Properties

Label 650.2.t.b
Level 650650
Weight 22
Character orbit 650.t
Analytic conductor 5.1905.190
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(7,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 650.t (of order 1212, degree 44, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,6,2,0,-6,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.190276131385.19027613138
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C12]\mathrm{SU}(2)[C_{12}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ123+ζ12)q2+(ζ123ζ122++2)q3+(ζ122+1)q4+(2ζ123ζ122+1)q6+(2ζ1232ζ122++2)q7++(3ζ1223ζ12)q99+O(q100) q + ( - \zeta_{12}^{3} + \zeta_{12}) q^{2} + ( - \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 2) q^{3} + ( - \zeta_{12}^{2} + 1) q^{4} + ( - 2 \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots - 1) q^{6} + (2 \zeta_{12}^{3} - 2 \zeta_{12}^{2} + \cdots + 2) q^{7}+ \cdots + (3 \zeta_{12}^{2} - 3 \zeta_{12}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+6q3+2q46q6+4q7+4q112q162q1712q1812q19+12q214q22+14q236q244q264q28+12q29+12q31+6q33++6q99+O(q100) 4 q + 6 q^{3} + 2 q^{4} - 6 q^{6} + 4 q^{7} + 4 q^{11} - 2 q^{16} - 2 q^{17} - 12 q^{18} - 12 q^{19} + 12 q^{21} - 4 q^{22} + 14 q^{23} - 6 q^{24} - 4 q^{26} - 4 q^{28} + 12 q^{29} + 12 q^{31} + 6 q^{33}+ \cdots + 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) ζ123-\zeta_{12}^{3} ζ12\zeta_{12}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
7.1
0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i 0.633975 + 2.36603i 0.500000 + 0.866025i 0 −0.633975 + 2.36603i 0.133975 + 0.232051i 1.00000i −2.59808 + 1.50000i 0
93.1 0.866025 0.500000i 0.633975 2.36603i 0.500000 0.866025i 0 −0.633975 2.36603i 0.133975 0.232051i 1.00000i −2.59808 1.50000i 0
557.1 −0.866025 + 0.500000i 2.36603 + 0.633975i 0.500000 0.866025i 0 −2.36603 + 0.633975i 1.86603 3.23205i 1.00000i 2.59808 + 1.50000i 0
643.1 −0.866025 0.500000i 2.36603 0.633975i 0.500000 + 0.866025i 0 −2.36603 0.633975i 1.86603 + 3.23205i 1.00000i 2.59808 1.50000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.t even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.2.t.b yes 4
5.b even 2 1 650.2.t.a 4
5.c odd 4 1 650.2.w.a yes 4
5.c odd 4 1 650.2.w.b yes 4
13.f odd 12 1 650.2.w.b yes 4
65.o even 12 1 650.2.t.a 4
65.s odd 12 1 650.2.w.a yes 4
65.t even 12 1 inner 650.2.t.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.2.t.a 4 5.b even 2 1
650.2.t.a 4 65.o even 12 1
650.2.t.b yes 4 1.a even 1 1 trivial
650.2.t.b yes 4 65.t even 12 1 inner
650.2.w.a yes 4 5.c odd 4 1
650.2.w.a yes 4 65.s odd 12 1
650.2.w.b yes 4 5.c odd 4 1
650.2.w.b yes 4 13.f odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T346T33+18T3236T3+36 T_{3}^{4} - 6T_{3}^{3} + 18T_{3}^{2} - 36T_{3} + 36 acting on S2new(650,[χ])S_{2}^{\mathrm{new}}(650, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
33 T46T3++36 T^{4} - 6 T^{3} + \cdots + 36 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T44T3++1 T^{4} - 4 T^{3} + \cdots + 1 Copy content Toggle raw display
1111 T44T3++1 T^{4} - 4 T^{3} + \cdots + 1 Copy content Toggle raw display
1313 T4+23T2+169 T^{4} + 23T^{2} + 169 Copy content Toggle raw display
1717 T4+2T3++4 T^{4} + 2 T^{3} + \cdots + 4 Copy content Toggle raw display
1919 T4+12T3++1521 T^{4} + 12 T^{3} + \cdots + 1521 Copy content Toggle raw display
2323 T414T3++484 T^{4} - 14 T^{3} + \cdots + 484 Copy content Toggle raw display
2929 T412T3++576 T^{4} - 12 T^{3} + \cdots + 576 Copy content Toggle raw display
3131 (T26T+18)2 (T^{2} - 6 T + 18)^{2} Copy content Toggle raw display
3737 T44T3++1 T^{4} - 4 T^{3} + \cdots + 1 Copy content Toggle raw display
4141 T410T3++4 T^{4} - 10 T^{3} + \cdots + 4 Copy content Toggle raw display
4343 T4+12T3++5184 T^{4} + 12 T^{3} + \cdots + 5184 Copy content Toggle raw display
4747 (T+7)4 (T + 7)^{4} Copy content Toggle raw display
5353 T422T3++3481 T^{4} - 22 T^{3} + \cdots + 3481 Copy content Toggle raw display
5959 T4+6T3++36 T^{4} + 6 T^{3} + \cdots + 36 Copy content Toggle raw display
6161 T4+22T3++13924 T^{4} + 22 T^{3} + \cdots + 13924 Copy content Toggle raw display
6767 T424T3++144 T^{4} - 24 T^{3} + \cdots + 144 Copy content Toggle raw display
7171 T4+28T3++21904 T^{4} + 28 T^{3} + \cdots + 21904 Copy content Toggle raw display
7373 T4+24T2+36 T^{4} + 24T^{2} + 36 Copy content Toggle raw display
7979 T4+296T2+21316 T^{4} + 296 T^{2} + 21316 Copy content Toggle raw display
8383 (T22T2)2 (T^{2} - 2 T - 2)^{2} Copy content Toggle raw display
8989 T426T3++69169 T^{4} - 26 T^{3} + \cdots + 69169 Copy content Toggle raw display
9797 T4+18T3++8836 T^{4} + 18 T^{3} + \cdots + 8836 Copy content Toggle raw display
show more
show less