Properties

Label 650.2.w.b
Level 650650
Weight 22
Character orbit 650.w
Analytic conductor 5.1905.190
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(193,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 650.w (of order 1212, degree 44, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,-6,-2,0,-6,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.190276131385.19027613138
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C12]\mathrm{SU}(2)[C_{12}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ122q2+(ζ123+ζ122+2)q3+(ζ1221)q4+(2ζ123ζ122+1)q6+(ζ122+2ζ121)q7++(3ζ122+3ζ12)q99+O(q100) q + \zeta_{12}^{2} q^{2} + ( - \zeta_{12}^{3} + \zeta_{12}^{2} + \cdots - 2) q^{3} + (\zeta_{12}^{2} - 1) q^{4} + ( - 2 \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots - 1) q^{6} + ( - \zeta_{12}^{2} + 2 \zeta_{12} - 1) q^{7}+ \cdots + ( - 3 \zeta_{12}^{2} + 3 \zeta_{12}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q26q32q46q66q74q8+4q1114q132q1610q17+12q19+12q21+2q22+10q23+6q244q26+6q2812q29+6q99+O(q100) 4 q + 2 q^{2} - 6 q^{3} - 2 q^{4} - 6 q^{6} - 6 q^{7} - 4 q^{8} + 4 q^{11} - 14 q^{13} - 2 q^{16} - 10 q^{17} + 12 q^{19} + 12 q^{21} + 2 q^{22} + 10 q^{23} + 6 q^{24} - 4 q^{26} + 6 q^{28} - 12 q^{29}+ \cdots - 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) ζ123\zeta_{12}^{3} ζ12\zeta_{12}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
193.1
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
0.500000 + 0.866025i −0.633975 + 2.36603i −0.500000 + 0.866025i 0 −2.36603 + 0.633975i −3.23205 1.86603i −1.00000 −2.59808 1.50000i 0
293.1 0.500000 0.866025i −2.36603 + 0.633975i −0.500000 0.866025i 0 −0.633975 + 2.36603i 0.232051 0.133975i −1.00000 2.59808 1.50000i 0
357.1 0.500000 0.866025i −0.633975 2.36603i −0.500000 0.866025i 0 −2.36603 0.633975i −3.23205 + 1.86603i −1.00000 −2.59808 + 1.50000i 0
457.1 0.500000 + 0.866025i −2.36603 0.633975i −0.500000 + 0.866025i 0 −0.633975 2.36603i 0.232051 + 0.133975i −1.00000 2.59808 + 1.50000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.o even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.2.w.b yes 4
5.b even 2 1 650.2.w.a yes 4
5.c odd 4 1 650.2.t.a 4
5.c odd 4 1 650.2.t.b yes 4
13.f odd 12 1 650.2.t.b yes 4
65.o even 12 1 inner 650.2.w.b yes 4
65.s odd 12 1 650.2.t.a 4
65.t even 12 1 650.2.w.a yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.2.t.a 4 5.c odd 4 1
650.2.t.a 4 65.s odd 12 1
650.2.t.b yes 4 5.c odd 4 1
650.2.t.b yes 4 13.f odd 12 1
650.2.w.a yes 4 5.b even 2 1
650.2.w.a yes 4 65.t even 12 1
650.2.w.b yes 4 1.a even 1 1 trivial
650.2.w.b yes 4 65.o even 12 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34+6T33+18T32+36T3+36 T_{3}^{4} + 6T_{3}^{3} + 18T_{3}^{2} + 36T_{3} + 36 acting on S2new(650,[χ])S_{2}^{\mathrm{new}}(650, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
33 T4+6T3++36 T^{4} + 6 T^{3} + \cdots + 36 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+6T3++1 T^{4} + 6 T^{3} + \cdots + 1 Copy content Toggle raw display
1111 T44T3++1 T^{4} - 4 T^{3} + \cdots + 1 Copy content Toggle raw display
1313 (T2+7T+13)2 (T^{2} + 7 T + 13)^{2} Copy content Toggle raw display
1717 T4+10T3++4 T^{4} + 10 T^{3} + \cdots + 4 Copy content Toggle raw display
1919 T412T3++1521 T^{4} - 12 T^{3} + \cdots + 1521 Copy content Toggle raw display
2323 T410T3++484 T^{4} - 10 T^{3} + \cdots + 484 Copy content Toggle raw display
2929 T4+12T3++576 T^{4} + 12 T^{3} + \cdots + 576 Copy content Toggle raw display
3131 (T26T+18)2 (T^{2} - 6 T + 18)^{2} Copy content Toggle raw display
3737 T46T3++1 T^{4} - 6 T^{3} + \cdots + 1 Copy content Toggle raw display
4141 T410T3++4 T^{4} - 10 T^{3} + \cdots + 4 Copy content Toggle raw display
4343 T412T3++5184 T^{4} - 12 T^{3} + \cdots + 5184 Copy content Toggle raw display
4747 (T2+49)2 (T^{2} + 49)^{2} Copy content Toggle raw display
5353 T422T3++3481 T^{4} - 22 T^{3} + \cdots + 3481 Copy content Toggle raw display
5959 T46T3++36 T^{4} - 6 T^{3} + \cdots + 36 Copy content Toggle raw display
6161 T4+22T3++13924 T^{4} + 22 T^{3} + \cdots + 13924 Copy content Toggle raw display
6767 T412T3++144 T^{4} - 12 T^{3} + \cdots + 144 Copy content Toggle raw display
7171 T4+28T3++21904 T^{4} + 28 T^{3} + \cdots + 21904 Copy content Toggle raw display
7373 (T2+6T+6)2 (T^{2} + 6 T + 6)^{2} Copy content Toggle raw display
7979 T4+296T2+21316 T^{4} + 296 T^{2} + 21316 Copy content Toggle raw display
8383 T4+8T2+4 T^{4} + 8T^{2} + 4 Copy content Toggle raw display
8989 T4+26T3++69169 T^{4} + 26 T^{3} + \cdots + 69169 Copy content Toggle raw display
9797 T4+22T3++8836 T^{4} + 22 T^{3} + \cdots + 8836 Copy content Toggle raw display
show more
show less