Properties

Label 650.2.e.a.451.1
Level $650$
Weight $2$
Character 650.451
Analytic conductor $5.190$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(451,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,-2,-1,0,-2,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 451.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 650.451
Dual form 650.2.e.a.601.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-1.00000 + 1.73205i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-1.00000 - 1.73205i) q^{6} +(-0.500000 - 0.866025i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-1.50000 + 2.59808i) q^{11} +2.00000 q^{12} +(-2.50000 + 2.59808i) q^{13} +1.00000 q^{14} +(-0.500000 + 0.866025i) q^{16} +(-3.00000 - 5.19615i) q^{17} +1.00000 q^{18} +(-2.50000 - 4.33013i) q^{19} +2.00000 q^{21} +(-1.50000 - 2.59808i) q^{22} +(-1.00000 + 1.73205i) q^{24} +(-1.00000 - 3.46410i) q^{26} -4.00000 q^{27} +(-0.500000 + 0.866025i) q^{28} -4.00000 q^{31} +(-0.500000 - 0.866025i) q^{32} +(-3.00000 - 5.19615i) q^{33} +6.00000 q^{34} +(-0.500000 + 0.866025i) q^{36} +(5.50000 - 9.52628i) q^{37} +5.00000 q^{38} +(-2.00000 - 6.92820i) q^{39} +(-3.00000 + 5.19615i) q^{41} +(-1.00000 + 1.73205i) q^{42} +(1.00000 + 1.73205i) q^{43} +3.00000 q^{44} +3.00000 q^{47} +(-1.00000 - 1.73205i) q^{48} +(3.00000 - 5.19615i) q^{49} +12.0000 q^{51} +(3.50000 + 0.866025i) q^{52} +9.00000 q^{53} +(2.00000 - 3.46410i) q^{54} +(-0.500000 - 0.866025i) q^{56} +10.0000 q^{57} +(-4.00000 - 6.92820i) q^{61} +(2.00000 - 3.46410i) q^{62} +(-0.500000 + 0.866025i) q^{63} +1.00000 q^{64} +6.00000 q^{66} +(-8.00000 + 13.8564i) q^{67} +(-3.00000 + 5.19615i) q^{68} +(-3.00000 - 5.19615i) q^{71} +(-0.500000 - 0.866025i) q^{72} -14.0000 q^{73} +(5.50000 + 9.52628i) q^{74} +(-2.50000 + 4.33013i) q^{76} +3.00000 q^{77} +(7.00000 + 1.73205i) q^{78} -16.0000 q^{79} +(5.50000 - 9.52628i) q^{81} +(-3.00000 - 5.19615i) q^{82} +6.00000 q^{83} +(-1.00000 - 1.73205i) q^{84} -2.00000 q^{86} +(-1.50000 + 2.59808i) q^{88} +(-4.50000 + 7.79423i) q^{89} +(3.50000 + 0.866025i) q^{91} +(4.00000 - 6.92820i) q^{93} +(-1.50000 + 2.59808i) q^{94} +2.00000 q^{96} +(-5.00000 - 8.66025i) q^{97} +(3.00000 + 5.19615i) q^{98} +3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 2 q^{3} - q^{4} - 2 q^{6} - q^{7} + 2 q^{8} - q^{9} - 3 q^{11} + 4 q^{12} - 5 q^{13} + 2 q^{14} - q^{16} - 6 q^{17} + 2 q^{18} - 5 q^{19} + 4 q^{21} - 3 q^{22} - 2 q^{24} - 2 q^{26} - 8 q^{27}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −1.00000 + 1.73205i −0.577350 + 1.00000i 0.418432 + 0.908248i \(0.362580\pi\)
−0.995782 + 0.0917517i \(0.970753\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) −1.00000 1.73205i −0.408248 0.707107i
\(7\) −0.500000 0.866025i −0.188982 0.327327i 0.755929 0.654654i \(-0.227186\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −1.50000 + 2.59808i −0.452267 + 0.783349i −0.998526 0.0542666i \(-0.982718\pi\)
0.546259 + 0.837616i \(0.316051\pi\)
\(12\) 2.00000 0.577350
\(13\) −2.50000 + 2.59808i −0.693375 + 0.720577i
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.00000 5.19615i −0.727607 1.26025i −0.957892 0.287129i \(-0.907299\pi\)
0.230285 0.973123i \(-0.426034\pi\)
\(18\) 1.00000 0.235702
\(19\) −2.50000 4.33013i −0.573539 0.993399i −0.996199 0.0871106i \(-0.972237\pi\)
0.422659 0.906289i \(-0.361097\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) −1.50000 2.59808i −0.319801 0.553912i
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) −1.00000 + 1.73205i −0.204124 + 0.353553i
\(25\) 0 0
\(26\) −1.00000 3.46410i −0.196116 0.679366i
\(27\) −4.00000 −0.769800
\(28\) −0.500000 + 0.866025i −0.0944911 + 0.163663i
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −3.00000 5.19615i −0.522233 0.904534i
\(34\) 6.00000 1.02899
\(35\) 0 0
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) 5.50000 9.52628i 0.904194 1.56611i 0.0821995 0.996616i \(-0.473806\pi\)
0.821995 0.569495i \(-0.192861\pi\)
\(38\) 5.00000 0.811107
\(39\) −2.00000 6.92820i −0.320256 1.10940i
\(40\) 0 0
\(41\) −3.00000 + 5.19615i −0.468521 + 0.811503i −0.999353 0.0359748i \(-0.988546\pi\)
0.530831 + 0.847477i \(0.321880\pi\)
\(42\) −1.00000 + 1.73205i −0.154303 + 0.267261i
\(43\) 1.00000 + 1.73205i 0.152499 + 0.264135i 0.932145 0.362084i \(-0.117935\pi\)
−0.779647 + 0.626219i \(0.784601\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) 0 0
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) −1.00000 1.73205i −0.144338 0.250000i
\(49\) 3.00000 5.19615i 0.428571 0.742307i
\(50\) 0 0
\(51\) 12.0000 1.68034
\(52\) 3.50000 + 0.866025i 0.485363 + 0.120096i
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 2.00000 3.46410i 0.272166 0.471405i
\(55\) 0 0
\(56\) −0.500000 0.866025i −0.0668153 0.115728i
\(57\) 10.0000 1.32453
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) −4.00000 6.92820i −0.512148 0.887066i −0.999901 0.0140840i \(-0.995517\pi\)
0.487753 0.872982i \(-0.337817\pi\)
\(62\) 2.00000 3.46410i 0.254000 0.439941i
\(63\) −0.500000 + 0.866025i −0.0629941 + 0.109109i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 6.00000 0.738549
\(67\) −8.00000 + 13.8564i −0.977356 + 1.69283i −0.305424 + 0.952217i \(0.598798\pi\)
−0.671932 + 0.740613i \(0.734535\pi\)
\(68\) −3.00000 + 5.19615i −0.363803 + 0.630126i
\(69\) 0 0
\(70\) 0 0
\(71\) −3.00000 5.19615i −0.356034 0.616670i 0.631260 0.775571i \(-0.282538\pi\)
−0.987294 + 0.158901i \(0.949205\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 5.50000 + 9.52628i 0.639362 + 1.10741i
\(75\) 0 0
\(76\) −2.50000 + 4.33013i −0.286770 + 0.496700i
\(77\) 3.00000 0.341882
\(78\) 7.00000 + 1.73205i 0.792594 + 0.196116i
\(79\) −16.0000 −1.80014 −0.900070 0.435745i \(-0.856485\pi\)
−0.900070 + 0.435745i \(0.856485\pi\)
\(80\) 0 0
\(81\) 5.50000 9.52628i 0.611111 1.05848i
\(82\) −3.00000 5.19615i −0.331295 0.573819i
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) −1.00000 1.73205i −0.109109 0.188982i
\(85\) 0 0
\(86\) −2.00000 −0.215666
\(87\) 0 0
\(88\) −1.50000 + 2.59808i −0.159901 + 0.276956i
\(89\) −4.50000 + 7.79423i −0.476999 + 0.826187i −0.999653 0.0263586i \(-0.991609\pi\)
0.522654 + 0.852545i \(0.324942\pi\)
\(90\) 0 0
\(91\) 3.50000 + 0.866025i 0.366900 + 0.0907841i
\(92\) 0 0
\(93\) 4.00000 6.92820i 0.414781 0.718421i
\(94\) −1.50000 + 2.59808i −0.154713 + 0.267971i
\(95\) 0 0
\(96\) 2.00000 0.204124
\(97\) −5.00000 8.66025i −0.507673 0.879316i −0.999961 0.00888289i \(-0.997172\pi\)
0.492287 0.870433i \(-0.336161\pi\)
\(98\) 3.00000 + 5.19615i 0.303046 + 0.524891i
\(99\) 3.00000 0.301511
\(100\) 0 0
\(101\) 3.00000 5.19615i 0.298511 0.517036i −0.677284 0.735721i \(-0.736843\pi\)
0.975796 + 0.218685i \(0.0701767\pi\)
\(102\) −6.00000 + 10.3923i −0.594089 + 1.02899i
\(103\) −5.00000 −0.492665 −0.246332 0.969185i \(-0.579225\pi\)
−0.246332 + 0.969185i \(0.579225\pi\)
\(104\) −2.50000 + 2.59808i −0.245145 + 0.254762i
\(105\) 0 0
\(106\) −4.50000 + 7.79423i −0.437079 + 0.757042i
\(107\) −6.00000 + 10.3923i −0.580042 + 1.00466i 0.415432 + 0.909624i \(0.363630\pi\)
−0.995474 + 0.0950377i \(0.969703\pi\)
\(108\) 2.00000 + 3.46410i 0.192450 + 0.333333i
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 11.0000 + 19.0526i 1.04407 + 1.80839i
\(112\) 1.00000 0.0944911
\(113\) −6.00000 10.3923i −0.564433 0.977626i −0.997102 0.0760733i \(-0.975762\pi\)
0.432670 0.901553i \(-0.357572\pi\)
\(114\) −5.00000 + 8.66025i −0.468293 + 0.811107i
\(115\) 0 0
\(116\) 0 0
\(117\) 3.50000 + 0.866025i 0.323575 + 0.0800641i
\(118\) 0 0
\(119\) −3.00000 + 5.19615i −0.275010 + 0.476331i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 8.00000 0.724286
\(123\) −6.00000 10.3923i −0.541002 0.937043i
\(124\) 2.00000 + 3.46410i 0.179605 + 0.311086i
\(125\) 0 0
\(126\) −0.500000 0.866025i −0.0445435 0.0771517i
\(127\) −0.500000 + 0.866025i −0.0443678 + 0.0768473i −0.887357 0.461084i \(-0.847461\pi\)
0.842989 + 0.537931i \(0.180794\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) −9.00000 −0.786334 −0.393167 0.919467i \(-0.628621\pi\)
−0.393167 + 0.919467i \(0.628621\pi\)
\(132\) −3.00000 + 5.19615i −0.261116 + 0.452267i
\(133\) −2.50000 + 4.33013i −0.216777 + 0.375470i
\(134\) −8.00000 13.8564i −0.691095 1.19701i
\(135\) 0 0
\(136\) −3.00000 5.19615i −0.257248 0.445566i
\(137\) 3.00000 + 5.19615i 0.256307 + 0.443937i 0.965250 0.261329i \(-0.0841608\pi\)
−0.708942 + 0.705266i \(0.750827\pi\)
\(138\) 0 0
\(139\) 9.50000 + 16.4545i 0.805779 + 1.39565i 0.915764 + 0.401718i \(0.131587\pi\)
−0.109984 + 0.993933i \(0.535080\pi\)
\(140\) 0 0
\(141\) −3.00000 + 5.19615i −0.252646 + 0.437595i
\(142\) 6.00000 0.503509
\(143\) −3.00000 10.3923i −0.250873 0.869048i
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 7.00000 12.1244i 0.579324 1.00342i
\(147\) 6.00000 + 10.3923i 0.494872 + 0.857143i
\(148\) −11.0000 −0.904194
\(149\) 9.00000 + 15.5885i 0.737309 + 1.27706i 0.953703 + 0.300750i \(0.0972370\pi\)
−0.216394 + 0.976306i \(0.569430\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) −2.50000 4.33013i −0.202777 0.351220i
\(153\) −3.00000 + 5.19615i −0.242536 + 0.420084i
\(154\) −1.50000 + 2.59808i −0.120873 + 0.209359i
\(155\) 0 0
\(156\) −5.00000 + 5.19615i −0.400320 + 0.416025i
\(157\) −17.0000 −1.35675 −0.678374 0.734717i \(-0.737315\pi\)
−0.678374 + 0.734717i \(0.737315\pi\)
\(158\) 8.00000 13.8564i 0.636446 1.10236i
\(159\) −9.00000 + 15.5885i −0.713746 + 1.23625i
\(160\) 0 0
\(161\) 0 0
\(162\) 5.50000 + 9.52628i 0.432121 + 0.748455i
\(163\) 1.00000 + 1.73205i 0.0783260 + 0.135665i 0.902528 0.430632i \(-0.141709\pi\)
−0.824202 + 0.566296i \(0.808376\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) −3.00000 + 5.19615i −0.232845 + 0.403300i
\(167\) −7.50000 + 12.9904i −0.580367 + 1.00523i 0.415068 + 0.909790i \(0.363758\pi\)
−0.995436 + 0.0954356i \(0.969576\pi\)
\(168\) 2.00000 0.154303
\(169\) −0.500000 12.9904i −0.0384615 0.999260i
\(170\) 0 0
\(171\) −2.50000 + 4.33013i −0.191180 + 0.331133i
\(172\) 1.00000 1.73205i 0.0762493 0.132068i
\(173\) 7.50000 + 12.9904i 0.570214 + 0.987640i 0.996544 + 0.0830722i \(0.0264732\pi\)
−0.426329 + 0.904568i \(0.640193\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.50000 2.59808i −0.113067 0.195837i
\(177\) 0 0
\(178\) −4.50000 7.79423i −0.337289 0.584202i
\(179\) 12.0000 20.7846i 0.896922 1.55351i 0.0655145 0.997852i \(-0.479131\pi\)
0.831408 0.555663i \(-0.187536\pi\)
\(180\) 0 0
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) −2.50000 + 2.59808i −0.185312 + 0.192582i
\(183\) 16.0000 1.18275
\(184\) 0 0
\(185\) 0 0
\(186\) 4.00000 + 6.92820i 0.293294 + 0.508001i
\(187\) 18.0000 1.31629
\(188\) −1.50000 2.59808i −0.109399 0.189484i
\(189\) 2.00000 + 3.46410i 0.145479 + 0.251976i
\(190\) 0 0
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) −1.00000 + 1.73205i −0.0721688 + 0.125000i
\(193\) −2.00000 + 3.46410i −0.143963 + 0.249351i −0.928986 0.370116i \(-0.879318\pi\)
0.785022 + 0.619467i \(0.212651\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) −6.00000 −0.428571
\(197\) −13.5000 + 23.3827i −0.961835 + 1.66595i −0.243947 + 0.969788i \(0.578442\pi\)
−0.717888 + 0.696159i \(0.754891\pi\)
\(198\) −1.50000 + 2.59808i −0.106600 + 0.184637i
\(199\) 5.00000 + 8.66025i 0.354441 + 0.613909i 0.987022 0.160585i \(-0.0513380\pi\)
−0.632581 + 0.774494i \(0.718005\pi\)
\(200\) 0 0
\(201\) −16.0000 27.7128i −1.12855 1.95471i
\(202\) 3.00000 + 5.19615i 0.211079 + 0.365600i
\(203\) 0 0
\(204\) −6.00000 10.3923i −0.420084 0.727607i
\(205\) 0 0
\(206\) 2.50000 4.33013i 0.174183 0.301694i
\(207\) 0 0
\(208\) −1.00000 3.46410i −0.0693375 0.240192i
\(209\) 15.0000 1.03757
\(210\) 0 0
\(211\) −11.5000 + 19.9186i −0.791693 + 1.37125i 0.133226 + 0.991086i \(0.457467\pi\)
−0.924918 + 0.380166i \(0.875867\pi\)
\(212\) −4.50000 7.79423i −0.309061 0.535310i
\(213\) 12.0000 0.822226
\(214\) −6.00000 10.3923i −0.410152 0.710403i
\(215\) 0 0
\(216\) −4.00000 −0.272166
\(217\) 2.00000 + 3.46410i 0.135769 + 0.235159i
\(218\) −1.00000 + 1.73205i −0.0677285 + 0.117309i
\(219\) 14.0000 24.2487i 0.946032 1.63858i
\(220\) 0 0
\(221\) 21.0000 + 5.19615i 1.41261 + 0.349531i
\(222\) −22.0000 −1.47654
\(223\) −9.50000 + 16.4545i −0.636167 + 1.10187i 0.350100 + 0.936713i \(0.386148\pi\)
−0.986267 + 0.165161i \(0.947186\pi\)
\(224\) −0.500000 + 0.866025i −0.0334077 + 0.0578638i
\(225\) 0 0
\(226\) 12.0000 0.798228
\(227\) −12.0000 20.7846i −0.796468 1.37952i −0.921903 0.387421i \(-0.873366\pi\)
0.125435 0.992102i \(-0.459967\pi\)
\(228\) −5.00000 8.66025i −0.331133 0.573539i
\(229\) −4.00000 −0.264327 −0.132164 0.991228i \(-0.542192\pi\)
−0.132164 + 0.991228i \(0.542192\pi\)
\(230\) 0 0
\(231\) −3.00000 + 5.19615i −0.197386 + 0.341882i
\(232\) 0 0
\(233\) 24.0000 1.57229 0.786146 0.618041i \(-0.212073\pi\)
0.786146 + 0.618041i \(0.212073\pi\)
\(234\) −2.50000 + 2.59808i −0.163430 + 0.169842i
\(235\) 0 0
\(236\) 0 0
\(237\) 16.0000 27.7128i 1.03931 1.80014i
\(238\) −3.00000 5.19615i −0.194461 0.336817i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −11.5000 19.9186i −0.740780 1.28307i −0.952141 0.305661i \(-0.901123\pi\)
0.211360 0.977408i \(-0.432211\pi\)
\(242\) −2.00000 −0.128565
\(243\) 5.00000 + 8.66025i 0.320750 + 0.555556i
\(244\) −4.00000 + 6.92820i −0.256074 + 0.443533i
\(245\) 0 0
\(246\) 12.0000 0.765092
\(247\) 17.5000 + 4.33013i 1.11350 + 0.275519i
\(248\) −4.00000 −0.254000
\(249\) −6.00000 + 10.3923i −0.380235 + 0.658586i
\(250\) 0 0
\(251\) 7.50000 + 12.9904i 0.473396 + 0.819946i 0.999536 0.0304521i \(-0.00969471\pi\)
−0.526140 + 0.850398i \(0.676361\pi\)
\(252\) 1.00000 0.0629941
\(253\) 0 0
\(254\) −0.500000 0.866025i −0.0313728 0.0543393i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 6.00000 10.3923i 0.374270 0.648254i −0.615948 0.787787i \(-0.711227\pi\)
0.990217 + 0.139533i \(0.0445601\pi\)
\(258\) 2.00000 3.46410i 0.124515 0.215666i
\(259\) −11.0000 −0.683507
\(260\) 0 0
\(261\) 0 0
\(262\) 4.50000 7.79423i 0.278011 0.481529i
\(263\) 4.50000 7.79423i 0.277482 0.480613i −0.693276 0.720672i \(-0.743833\pi\)
0.970758 + 0.240059i \(0.0771668\pi\)
\(264\) −3.00000 5.19615i −0.184637 0.319801i
\(265\) 0 0
\(266\) −2.50000 4.33013i −0.153285 0.265497i
\(267\) −9.00000 15.5885i −0.550791 0.953998i
\(268\) 16.0000 0.977356
\(269\) −3.00000 5.19615i −0.182913 0.316815i 0.759958 0.649972i \(-0.225219\pi\)
−0.942871 + 0.333157i \(0.891886\pi\)
\(270\) 0 0
\(271\) −10.0000 + 17.3205i −0.607457 + 1.05215i 0.384201 + 0.923249i \(0.374477\pi\)
−0.991658 + 0.128897i \(0.958856\pi\)
\(272\) 6.00000 0.363803
\(273\) −5.00000 + 5.19615i −0.302614 + 0.314485i
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) 0 0
\(277\) −0.500000 0.866025i −0.0300421 0.0520344i 0.850613 0.525792i \(-0.176231\pi\)
−0.880656 + 0.473757i \(0.842897\pi\)
\(278\) −19.0000 −1.13954
\(279\) 2.00000 + 3.46410i 0.119737 + 0.207390i
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) −3.00000 5.19615i −0.178647 0.309426i
\(283\) 7.00000 12.1244i 0.416107 0.720718i −0.579437 0.815017i \(-0.696728\pi\)
0.995544 + 0.0942988i \(0.0300609\pi\)
\(284\) −3.00000 + 5.19615i −0.178017 + 0.308335i
\(285\) 0 0
\(286\) 10.5000 + 2.59808i 0.620878 + 0.153627i
\(287\) 6.00000 0.354169
\(288\) −0.500000 + 0.866025i −0.0294628 + 0.0510310i
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) 0 0
\(291\) 20.0000 1.17242
\(292\) 7.00000 + 12.1244i 0.409644 + 0.709524i
\(293\) 4.50000 + 7.79423i 0.262893 + 0.455344i 0.967009 0.254741i \(-0.0819901\pi\)
−0.704117 + 0.710084i \(0.748657\pi\)
\(294\) −12.0000 −0.699854
\(295\) 0 0
\(296\) 5.50000 9.52628i 0.319681 0.553704i
\(297\) 6.00000 10.3923i 0.348155 0.603023i
\(298\) −18.0000 −1.04271
\(299\) 0 0
\(300\) 0 0
\(301\) 1.00000 1.73205i 0.0576390 0.0998337i
\(302\) 8.00000 13.8564i 0.460348 0.797347i
\(303\) 6.00000 + 10.3923i 0.344691 + 0.597022i
\(304\) 5.00000 0.286770
\(305\) 0 0
\(306\) −3.00000 5.19615i −0.171499 0.297044i
\(307\) −2.00000 −0.114146 −0.0570730 0.998370i \(-0.518177\pi\)
−0.0570730 + 0.998370i \(0.518177\pi\)
\(308\) −1.50000 2.59808i −0.0854704 0.148039i
\(309\) 5.00000 8.66025i 0.284440 0.492665i
\(310\) 0 0
\(311\) 30.0000 1.70114 0.850572 0.525859i \(-0.176256\pi\)
0.850572 + 0.525859i \(0.176256\pi\)
\(312\) −2.00000 6.92820i −0.113228 0.392232i
\(313\) −14.0000 −0.791327 −0.395663 0.918396i \(-0.629485\pi\)
−0.395663 + 0.918396i \(0.629485\pi\)
\(314\) 8.50000 14.7224i 0.479683 0.830835i
\(315\) 0 0
\(316\) 8.00000 + 13.8564i 0.450035 + 0.779484i
\(317\) −15.0000 −0.842484 −0.421242 0.906948i \(-0.638406\pi\)
−0.421242 + 0.906948i \(0.638406\pi\)
\(318\) −9.00000 15.5885i −0.504695 0.874157i
\(319\) 0 0
\(320\) 0 0
\(321\) −12.0000 20.7846i −0.669775 1.16008i
\(322\) 0 0
\(323\) −15.0000 + 25.9808i −0.834622 + 1.44561i
\(324\) −11.0000 −0.611111
\(325\) 0 0
\(326\) −2.00000 −0.110770
\(327\) −2.00000 + 3.46410i −0.110600 + 0.191565i
\(328\) −3.00000 + 5.19615i −0.165647 + 0.286910i
\(329\) −1.50000 2.59808i −0.0826977 0.143237i
\(330\) 0 0
\(331\) −10.0000 17.3205i −0.549650 0.952021i −0.998298 0.0583130i \(-0.981428\pi\)
0.448649 0.893708i \(-0.351905\pi\)
\(332\) −3.00000 5.19615i −0.164646 0.285176i
\(333\) −11.0000 −0.602796
\(334\) −7.50000 12.9904i −0.410382 0.710802i
\(335\) 0 0
\(336\) −1.00000 + 1.73205i −0.0545545 + 0.0944911i
\(337\) 16.0000 0.871576 0.435788 0.900049i \(-0.356470\pi\)
0.435788 + 0.900049i \(0.356470\pi\)
\(338\) 11.5000 + 6.06218i 0.625518 + 0.329739i
\(339\) 24.0000 1.30350
\(340\) 0 0
\(341\) 6.00000 10.3923i 0.324918 0.562775i
\(342\) −2.50000 4.33013i −0.135185 0.234146i
\(343\) −13.0000 −0.701934
\(344\) 1.00000 + 1.73205i 0.0539164 + 0.0933859i
\(345\) 0 0
\(346\) −15.0000 −0.806405
\(347\) 3.00000 + 5.19615i 0.161048 + 0.278944i 0.935245 0.354001i \(-0.115179\pi\)
−0.774197 + 0.632945i \(0.781846\pi\)
\(348\) 0 0
\(349\) −1.00000 + 1.73205i −0.0535288 + 0.0927146i −0.891548 0.452926i \(-0.850380\pi\)
0.838019 + 0.545640i \(0.183714\pi\)
\(350\) 0 0
\(351\) 10.0000 10.3923i 0.533761 0.554700i
\(352\) 3.00000 0.159901
\(353\) 3.00000 5.19615i 0.159674 0.276563i −0.775077 0.631867i \(-0.782289\pi\)
0.934751 + 0.355303i \(0.115622\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 9.00000 0.476999
\(357\) −6.00000 10.3923i −0.317554 0.550019i
\(358\) 12.0000 + 20.7846i 0.634220 + 1.09850i
\(359\) −6.00000 −0.316668 −0.158334 0.987386i \(-0.550612\pi\)
−0.158334 + 0.987386i \(0.550612\pi\)
\(360\) 0 0
\(361\) −3.00000 + 5.19615i −0.157895 + 0.273482i
\(362\) −4.00000 + 6.92820i −0.210235 + 0.364138i
\(363\) −4.00000 −0.209946
\(364\) −1.00000 3.46410i −0.0524142 0.181568i
\(365\) 0 0
\(366\) −8.00000 + 13.8564i −0.418167 + 0.724286i
\(367\) 16.0000 27.7128i 0.835193 1.44660i −0.0586798 0.998277i \(-0.518689\pi\)
0.893873 0.448320i \(-0.147978\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) −4.50000 7.79423i −0.233628 0.404656i
\(372\) −8.00000 −0.414781
\(373\) 7.00000 + 12.1244i 0.362446 + 0.627775i 0.988363 0.152115i \(-0.0486083\pi\)
−0.625917 + 0.779890i \(0.715275\pi\)
\(374\) −9.00000 + 15.5885i −0.465379 + 0.806060i
\(375\) 0 0
\(376\) 3.00000 0.154713
\(377\) 0 0
\(378\) −4.00000 −0.205738
\(379\) 9.50000 16.4545i 0.487982 0.845210i −0.511922 0.859032i \(-0.671066\pi\)
0.999904 + 0.0138218i \(0.00439975\pi\)
\(380\) 0 0
\(381\) −1.00000 1.73205i −0.0512316 0.0887357i
\(382\) 0 0
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) −1.00000 1.73205i −0.0510310 0.0883883i
\(385\) 0 0
\(386\) −2.00000 3.46410i −0.101797 0.176318i
\(387\) 1.00000 1.73205i 0.0508329 0.0880451i
\(388\) −5.00000 + 8.66025i −0.253837 + 0.439658i
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 3.00000 5.19615i 0.151523 0.262445i
\(393\) 9.00000 15.5885i 0.453990 0.786334i
\(394\) −13.5000 23.3827i −0.680120 1.17800i
\(395\) 0 0
\(396\) −1.50000 2.59808i −0.0753778 0.130558i
\(397\) −6.50000 11.2583i −0.326226 0.565039i 0.655534 0.755166i \(-0.272444\pi\)
−0.981760 + 0.190126i \(0.939110\pi\)
\(398\) −10.0000 −0.501255
\(399\) −5.00000 8.66025i −0.250313 0.433555i
\(400\) 0 0
\(401\) 7.50000 12.9904i 0.374532 0.648709i −0.615725 0.787961i \(-0.711137\pi\)
0.990257 + 0.139253i \(0.0444700\pi\)
\(402\) 32.0000 1.59601
\(403\) 10.0000 10.3923i 0.498135 0.517678i
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) 16.5000 + 28.5788i 0.817875 + 1.41660i
\(408\) 12.0000 0.594089
\(409\) −2.50000 4.33013i −0.123617 0.214111i 0.797574 0.603220i \(-0.206116\pi\)
−0.921192 + 0.389109i \(0.872783\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 2.50000 + 4.33013i 0.123166 + 0.213330i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 3.50000 + 0.866025i 0.171602 + 0.0424604i
\(417\) −38.0000 −1.86087
\(418\) −7.50000 + 12.9904i −0.366837 + 0.635380i
\(419\) 18.0000 31.1769i 0.879358 1.52309i 0.0273103 0.999627i \(-0.491306\pi\)
0.852047 0.523465i \(-0.175361\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) −11.5000 19.9186i −0.559811 0.969622i
\(423\) −1.50000 2.59808i −0.0729325 0.126323i
\(424\) 9.00000 0.437079
\(425\) 0 0
\(426\) −6.00000 + 10.3923i −0.290701 + 0.503509i
\(427\) −4.00000 + 6.92820i −0.193574 + 0.335279i
\(428\) 12.0000 0.580042
\(429\) 21.0000 + 5.19615i 1.01389 + 0.250873i
\(430\) 0 0
\(431\) −15.0000 + 25.9808i −0.722525 + 1.25145i 0.237460 + 0.971397i \(0.423685\pi\)
−0.959985 + 0.280052i \(0.909648\pi\)
\(432\) 2.00000 3.46410i 0.0962250 0.166667i
\(433\) −8.00000 13.8564i −0.384455 0.665896i 0.607238 0.794520i \(-0.292277\pi\)
−0.991693 + 0.128624i \(0.958944\pi\)
\(434\) −4.00000 −0.192006
\(435\) 0 0
\(436\) −1.00000 1.73205i −0.0478913 0.0829502i
\(437\) 0 0
\(438\) 14.0000 + 24.2487i 0.668946 + 1.15865i
\(439\) −10.0000 + 17.3205i −0.477274 + 0.826663i −0.999661 0.0260459i \(-0.991708\pi\)
0.522387 + 0.852709i \(0.325042\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) −15.0000 + 15.5885i −0.713477 + 0.741467i
\(443\) 18.0000 0.855206 0.427603 0.903967i \(-0.359358\pi\)
0.427603 + 0.903967i \(0.359358\pi\)
\(444\) 11.0000 19.0526i 0.522037 0.904194i
\(445\) 0 0
\(446\) −9.50000 16.4545i −0.449838 0.779142i
\(447\) −36.0000 −1.70274
\(448\) −0.500000 0.866025i −0.0236228 0.0409159i
\(449\) −4.50000 7.79423i −0.212368 0.367832i 0.740087 0.672511i \(-0.234784\pi\)
−0.952455 + 0.304679i \(0.901451\pi\)
\(450\) 0 0
\(451\) −9.00000 15.5885i −0.423793 0.734032i
\(452\) −6.00000 + 10.3923i −0.282216 + 0.488813i
\(453\) 16.0000 27.7128i 0.751746 1.30206i
\(454\) 24.0000 1.12638
\(455\) 0 0
\(456\) 10.0000 0.468293
\(457\) −2.00000 + 3.46410i −0.0935561 + 0.162044i −0.909005 0.416785i \(-0.863157\pi\)
0.815449 + 0.578829i \(0.196490\pi\)
\(458\) 2.00000 3.46410i 0.0934539 0.161867i
\(459\) 12.0000 + 20.7846i 0.560112 + 0.970143i
\(460\) 0 0
\(461\) 21.0000 + 36.3731i 0.978068 + 1.69406i 0.669417 + 0.742887i \(0.266544\pi\)
0.308651 + 0.951175i \(0.400123\pi\)
\(462\) −3.00000 5.19615i −0.139573 0.241747i
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −12.0000 + 20.7846i −0.555889 + 0.962828i
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) −1.00000 3.46410i −0.0462250 0.160128i
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) 17.0000 29.4449i 0.783319 1.35675i
\(472\) 0 0
\(473\) −6.00000 −0.275880
\(474\) 16.0000 + 27.7128i 0.734904 + 1.27289i
\(475\) 0 0
\(476\) 6.00000 0.275010
\(477\) −4.50000 7.79423i −0.206041 0.356873i
\(478\) 0 0
\(479\) 15.0000 25.9808i 0.685367 1.18709i −0.287954 0.957644i \(-0.592975\pi\)
0.973321 0.229447i \(-0.0736918\pi\)
\(480\) 0 0
\(481\) 11.0000 + 38.1051i 0.501557 + 1.73744i
\(482\) 23.0000 1.04762
\(483\) 0 0
\(484\) 1.00000 1.73205i 0.0454545 0.0787296i
\(485\) 0 0
\(486\) −10.0000 −0.453609
\(487\) −9.50000 16.4545i −0.430486 0.745624i 0.566429 0.824110i \(-0.308325\pi\)
−0.996915 + 0.0784867i \(0.974991\pi\)
\(488\) −4.00000 6.92820i −0.181071 0.313625i
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) −13.5000 + 23.3827i −0.609246 + 1.05525i 0.382118 + 0.924113i \(0.375195\pi\)
−0.991365 + 0.131132i \(0.958139\pi\)
\(492\) −6.00000 + 10.3923i −0.270501 + 0.468521i
\(493\) 0 0
\(494\) −12.5000 + 12.9904i −0.562402 + 0.584465i
\(495\) 0 0
\(496\) 2.00000 3.46410i 0.0898027 0.155543i
\(497\) −3.00000 + 5.19615i −0.134568 + 0.233079i
\(498\) −6.00000 10.3923i −0.268866 0.465690i
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 0 0
\(501\) −15.0000 25.9808i −0.670151 1.16073i
\(502\) −15.0000 −0.669483
\(503\) 4.50000 + 7.79423i 0.200645 + 0.347527i 0.948736 0.316068i \(-0.102363\pi\)
−0.748091 + 0.663596i \(0.769030\pi\)
\(504\) −0.500000 + 0.866025i −0.0222718 + 0.0385758i
\(505\) 0 0
\(506\) 0 0
\(507\) 23.0000 + 12.1244i 1.02147 + 0.538462i
\(508\) 1.00000 0.0443678
\(509\) −3.00000 + 5.19615i −0.132973 + 0.230315i −0.924821 0.380402i \(-0.875786\pi\)
0.791849 + 0.610718i \(0.209119\pi\)
\(510\) 0 0
\(511\) 7.00000 + 12.1244i 0.309662 + 0.536350i
\(512\) 1.00000 0.0441942
\(513\) 10.0000 + 17.3205i 0.441511 + 0.764719i
\(514\) 6.00000 + 10.3923i 0.264649 + 0.458385i
\(515\) 0 0
\(516\) 2.00000 + 3.46410i 0.0880451 + 0.152499i
\(517\) −4.50000 + 7.79423i −0.197910 + 0.342790i
\(518\) 5.50000 9.52628i 0.241656 0.418561i
\(519\) −30.0000 −1.31685
\(520\) 0 0
\(521\) −27.0000 −1.18289 −0.591446 0.806345i \(-0.701443\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(522\) 0 0
\(523\) 7.00000 12.1244i 0.306089 0.530161i −0.671414 0.741082i \(-0.734313\pi\)
0.977503 + 0.210921i \(0.0676463\pi\)
\(524\) 4.50000 + 7.79423i 0.196583 + 0.340492i
\(525\) 0 0
\(526\) 4.50000 + 7.79423i 0.196209 + 0.339845i
\(527\) 12.0000 + 20.7846i 0.522728 + 0.905392i
\(528\) 6.00000 0.261116
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 5.00000 0.216777
\(533\) −6.00000 20.7846i −0.259889 0.900281i
\(534\) 18.0000 0.778936
\(535\) 0 0
\(536\) −8.00000 + 13.8564i −0.345547 + 0.598506i
\(537\) 24.0000 + 41.5692i 1.03568 + 1.79384i
\(538\) 6.00000 0.258678
\(539\) 9.00000 + 15.5885i 0.387657 + 0.671442i
\(540\) 0 0
\(541\) 20.0000 0.859867 0.429934 0.902861i \(-0.358537\pi\)
0.429934 + 0.902861i \(0.358537\pi\)
\(542\) −10.0000 17.3205i −0.429537 0.743980i
\(543\) −8.00000 + 13.8564i −0.343313 + 0.594635i
\(544\) −3.00000 + 5.19615i −0.128624 + 0.222783i
\(545\) 0 0
\(546\) −2.00000 6.92820i −0.0855921 0.296500i
\(547\) 34.0000 1.45374 0.726868 0.686778i \(-0.240975\pi\)
0.726868 + 0.686778i \(0.240975\pi\)
\(548\) 3.00000 5.19615i 0.128154 0.221969i
\(549\) −4.00000 + 6.92820i −0.170716 + 0.295689i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 8.00000 + 13.8564i 0.340195 + 0.589234i
\(554\) 1.00000 0.0424859
\(555\) 0 0
\(556\) 9.50000 16.4545i 0.402890 0.697826i
\(557\) 10.5000 18.1865i 0.444899 0.770588i −0.553146 0.833084i \(-0.686573\pi\)
0.998045 + 0.0624962i \(0.0199061\pi\)
\(558\) −4.00000 −0.169334
\(559\) −7.00000 1.73205i −0.296068 0.0732579i
\(560\) 0 0
\(561\) −18.0000 + 31.1769i −0.759961 + 1.31629i
\(562\) 3.00000 5.19615i 0.126547 0.219186i
\(563\) −18.0000 31.1769i −0.758610 1.31395i −0.943560 0.331202i \(-0.892546\pi\)
0.184950 0.982748i \(-0.440788\pi\)
\(564\) 6.00000 0.252646
\(565\) 0 0
\(566\) 7.00000 + 12.1244i 0.294232 + 0.509625i
\(567\) −11.0000 −0.461957
\(568\) −3.00000 5.19615i −0.125877 0.218026i
\(569\) −4.50000 + 7.79423i −0.188650 + 0.326751i −0.944800 0.327647i \(-0.893744\pi\)
0.756151 + 0.654398i \(0.227078\pi\)
\(570\) 0 0
\(571\) 17.0000 0.711428 0.355714 0.934595i \(-0.384238\pi\)
0.355714 + 0.934595i \(0.384238\pi\)
\(572\) −7.50000 + 7.79423i −0.313591 + 0.325893i
\(573\) 0 0
\(574\) −3.00000 + 5.19615i −0.125218 + 0.216883i
\(575\) 0 0
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) −32.0000 −1.33218 −0.666089 0.745873i \(-0.732033\pi\)
−0.666089 + 0.745873i \(0.732033\pi\)
\(578\) −9.50000 16.4545i −0.395148 0.684416i
\(579\) −4.00000 6.92820i −0.166234 0.287926i
\(580\) 0 0
\(581\) −3.00000 5.19615i −0.124461 0.215573i
\(582\) −10.0000 + 17.3205i −0.414513 + 0.717958i
\(583\) −13.5000 + 23.3827i −0.559113 + 0.968412i
\(584\) −14.0000 −0.579324
\(585\) 0 0
\(586\) −9.00000 −0.371787
\(587\) −3.00000 + 5.19615i −0.123823 + 0.214468i −0.921272 0.388918i \(-0.872849\pi\)
0.797449 + 0.603386i \(0.206182\pi\)
\(588\) 6.00000 10.3923i 0.247436 0.428571i
\(589\) 10.0000 + 17.3205i 0.412043 + 0.713679i
\(590\) 0 0
\(591\) −27.0000 46.7654i −1.11063 1.92367i
\(592\) 5.50000 + 9.52628i 0.226049 + 0.391528i
\(593\) −24.0000 −0.985562 −0.492781 0.870153i \(-0.664020\pi\)
−0.492781 + 0.870153i \(0.664020\pi\)
\(594\) 6.00000 + 10.3923i 0.246183 + 0.426401i
\(595\) 0 0
\(596\) 9.00000 15.5885i 0.368654 0.638528i
\(597\) −20.0000 −0.818546
\(598\) 0 0
\(599\) −18.0000 −0.735460 −0.367730 0.929933i \(-0.619865\pi\)
−0.367730 + 0.929933i \(0.619865\pi\)
\(600\) 0 0
\(601\) 9.50000 16.4545i 0.387513 0.671192i −0.604601 0.796528i \(-0.706668\pi\)
0.992114 + 0.125336i \(0.0400009\pi\)
\(602\) 1.00000 + 1.73205i 0.0407570 + 0.0705931i
\(603\) 16.0000 0.651570
\(604\) 8.00000 + 13.8564i 0.325515 + 0.563809i
\(605\) 0 0
\(606\) −12.0000 −0.487467
\(607\) −6.50000 11.2583i −0.263827 0.456962i 0.703429 0.710766i \(-0.251651\pi\)
−0.967256 + 0.253804i \(0.918318\pi\)
\(608\) −2.50000 + 4.33013i −0.101388 + 0.175610i
\(609\) 0 0
\(610\) 0 0
\(611\) −7.50000 + 7.79423i −0.303418 + 0.315321i
\(612\) 6.00000 0.242536
\(613\) −6.50000 + 11.2583i −0.262533 + 0.454720i −0.966914 0.255102i \(-0.917891\pi\)
0.704382 + 0.709821i \(0.251224\pi\)
\(614\) 1.00000 1.73205i 0.0403567 0.0698999i
\(615\) 0 0
\(616\) 3.00000 0.120873
\(617\) 9.00000 + 15.5885i 0.362326 + 0.627568i 0.988343 0.152242i \(-0.0486493\pi\)
−0.626017 + 0.779809i \(0.715316\pi\)
\(618\) 5.00000 + 8.66025i 0.201129 + 0.348367i
\(619\) −1.00000 −0.0401934 −0.0200967 0.999798i \(-0.506397\pi\)
−0.0200967 + 0.999798i \(0.506397\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −15.0000 + 25.9808i −0.601445 + 1.04173i
\(623\) 9.00000 0.360577
\(624\) 7.00000 + 1.73205i 0.280224 + 0.0693375i
\(625\) 0 0
\(626\) 7.00000 12.1244i 0.279776 0.484587i
\(627\) −15.0000 + 25.9808i −0.599042 + 1.03757i
\(628\) 8.50000 + 14.7224i 0.339187 + 0.587489i
\(629\) −66.0000 −2.63159
\(630\) 0 0
\(631\) 14.0000 + 24.2487i 0.557331 + 0.965326i 0.997718 + 0.0675178i \(0.0215080\pi\)
−0.440387 + 0.897808i \(0.645159\pi\)
\(632\) −16.0000 −0.636446
\(633\) −23.0000 39.8372i −0.914168 1.58339i
\(634\) 7.50000 12.9904i 0.297863 0.515914i
\(635\) 0 0
\(636\) 18.0000 0.713746
\(637\) 6.00000 + 20.7846i 0.237729 + 0.823516i
\(638\) 0 0
\(639\) −3.00000 + 5.19615i −0.118678 + 0.205557i
\(640\) 0 0
\(641\) 4.50000 + 7.79423i 0.177739 + 0.307854i 0.941106 0.338112i \(-0.109788\pi\)
−0.763367 + 0.645966i \(0.776455\pi\)
\(642\) 24.0000 0.947204
\(643\) 1.00000 + 1.73205i 0.0394362 + 0.0683054i 0.885070 0.465458i \(-0.154110\pi\)
−0.845634 + 0.533764i \(0.820777\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −15.0000 25.9808i −0.590167 1.02220i
\(647\) −4.50000 + 7.79423i −0.176913 + 0.306423i −0.940822 0.338902i \(-0.889945\pi\)
0.763908 + 0.645325i \(0.223278\pi\)
\(648\) 5.50000 9.52628i 0.216060 0.374228i
\(649\) 0 0
\(650\) 0 0
\(651\) −8.00000 −0.313545
\(652\) 1.00000 1.73205i 0.0391630 0.0678323i
\(653\) −13.5000 + 23.3827i −0.528296 + 0.915035i 0.471160 + 0.882048i \(0.343835\pi\)
−0.999456 + 0.0329874i \(0.989498\pi\)
\(654\) −2.00000 3.46410i −0.0782062 0.135457i
\(655\) 0 0
\(656\) −3.00000 5.19615i −0.117130 0.202876i
\(657\) 7.00000 + 12.1244i 0.273096 + 0.473016i
\(658\) 3.00000 0.116952
\(659\) −6.00000 10.3923i −0.233727 0.404827i 0.725175 0.688565i \(-0.241759\pi\)
−0.958902 + 0.283738i \(0.908425\pi\)
\(660\) 0 0
\(661\) 2.00000 3.46410i 0.0777910 0.134738i −0.824506 0.565854i \(-0.808547\pi\)
0.902297 + 0.431116i \(0.141880\pi\)
\(662\) 20.0000 0.777322
\(663\) −30.0000 + 31.1769i −1.16510 + 1.21081i
\(664\) 6.00000 0.232845
\(665\) 0 0
\(666\) 5.50000 9.52628i 0.213121 0.369136i
\(667\) 0 0
\(668\) 15.0000 0.580367
\(669\) −19.0000 32.9090i −0.734582 1.27233i
\(670\) 0 0
\(671\) 24.0000 0.926510
\(672\) −1.00000 1.73205i −0.0385758 0.0668153i
\(673\) 10.0000 17.3205i 0.385472 0.667657i −0.606363 0.795188i \(-0.707372\pi\)
0.991835 + 0.127532i \(0.0407054\pi\)
\(674\) −8.00000 + 13.8564i −0.308148 + 0.533729i
\(675\) 0 0
\(676\) −11.0000 + 6.92820i −0.423077 + 0.266469i
\(677\) 18.0000 0.691796 0.345898 0.938272i \(-0.387574\pi\)
0.345898 + 0.938272i \(0.387574\pi\)
\(678\) −12.0000 + 20.7846i −0.460857 + 0.798228i
\(679\) −5.00000 + 8.66025i −0.191882 + 0.332350i
\(680\) 0 0
\(681\) 48.0000 1.83936
\(682\) 6.00000 + 10.3923i 0.229752 + 0.397942i
\(683\) −3.00000 5.19615i −0.114792 0.198825i 0.802905 0.596107i \(-0.203287\pi\)
−0.917697 + 0.397282i \(0.869953\pi\)
\(684\) 5.00000 0.191180
\(685\) 0 0
\(686\) 6.50000 11.2583i 0.248171 0.429845i
\(687\) 4.00000 6.92820i 0.152610 0.264327i
\(688\) −2.00000 −0.0762493
\(689\) −22.5000 + 23.3827i −0.857182 + 0.890809i
\(690\) 0 0
\(691\) 6.50000 11.2583i 0.247272 0.428287i −0.715496 0.698617i \(-0.753799\pi\)
0.962768 + 0.270330i \(0.0871327\pi\)
\(692\) 7.50000 12.9904i 0.285107 0.493820i
\(693\) −1.50000 2.59808i −0.0569803 0.0986928i
\(694\) −6.00000 −0.227757
\(695\) 0 0
\(696\) 0 0
\(697\) 36.0000 1.36360
\(698\) −1.00000 1.73205i −0.0378506 0.0655591i
\(699\) −24.0000 + 41.5692i −0.907763 + 1.57229i
\(700\) 0 0
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 4.00000 + 13.8564i 0.150970 + 0.522976i
\(703\) −55.0000 −2.07436
\(704\) −1.50000 + 2.59808i −0.0565334 + 0.0979187i
\(705\) 0 0
\(706\) 3.00000 + 5.19615i 0.112906 + 0.195560i
\(707\) −6.00000 −0.225653
\(708\) 0 0
\(709\) 5.00000 + 8.66025i 0.187779 + 0.325243i 0.944509 0.328484i \(-0.106538\pi\)
−0.756730 + 0.653727i \(0.773204\pi\)
\(710\) 0 0
\(711\) 8.00000 + 13.8564i 0.300023 + 0.519656i
\(712\) −4.50000 + 7.79423i −0.168645 + 0.292101i
\(713\) 0 0
\(714\) 12.0000 0.449089
\(715\) 0 0
\(716\) −24.0000 −0.896922
\(717\) 0 0
\(718\) 3.00000 5.19615i 0.111959 0.193919i
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) 2.50000 + 4.33013i 0.0931049 + 0.161262i
\(722\) −3.00000 5.19615i −0.111648 0.193381i
\(723\) 46.0000 1.71076
\(724\) −4.00000 6.92820i −0.148659 0.257485i
\(725\) 0 0
\(726\) 2.00000 3.46410i 0.0742270 0.128565i
\(727\) −29.0000 −1.07555 −0.537775 0.843088i \(-0.680735\pi\)
−0.537775 + 0.843088i \(0.680735\pi\)
\(728\) 3.50000 + 0.866025i 0.129719 + 0.0320970i
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 6.00000 10.3923i 0.221918 0.384373i
\(732\) −8.00000 13.8564i −0.295689 0.512148i
\(733\) 25.0000 0.923396 0.461698 0.887037i \(-0.347240\pi\)
0.461698 + 0.887037i \(0.347240\pi\)
\(734\) 16.0000 + 27.7128i 0.590571 + 1.02290i
\(735\) 0 0
\(736\) 0 0
\(737\) −24.0000 41.5692i −0.884051 1.53122i
\(738\) −3.00000 + 5.19615i −0.110432 + 0.191273i
\(739\) 3.50000 6.06218i 0.128750 0.223001i −0.794443 0.607339i \(-0.792237\pi\)
0.923192 + 0.384338i \(0.125570\pi\)
\(740\) 0 0
\(741\) −25.0000 + 25.9808i −0.918398 + 0.954427i
\(742\) 9.00000 0.330400
\(743\) 6.00000 10.3923i 0.220119 0.381257i −0.734725 0.678365i \(-0.762689\pi\)
0.954844 + 0.297108i \(0.0960222\pi\)
\(744\) 4.00000 6.92820i 0.146647 0.254000i
\(745\) 0 0
\(746\) −14.0000 −0.512576
\(747\) −3.00000 5.19615i −0.109764 0.190117i
\(748\) −9.00000 15.5885i −0.329073 0.569970i
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) 20.0000 34.6410i 0.729810 1.26407i −0.227153 0.973859i \(-0.572942\pi\)
0.956963 0.290209i \(-0.0937250\pi\)
\(752\) −1.50000 + 2.59808i −0.0546994 + 0.0947421i
\(753\) −30.0000 −1.09326
\(754\) 0 0
\(755\) 0 0
\(756\) 2.00000 3.46410i 0.0727393 0.125988i
\(757\) 11.5000 19.9186i 0.417975 0.723953i −0.577761 0.816206i \(-0.696073\pi\)
0.995736 + 0.0922527i \(0.0294068\pi\)
\(758\) 9.50000 + 16.4545i 0.345056 + 0.597654i
\(759\) 0 0
\(760\) 0 0
\(761\) 1.50000 + 2.59808i 0.0543750 + 0.0941802i 0.891932 0.452170i \(-0.149350\pi\)
−0.837557 + 0.546350i \(0.816017\pi\)
\(762\) 2.00000 0.0724524
\(763\) −1.00000 1.73205i −0.0362024 0.0627044i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 2.00000 0.0721688
\(769\) 17.0000 29.4449i 0.613036 1.06181i −0.377690 0.925932i \(-0.623282\pi\)
0.990726 0.135877i \(-0.0433852\pi\)
\(770\) 0 0
\(771\) 12.0000 + 20.7846i 0.432169 + 0.748539i
\(772\) 4.00000 0.143963
\(773\) 19.5000 + 33.7750i 0.701366 + 1.21480i 0.967987 + 0.251000i \(0.0807596\pi\)
−0.266621 + 0.963802i \(0.585907\pi\)
\(774\) 1.00000 + 1.73205i 0.0359443 + 0.0622573i
\(775\) 0 0
\(776\) −5.00000 8.66025i −0.179490 0.310885i
\(777\) 11.0000 19.0526i 0.394623 0.683507i
\(778\) 15.0000 25.9808i 0.537776 0.931455i
\(779\) 30.0000 1.07486
\(780\) 0 0
\(781\) 18.0000 0.644091
\(782\) 0 0
\(783\) 0 0
\(784\) 3.00000 + 5.19615i 0.107143 + 0.185577i
\(785\) 0 0
\(786\) 9.00000 + 15.5885i 0.321019 + 0.556022i
\(787\) −11.0000 19.0526i −0.392108 0.679150i 0.600620 0.799535i \(-0.294921\pi\)
−0.992727 + 0.120384i \(0.961587\pi\)
\(788\) 27.0000 0.961835
\(789\) 9.00000 + 15.5885i 0.320408 + 0.554964i
\(790\) 0 0
\(791\) −6.00000 + 10.3923i −0.213335 + 0.369508i
\(792\) 3.00000 0.106600
\(793\) 28.0000 + 6.92820i 0.994309 + 0.246028i
\(794\) 13.0000 0.461353
\(795\) 0 0
\(796\) 5.00000 8.66025i 0.177220 0.306955i
\(797\) 21.0000 + 36.3731i 0.743858 + 1.28840i 0.950726 + 0.310031i \(0.100340\pi\)
−0.206868 + 0.978369i \(0.566327\pi\)
\(798\) 10.0000 0.353996
\(799\) −9.00000 15.5885i −0.318397 0.551480i
\(800\) 0 0
\(801\) 9.00000 0.317999
\(802\) 7.50000 + 12.9904i 0.264834 + 0.458706i
\(803\) 21.0000 36.3731i 0.741074 1.28358i
\(804\) −16.0000 + 27.7128i −0.564276 + 0.977356i
\(805\) 0 0
\(806\) 4.00000 + 13.8564i 0.140894 + 0.488071i
\(807\) 12.0000 0.422420
\(808\) 3.00000 5.19615i 0.105540 0.182800i
\(809\) 9.00000 15.5885i 0.316423 0.548061i −0.663316 0.748340i \(-0.730851\pi\)
0.979739 + 0.200279i \(0.0641847\pi\)
\(810\) 0 0
\(811\) −49.0000 −1.72062 −0.860311 0.509769i \(-0.829731\pi\)
−0.860311 + 0.509769i \(0.829731\pi\)
\(812\) 0 0
\(813\) −20.0000 34.6410i −0.701431 1.21491i
\(814\) −33.0000 −1.15665
\(815\) 0 0
\(816\) −6.00000 + 10.3923i −0.210042 + 0.363803i
\(817\) 5.00000 8.66025i 0.174928 0.302984i
\(818\) 5.00000 0.174821
\(819\) −1.00000 3.46410i −0.0349428 0.121046i
\(820\) 0 0
\(821\) −18.0000 + 31.1769i −0.628204 + 1.08808i 0.359708 + 0.933065i \(0.382876\pi\)
−0.987912 + 0.155017i \(0.950457\pi\)
\(822\) 6.00000 10.3923i 0.209274 0.362473i
\(823\) −21.5000 37.2391i −0.749443 1.29807i −0.948090 0.318002i \(-0.896988\pi\)
0.198647 0.980071i \(-0.436345\pi\)
\(824\) −5.00000 −0.174183
\(825\) 0 0
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) 20.0000 34.6410i 0.694629 1.20313i −0.275677 0.961250i \(-0.588902\pi\)
0.970306 0.241882i \(-0.0777647\pi\)
\(830\) 0 0
\(831\) 2.00000 0.0693792
\(832\) −2.50000 + 2.59808i −0.0866719 + 0.0900721i
\(833\) −36.0000 −1.24733
\(834\) 19.0000 32.9090i 0.657916 1.13954i
\(835\) 0 0
\(836\) −7.50000 12.9904i −0.259393 0.449282i
\(837\) 16.0000 0.553041
\(838\) 18.0000 + 31.1769i 0.621800 + 1.07699i
\(839\) 12.0000 + 20.7846i 0.414286 + 0.717564i 0.995353 0.0962912i \(-0.0306980\pi\)
−0.581067 + 0.813856i \(0.697365\pi\)
\(840\) 0 0
\(841\) 14.5000 + 25.1147i 0.500000 + 0.866025i
\(842\) 5.00000 8.66025i 0.172311 0.298452i
\(843\) 6.00000 10.3923i 0.206651 0.357930i
\(844\) 23.0000 0.791693
\(845\) 0 0
\(846\) 3.00000 0.103142
\(847\) 1.00000 1.73205i 0.0343604 0.0595140i
\(848\) −4.50000 + 7.79423i −0.154531 + 0.267655i
\(849\) 14.0000 + 24.2487i 0.480479 + 0.832214i
\(850\) 0 0
\(851\) 0 0
\(852\) −6.00000 10.3923i −0.205557 0.356034i
\(853\) 46.0000 1.57501 0.787505 0.616308i \(-0.211372\pi\)
0.787505 + 0.616308i \(0.211372\pi\)
\(854\) −4.00000 6.92820i −0.136877 0.237078i
\(855\) 0 0
\(856\) −6.00000 + 10.3923i −0.205076 + 0.355202i
\(857\) 12.0000 0.409912 0.204956 0.978771i \(-0.434295\pi\)
0.204956 + 0.978771i \(0.434295\pi\)
\(858\) −15.0000 + 15.5885i −0.512092 + 0.532181i
\(859\) −31.0000 −1.05771 −0.528853 0.848713i \(-0.677378\pi\)
−0.528853 + 0.848713i \(0.677378\pi\)
\(860\) 0 0
\(861\) −6.00000 + 10.3923i −0.204479 + 0.354169i
\(862\) −15.0000 25.9808i −0.510902 0.884908i
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 2.00000 + 3.46410i 0.0680414 + 0.117851i
\(865\) 0 0
\(866\) 16.0000 0.543702
\(867\) −19.0000 32.9090i −0.645274 1.11765i
\(868\) 2.00000 3.46410i 0.0678844 0.117579i
\(869\) 24.0000 41.5692i 0.814144 1.41014i
\(870\) 0 0
\(871\) −16.0000 55.4256i −0.542139 1.87803i
\(872\) 2.00000 0.0677285
\(873\) −5.00000 + 8.66025i −0.169224 + 0.293105i
\(874\) 0 0
\(875\) 0 0
\(876\) −28.0000 −0.946032
\(877\) −5.00000 8.66025i −0.168838 0.292436i 0.769174 0.639040i \(-0.220668\pi\)
−0.938012 + 0.346604i \(0.887335\pi\)
\(878\) −10.0000 17.3205i −0.337484 0.584539i
\(879\) −18.0000 −0.607125
\(880\) 0 0
\(881\) 7.50000 12.9904i 0.252681 0.437657i −0.711582 0.702603i \(-0.752021\pi\)
0.964263 + 0.264946i \(0.0853542\pi\)
\(882\) 3.00000 5.19615i 0.101015 0.174964i
\(883\) 52.0000 1.74994 0.874970 0.484178i \(-0.160881\pi\)
0.874970 + 0.484178i \(0.160881\pi\)
\(884\) −6.00000 20.7846i −0.201802 0.699062i
\(885\) 0 0
\(886\) −9.00000 + 15.5885i −0.302361 + 0.523704i
\(887\) −13.5000 + 23.3827i −0.453286 + 0.785114i −0.998588 0.0531258i \(-0.983082\pi\)
0.545302 + 0.838240i \(0.316415\pi\)
\(888\) 11.0000 + 19.0526i 0.369136 + 0.639362i
\(889\) 1.00000 0.0335389
\(890\) 0 0
\(891\) 16.5000 + 28.5788i 0.552771 + 0.957427i
\(892\) 19.0000 0.636167
\(893\) −7.50000 12.9904i −0.250978 0.434707i
\(894\) 18.0000 31.1769i 0.602010 1.04271i
\(895\) 0 0
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) 9.00000 0.300334
\(899\) 0 0
\(900\) 0 0
\(901\) −27.0000 46.7654i −0.899500 1.55798i
\(902\) 18.0000 0.599334
\(903\) 2.00000 + 3.46410i 0.0665558 + 0.115278i
\(904\) −6.00000 10.3923i −0.199557 0.345643i
\(905\) 0 0
\(906\) 16.0000 + 27.7128i 0.531564 + 0.920697i
\(907\) 4.00000 6.92820i 0.132818 0.230047i −0.791944 0.610594i \(-0.790931\pi\)
0.924762 + 0.380547i \(0.124264\pi\)
\(908\) −12.0000 + 20.7846i −0.398234 + 0.689761i
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) −5.00000 + 8.66025i −0.165567 + 0.286770i
\(913\) −9.00000 + 15.5885i −0.297857 + 0.515903i
\(914\) −2.00000 3.46410i −0.0661541 0.114582i
\(915\) 0 0
\(916\) 2.00000 + 3.46410i 0.0660819 + 0.114457i
\(917\) 4.50000 + 7.79423i 0.148603 + 0.257388i
\(918\) −24.0000 −0.792118
\(919\) 17.0000 + 29.4449i 0.560778 + 0.971296i 0.997429 + 0.0716652i \(0.0228313\pi\)
−0.436650 + 0.899631i \(0.643835\pi\)
\(920\) 0 0
\(921\) 2.00000 3.46410i 0.0659022 0.114146i
\(922\) −42.0000 −1.38320
\(923\) 21.0000 + 5.19615i 0.691223 + 0.171033i
\(924\) 6.00000 0.197386
\(925\) 0 0
\(926\) 4.00000 6.92820i 0.131448 0.227675i
\(927\) 2.50000 + 4.33013i 0.0821108 + 0.142220i
\(928\) 0 0
\(929\) −21.0000 36.3731i −0.688988 1.19336i −0.972166 0.234294i \(-0.924722\pi\)
0.283178 0.959067i \(-0.408611\pi\)
\(930\) 0 0
\(931\) −30.0000 −0.983210
\(932\) −12.0000 20.7846i −0.393073 0.680823i
\(933\) −30.0000 + 51.9615i −0.982156 + 1.70114i
\(934\) −6.00000 + 10.3923i −0.196326 + 0.340047i
\(935\) 0 0
\(936\) 3.50000 + 0.866025i 0.114401 + 0.0283069i
\(937\) −50.0000 −1.63343 −0.816714 0.577042i \(-0.804207\pi\)
−0.816714 + 0.577042i \(0.804207\pi\)
\(938\) −8.00000 + 13.8564i −0.261209 + 0.452428i
\(939\) 14.0000 24.2487i 0.456873 0.791327i
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 17.0000 + 29.4449i 0.553890 + 0.959366i
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 3.00000 5.19615i 0.0975384 0.168941i
\(947\) 24.0000 41.5692i 0.779895 1.35082i −0.152106 0.988364i \(-0.548606\pi\)
0.932002 0.362454i \(-0.118061\pi\)
\(948\) −32.0000 −1.03931
\(949\) 35.0000 36.3731i 1.13615 1.18072i
\(950\) 0 0
\(951\) 15.0000 25.9808i 0.486408 0.842484i
\(952\) −3.00000 + 5.19615i −0.0972306 + 0.168408i
\(953\) 12.0000 + 20.7846i 0.388718 + 0.673280i 0.992277 0.124039i \(-0.0395847\pi\)
−0.603559 + 0.797318i \(0.706251\pi\)
\(954\) 9.00000 0.291386
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 15.0000 + 25.9808i 0.484628 + 0.839400i
\(959\) 3.00000 5.19615i 0.0968751 0.167793i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) −38.5000 9.52628i −1.24129 0.307140i
\(963\) 12.0000 0.386695
\(964\) −11.5000 + 19.9186i −0.370390 + 0.641534i
\(965\) 0 0
\(966\) 0 0
\(967\) −5.00000 −0.160789 −0.0803946 0.996763i \(-0.525618\pi\)
−0.0803946 + 0.996763i \(0.525618\pi\)
\(968\) 1.00000 + 1.73205i 0.0321412 + 0.0556702i
\(969\) −30.0000 51.9615i −0.963739 1.66924i
\(970\) 0 0
\(971\) −16.5000 28.5788i −0.529510 0.917139i −0.999408 0.0344175i \(-0.989042\pi\)
0.469897 0.882721i \(-0.344291\pi\)
\(972\) 5.00000 8.66025i 0.160375 0.277778i
\(973\) 9.50000 16.4545i 0.304556 0.527506i
\(974\) 19.0000 0.608799
\(975\) 0 0
\(976\) 8.00000 0.256074
\(977\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(978\) 2.00000 3.46410i 0.0639529 0.110770i
\(979\) −13.5000 23.3827i −0.431462 0.747314i
\(980\) 0 0
\(981\) −1.00000 1.73205i −0.0319275 0.0553001i
\(982\) −13.5000 23.3827i −0.430802 0.746171i
\(983\) −39.0000 −1.24391 −0.621953 0.783054i \(-0.713661\pi\)
−0.621953 + 0.783054i \(0.713661\pi\)
\(984\) −6.00000 10.3923i −0.191273 0.331295i
\(985\) 0 0
\(986\) 0 0
\(987\) 6.00000 0.190982
\(988\) −5.00000 17.3205i −0.159071 0.551039i
\(989\) 0 0
\(990\) 0 0
\(991\) 11.0000 19.0526i 0.349427 0.605224i −0.636721 0.771094i \(-0.719710\pi\)
0.986148 + 0.165870i \(0.0530431\pi\)
\(992\) 2.00000 + 3.46410i 0.0635001 + 0.109985i
\(993\) 40.0000 1.26936
\(994\) −3.00000 5.19615i −0.0951542 0.164812i
\(995\) 0 0
\(996\) 12.0000 0.380235
\(997\) 20.5000 + 35.5070i 0.649242 + 1.12452i 0.983304 + 0.181968i \(0.0582469\pi\)
−0.334063 + 0.942551i \(0.608420\pi\)
\(998\) 2.00000 3.46410i 0.0633089 0.109654i
\(999\) −22.0000 + 38.1051i −0.696049 + 1.20559i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.e.a.451.1 2
5.2 odd 4 650.2.o.b.399.1 4
5.3 odd 4 650.2.o.b.399.2 4
5.4 even 2 130.2.e.b.61.1 2
13.3 even 3 inner 650.2.e.a.601.1 2
13.4 even 6 8450.2.a.k.1.1 1
13.9 even 3 8450.2.a.w.1.1 1
15.14 odd 2 1170.2.i.f.451.1 2
20.19 odd 2 1040.2.q.c.321.1 2
65.3 odd 12 650.2.o.b.549.1 4
65.4 even 6 1690.2.a.g.1.1 1
65.9 even 6 1690.2.a.a.1.1 1
65.19 odd 12 1690.2.d.a.1351.2 2
65.24 odd 12 1690.2.l.i.361.1 4
65.29 even 6 130.2.e.b.81.1 yes 2
65.34 odd 4 1690.2.l.i.1161.2 4
65.42 odd 12 650.2.o.b.549.2 4
65.44 odd 4 1690.2.l.i.1161.1 4
65.49 even 6 1690.2.e.e.991.1 2
65.54 odd 12 1690.2.l.i.361.2 4
65.59 odd 12 1690.2.d.a.1351.1 2
65.64 even 2 1690.2.e.e.191.1 2
195.29 odd 6 1170.2.i.f.991.1 2
260.159 odd 6 1040.2.q.c.81.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.e.b.61.1 2 5.4 even 2
130.2.e.b.81.1 yes 2 65.29 even 6
650.2.e.a.451.1 2 1.1 even 1 trivial
650.2.e.a.601.1 2 13.3 even 3 inner
650.2.o.b.399.1 4 5.2 odd 4
650.2.o.b.399.2 4 5.3 odd 4
650.2.o.b.549.1 4 65.3 odd 12
650.2.o.b.549.2 4 65.42 odd 12
1040.2.q.c.81.1 2 260.159 odd 6
1040.2.q.c.321.1 2 20.19 odd 2
1170.2.i.f.451.1 2 15.14 odd 2
1170.2.i.f.991.1 2 195.29 odd 6
1690.2.a.a.1.1 1 65.9 even 6
1690.2.a.g.1.1 1 65.4 even 6
1690.2.d.a.1351.1 2 65.59 odd 12
1690.2.d.a.1351.2 2 65.19 odd 12
1690.2.e.e.191.1 2 65.64 even 2
1690.2.e.e.991.1 2 65.49 even 6
1690.2.l.i.361.1 4 65.24 odd 12
1690.2.l.i.361.2 4 65.54 odd 12
1690.2.l.i.1161.1 4 65.44 odd 4
1690.2.l.i.1161.2 4 65.34 odd 4
8450.2.a.k.1.1 1 13.4 even 6
8450.2.a.w.1.1 1 13.9 even 3