T^{3} + \cdots + 13924 T 4 + 2 2 T 3 + ⋯ + 1 3 9 2 4
T^4 + 22*T^3 + 366*T^2 + 2596*T + 13924
67 67 6 7
T 4 − 12 T 3 + ⋯ + 144 T^{4} - 12 T^{3} + \cdots + 144 T 4 − 1 2 T 3 + ⋯ + 1 4 4
T^4 - 12*T^3 + 156*T^2 + 144*T + 144
71 71 7 1
T 4 + 28 T 3 + ⋯ + 21904 T^{4} + 28 T^{3} + \cdots + 21904 T 4 + 2 8 T 3 + ⋯ + 2 1 9 0 4
T^4 + 28*T^3 + 452*T^2 + 4736*T + 21904
73 73 7 3
( T 2 + 6 T + 6 ) 2 (T^{2} + 6 T + 6)^{2} ( T 2 + 6 T + 6 ) 2
(T^2 + 6*T + 6)^2
79 79 7 9
T 4 + 296 T 2 + 21316 T^{4} + 296 T^{2} + 21316 T 4 + 2 9 6 T 2 + 2 1 3 1 6
T^4 + 296*T^2 + 21316
83 83 8 3
T 4 + 8 T 2 + 4 T^{4} + 8T^{2} + 4 T 4 + 8 T 2 + 4
T^4 + 8*T^2 + 4
89 89 8 9
T 4 + 26 T 3 + ⋯ + 69169 T^{4} + 26 T^{3} + \cdots + 69169 T 4 + 2 6 T 3 + ⋯ + 6 9 1 6 9
T^4 + 26*T^3 + 269*T^2 + 5260*T + 69169
97 97 9 7
T 4 + 22 T 3 + ⋯ + 8836 T^{4} + 22 T^{3} + \cdots + 8836 T 4 + 2 2 T 3 + ⋯ + 8 8 3 6
T^4 + 22*T^3 + 390*T^2 + 2068*T + 8836
show more
show less