L(s) = 1 | + (0.5 + 0.866i)2-s + (−2.36 − 0.633i)3-s + (−0.499 + 0.866i)4-s + (−0.633 − 2.36i)6-s + (0.232 + 0.133i)7-s − 0.999·8-s + (2.59 + 1.50i)9-s + (0.133 − 0.5i)11-s + (1.73 − 1.73i)12-s + (−3.5 − 0.866i)13-s + 0.267i·14-s + (−0.5 − 0.866i)16-s + (0.0980 + 0.366i)17-s + 3.00i·18-s + (7.33 − 1.96i)19-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−1.36 − 0.366i)3-s + (−0.249 + 0.433i)4-s + (−0.258 − 0.965i)6-s + (0.0877 + 0.0506i)7-s − 0.353·8-s + (0.866 + 0.500i)9-s + (0.0403 − 0.150i)11-s + (0.499 − 0.499i)12-s + (−0.970 − 0.240i)13-s + 0.0716i·14-s + (−0.125 − 0.216i)16-s + (0.0237 + 0.0887i)17-s + 0.707i·18-s + (1.68 − 0.450i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.955 + 0.293i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.955 + 0.293i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.945636 - 0.142111i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.945636 - 0.142111i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (3.5 + 0.866i)T \) |
good | 3 | \( 1 + (2.36 + 0.633i)T + (2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (-0.232 - 0.133i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.133 + 0.5i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-0.0980 - 0.366i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-7.33 + 1.96i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.63 + 6.09i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-2.19 + 1.26i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3 + 3i)T - 31iT^{2} \) |
| 37 | \( 1 + (0.232 - 0.133i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.09 - 1.36i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-8.19 + 2.19i)T + (37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 + 7iT - 47T^{2} \) |
| 53 | \( 1 + (-4.63 + 4.63i)T - 53iT^{2} \) |
| 59 | \( 1 + (-2.36 - 8.83i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (4.63 - 8.02i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.46 - 11.1i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3.53 + 13.1i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + 1.26T + 73T^{2} \) |
| 79 | \( 1 + 13.1iT - 79T^{2} \) |
| 83 | \( 1 - 0.732iT - 83T^{2} \) |
| 89 | \( 1 + (16.8 + 4.52i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (2.90 - 5.02i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63495902214581799420779662757, −9.752499934502179238799145345645, −8.619225790006694402680770105892, −7.46913155425405006885976855429, −6.89938912804763602235387200778, −5.90286706201570622949760824796, −5.25236527439691282315599646261, −4.40672536573058219928309505641, −2.77327367001910599359441083788, −0.66748993917063844112725725487,
1.16120969516472302350362493471, 2.92033387793325913667571984533, 4.25535177197620980592831021498, 5.13706276972348435608376928992, 5.70190339991572958621522657867, 6.85038772076547522645035960388, 7.81799823746754683764975526430, 9.461778256551768247536488553696, 9.791790466098884307592549934929, 10.88575936987294511427136727062