Properties

Label 650.2.o.b.549.1
Level $650$
Weight $2$
Character 650.549
Analytic conductor $5.190$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(399,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.399"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,0,-4,0,0,2,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 549.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 650.549
Dual form 650.2.o.b.399.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(1.73205 - 1.00000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.00000 + 1.73205i) q^{6} +(0.866025 + 0.500000i) q^{7} +1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(-1.50000 - 2.59808i) q^{11} -2.00000i q^{12} +(2.59808 - 2.50000i) q^{13} -1.00000 q^{14} +(-0.500000 - 0.866025i) q^{16} +(5.19615 + 3.00000i) q^{17} +1.00000i q^{18} +(2.50000 - 4.33013i) q^{19} +2.00000 q^{21} +(2.59808 + 1.50000i) q^{22} +(1.00000 + 1.73205i) q^{24} +(-1.00000 + 3.46410i) q^{26} +4.00000i q^{27} +(0.866025 - 0.500000i) q^{28} -4.00000 q^{31} +(0.866025 + 0.500000i) q^{32} +(-5.19615 - 3.00000i) q^{33} -6.00000 q^{34} +(-0.500000 - 0.866025i) q^{36} +(9.52628 - 5.50000i) q^{37} +5.00000i q^{38} +(2.00000 - 6.92820i) q^{39} +(-3.00000 - 5.19615i) q^{41} +(-1.73205 + 1.00000i) q^{42} +(1.73205 + 1.00000i) q^{43} -3.00000 q^{44} -3.00000i q^{47} +(-1.73205 - 1.00000i) q^{48} +(-3.00000 - 5.19615i) q^{49} +12.0000 q^{51} +(-0.866025 - 3.50000i) q^{52} +9.00000i q^{53} +(-2.00000 - 3.46410i) q^{54} +(-0.500000 + 0.866025i) q^{56} -10.0000i q^{57} +(-4.00000 + 6.92820i) q^{61} +(3.46410 - 2.00000i) q^{62} +(0.866025 - 0.500000i) q^{63} -1.00000 q^{64} +6.00000 q^{66} +(-13.8564 + 8.00000i) q^{67} +(5.19615 - 3.00000i) q^{68} +(-3.00000 + 5.19615i) q^{71} +(0.866025 + 0.500000i) q^{72} -14.0000i q^{73} +(-5.50000 + 9.52628i) q^{74} +(-2.50000 - 4.33013i) q^{76} -3.00000i q^{77} +(1.73205 + 7.00000i) q^{78} +16.0000 q^{79} +(5.50000 + 9.52628i) q^{81} +(5.19615 + 3.00000i) q^{82} +6.00000i q^{83} +(1.00000 - 1.73205i) q^{84} -2.00000 q^{86} +(2.59808 - 1.50000i) q^{88} +(4.50000 + 7.79423i) q^{89} +(3.50000 - 0.866025i) q^{91} +(-6.92820 + 4.00000i) q^{93} +(1.50000 + 2.59808i) q^{94} +2.00000 q^{96} +(8.66025 + 5.00000i) q^{97} +(5.19615 + 3.00000i) q^{98} -3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 4 q^{6} + 2 q^{9} - 6 q^{11} - 4 q^{14} - 2 q^{16} + 10 q^{19} + 8 q^{21} + 4 q^{24} - 4 q^{26} - 16 q^{31} - 24 q^{34} - 2 q^{36} + 8 q^{39} - 12 q^{41} - 12 q^{44} - 12 q^{49} + 48 q^{51}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 1.73205 1.00000i 1.00000 0.577350i 0.0917517 0.995782i \(-0.470753\pi\)
0.908248 + 0.418432i \(0.137420\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) −1.00000 + 1.73205i −0.408248 + 0.707107i
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i 0.654654 0.755929i \(-0.272814\pi\)
−0.327327 + 0.944911i \(0.606148\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) −1.50000 2.59808i −0.452267 0.783349i 0.546259 0.837616i \(-0.316051\pi\)
−0.998526 + 0.0542666i \(0.982718\pi\)
\(12\) 2.00000i 0.577350i
\(13\) 2.59808 2.50000i 0.720577 0.693375i
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 5.19615 + 3.00000i 1.26025 + 0.727607i 0.973123 0.230285i \(-0.0739659\pi\)
0.287129 + 0.957892i \(0.407299\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 2.50000 4.33013i 0.573539 0.993399i −0.422659 0.906289i \(-0.638903\pi\)
0.996199 0.0871106i \(-0.0277634\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 2.59808 + 1.50000i 0.553912 + 0.319801i
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 1.00000 + 1.73205i 0.204124 + 0.353553i
\(25\) 0 0
\(26\) −1.00000 + 3.46410i −0.196116 + 0.679366i
\(27\) 4.00000i 0.769800i
\(28\) 0.866025 0.500000i 0.163663 0.0944911i
\(29\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) −5.19615 3.00000i −0.904534 0.522233i
\(34\) −6.00000 −1.02899
\(35\) 0 0
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 9.52628 5.50000i 1.56611 0.904194i 0.569495 0.821995i \(-0.307139\pi\)
0.996616 0.0821995i \(-0.0261945\pi\)
\(38\) 5.00000i 0.811107i
\(39\) 2.00000 6.92820i 0.320256 1.10940i
\(40\) 0 0
\(41\) −3.00000 5.19615i −0.468521 0.811503i 0.530831 0.847477i \(-0.321880\pi\)
−0.999353 + 0.0359748i \(0.988546\pi\)
\(42\) −1.73205 + 1.00000i −0.267261 + 0.154303i
\(43\) 1.73205 + 1.00000i 0.264135 + 0.152499i 0.626219 0.779647i \(-0.284601\pi\)
−0.362084 + 0.932145i \(0.617935\pi\)
\(44\) −3.00000 −0.452267
\(45\) 0 0
\(46\) 0 0
\(47\) 3.00000i 0.437595i −0.975770 0.218797i \(-0.929787\pi\)
0.975770 0.218797i \(-0.0702134\pi\)
\(48\) −1.73205 1.00000i −0.250000 0.144338i
\(49\) −3.00000 5.19615i −0.428571 0.742307i
\(50\) 0 0
\(51\) 12.0000 1.68034
\(52\) −0.866025 3.50000i −0.120096 0.485363i
\(53\) 9.00000i 1.23625i 0.786082 + 0.618123i \(0.212106\pi\)
−0.786082 + 0.618123i \(0.787894\pi\)
\(54\) −2.00000 3.46410i −0.272166 0.471405i
\(55\) 0 0
\(56\) −0.500000 + 0.866025i −0.0668153 + 0.115728i
\(57\) 10.0000i 1.32453i
\(58\) 0 0
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) −4.00000 + 6.92820i −0.512148 + 0.887066i 0.487753 + 0.872982i \(0.337817\pi\)
−0.999901 + 0.0140840i \(0.995517\pi\)
\(62\) 3.46410 2.00000i 0.439941 0.254000i
\(63\) 0.866025 0.500000i 0.109109 0.0629941i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 6.00000 0.738549
\(67\) −13.8564 + 8.00000i −1.69283 + 0.977356i −0.740613 + 0.671932i \(0.765465\pi\)
−0.952217 + 0.305424i \(0.901202\pi\)
\(68\) 5.19615 3.00000i 0.630126 0.363803i
\(69\) 0 0
\(70\) 0 0
\(71\) −3.00000 + 5.19615i −0.356034 + 0.616670i −0.987294 0.158901i \(-0.949205\pi\)
0.631260 + 0.775571i \(0.282538\pi\)
\(72\) 0.866025 + 0.500000i 0.102062 + 0.0589256i
\(73\) 14.0000i 1.63858i −0.573382 0.819288i \(-0.694369\pi\)
0.573382 0.819288i \(-0.305631\pi\)
\(74\) −5.50000 + 9.52628i −0.639362 + 1.10741i
\(75\) 0 0
\(76\) −2.50000 4.33013i −0.286770 0.496700i
\(77\) 3.00000i 0.341882i
\(78\) 1.73205 + 7.00000i 0.196116 + 0.792594i
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) 0 0
\(81\) 5.50000 + 9.52628i 0.611111 + 1.05848i
\(82\) 5.19615 + 3.00000i 0.573819 + 0.331295i
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 1.00000 1.73205i 0.109109 0.188982i
\(85\) 0 0
\(86\) −2.00000 −0.215666
\(87\) 0 0
\(88\) 2.59808 1.50000i 0.276956 0.159901i
\(89\) 4.50000 + 7.79423i 0.476999 + 0.826187i 0.999653 0.0263586i \(-0.00839118\pi\)
−0.522654 + 0.852545i \(0.675058\pi\)
\(90\) 0 0
\(91\) 3.50000 0.866025i 0.366900 0.0907841i
\(92\) 0 0
\(93\) −6.92820 + 4.00000i −0.718421 + 0.414781i
\(94\) 1.50000 + 2.59808i 0.154713 + 0.267971i
\(95\) 0 0
\(96\) 2.00000 0.204124
\(97\) 8.66025 + 5.00000i 0.879316 + 0.507673i 0.870433 0.492287i \(-0.163839\pi\)
0.00888289 + 0.999961i \(0.497172\pi\)
\(98\) 5.19615 + 3.00000i 0.524891 + 0.303046i
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) 3.00000 + 5.19615i 0.298511 + 0.517036i 0.975796 0.218685i \(-0.0701767\pi\)
−0.677284 + 0.735721i \(0.736843\pi\)
\(102\) −10.3923 + 6.00000i −1.02899 + 0.594089i
\(103\) 5.00000i 0.492665i −0.969185 0.246332i \(-0.920775\pi\)
0.969185 0.246332i \(-0.0792255\pi\)
\(104\) 2.50000 + 2.59808i 0.245145 + 0.254762i
\(105\) 0 0
\(106\) −4.50000 7.79423i −0.437079 0.757042i
\(107\) −10.3923 + 6.00000i −1.00466 + 0.580042i −0.909624 0.415432i \(-0.863630\pi\)
−0.0950377 + 0.995474i \(0.530297\pi\)
\(108\) 3.46410 + 2.00000i 0.333333 + 0.192450i
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 11.0000 19.0526i 1.04407 1.80839i
\(112\) 1.00000i 0.0944911i
\(113\) −10.3923 6.00000i −0.977626 0.564433i −0.0760733 0.997102i \(-0.524238\pi\)
−0.901553 + 0.432670i \(0.857572\pi\)
\(114\) 5.00000 + 8.66025i 0.468293 + 0.811107i
\(115\) 0 0
\(116\) 0 0
\(117\) −0.866025 3.50000i −0.0800641 0.323575i
\(118\) 0 0
\(119\) 3.00000 + 5.19615i 0.275010 + 0.476331i
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 8.00000i 0.724286i
\(123\) −10.3923 6.00000i −0.937043 0.541002i
\(124\) −2.00000 + 3.46410i −0.179605 + 0.311086i
\(125\) 0 0
\(126\) −0.500000 + 0.866025i −0.0445435 + 0.0771517i
\(127\) −0.866025 + 0.500000i −0.0768473 + 0.0443678i −0.537931 0.842989i \(-0.680794\pi\)
0.461084 + 0.887357i \(0.347461\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) −9.00000 −0.786334 −0.393167 0.919467i \(-0.628621\pi\)
−0.393167 + 0.919467i \(0.628621\pi\)
\(132\) −5.19615 + 3.00000i −0.452267 + 0.261116i
\(133\) 4.33013 2.50000i 0.375470 0.216777i
\(134\) 8.00000 13.8564i 0.691095 1.19701i
\(135\) 0 0
\(136\) −3.00000 + 5.19615i −0.257248 + 0.445566i
\(137\) −5.19615 3.00000i −0.443937 0.256307i 0.261329 0.965250i \(-0.415839\pi\)
−0.705266 + 0.708942i \(0.749173\pi\)
\(138\) 0 0
\(139\) −9.50000 + 16.4545i −0.805779 + 1.39565i 0.109984 + 0.993933i \(0.464920\pi\)
−0.915764 + 0.401718i \(0.868413\pi\)
\(140\) 0 0
\(141\) −3.00000 5.19615i −0.252646 0.437595i
\(142\) 6.00000i 0.503509i
\(143\) −10.3923 3.00000i −0.869048 0.250873i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) 7.00000 + 12.1244i 0.579324 + 1.00342i
\(147\) −10.3923 6.00000i −0.857143 0.494872i
\(148\) 11.0000i 0.904194i
\(149\) −9.00000 + 15.5885i −0.737309 + 1.27706i 0.216394 + 0.976306i \(0.430570\pi\)
−0.953703 + 0.300750i \(0.902763\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 4.33013 + 2.50000i 0.351220 + 0.202777i
\(153\) 5.19615 3.00000i 0.420084 0.242536i
\(154\) 1.50000 + 2.59808i 0.120873 + 0.209359i
\(155\) 0 0
\(156\) −5.00000 5.19615i −0.400320 0.416025i
\(157\) 17.0000i 1.35675i 0.734717 + 0.678374i \(0.237315\pi\)
−0.734717 + 0.678374i \(0.762685\pi\)
\(158\) −13.8564 + 8.00000i −1.10236 + 0.636446i
\(159\) 9.00000 + 15.5885i 0.713746 + 1.23625i
\(160\) 0 0
\(161\) 0 0
\(162\) −9.52628 5.50000i −0.748455 0.432121i
\(163\) 1.73205 + 1.00000i 0.135665 + 0.0783260i 0.566296 0.824202i \(-0.308376\pi\)
−0.430632 + 0.902528i \(0.641709\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) −3.00000 5.19615i −0.232845 0.403300i
\(167\) −12.9904 + 7.50000i −1.00523 + 0.580367i −0.909790 0.415068i \(-0.863758\pi\)
−0.0954356 + 0.995436i \(0.530424\pi\)
\(168\) 2.00000i 0.154303i
\(169\) 0.500000 12.9904i 0.0384615 0.999260i
\(170\) 0 0
\(171\) −2.50000 4.33013i −0.191180 0.331133i
\(172\) 1.73205 1.00000i 0.132068 0.0762493i
\(173\) 12.9904 + 7.50000i 0.987640 + 0.570214i 0.904568 0.426329i \(-0.140193\pi\)
0.0830722 + 0.996544i \(0.473527\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.50000 + 2.59808i −0.113067 + 0.195837i
\(177\) 0 0
\(178\) −7.79423 4.50000i −0.584202 0.337289i
\(179\) −12.0000 20.7846i −0.896922 1.55351i −0.831408 0.555663i \(-0.812464\pi\)
−0.0655145 0.997852i \(-0.520869\pi\)
\(180\) 0 0
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) −2.59808 + 2.50000i −0.192582 + 0.185312i
\(183\) 16.0000i 1.18275i
\(184\) 0 0
\(185\) 0 0
\(186\) 4.00000 6.92820i 0.293294 0.508001i
\(187\) 18.0000i 1.31629i
\(188\) −2.59808 1.50000i −0.189484 0.109399i
\(189\) −2.00000 + 3.46410i −0.145479 + 0.251976i
\(190\) 0 0
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) −1.73205 + 1.00000i −0.125000 + 0.0721688i
\(193\) 3.46410 2.00000i 0.249351 0.143963i −0.370116 0.928986i \(-0.620682\pi\)
0.619467 + 0.785022i \(0.287349\pi\)
\(194\) −10.0000 −0.717958
\(195\) 0 0
\(196\) −6.00000 −0.428571
\(197\) −23.3827 + 13.5000i −1.66595 + 0.961835i −0.696159 + 0.717888i \(0.745109\pi\)
−0.969788 + 0.243947i \(0.921558\pi\)
\(198\) 2.59808 1.50000i 0.184637 0.106600i
\(199\) −5.00000 + 8.66025i −0.354441 + 0.613909i −0.987022 0.160585i \(-0.948662\pi\)
0.632581 + 0.774494i \(0.281995\pi\)
\(200\) 0 0
\(201\) −16.0000 + 27.7128i −1.12855 + 1.95471i
\(202\) −5.19615 3.00000i −0.365600 0.211079i
\(203\) 0 0
\(204\) 6.00000 10.3923i 0.420084 0.727607i
\(205\) 0 0
\(206\) 2.50000 + 4.33013i 0.174183 + 0.301694i
\(207\) 0 0
\(208\) −3.46410 1.00000i −0.240192 0.0693375i
\(209\) −15.0000 −1.03757
\(210\) 0 0
\(211\) −11.5000 19.9186i −0.791693 1.37125i −0.924918 0.380166i \(-0.875867\pi\)
0.133226 0.991086i \(-0.457467\pi\)
\(212\) 7.79423 + 4.50000i 0.535310 + 0.309061i
\(213\) 12.0000i 0.822226i
\(214\) 6.00000 10.3923i 0.410152 0.710403i
\(215\) 0 0
\(216\) −4.00000 −0.272166
\(217\) −3.46410 2.00000i −0.235159 0.135769i
\(218\) 1.73205 1.00000i 0.117309 0.0677285i
\(219\) −14.0000 24.2487i −0.946032 1.63858i
\(220\) 0 0
\(221\) 21.0000 5.19615i 1.41261 0.349531i
\(222\) 22.0000i 1.47654i
\(223\) 16.4545 9.50000i 1.10187 0.636167i 0.165161 0.986267i \(-0.447186\pi\)
0.936713 + 0.350100i \(0.113852\pi\)
\(224\) 0.500000 + 0.866025i 0.0334077 + 0.0578638i
\(225\) 0 0
\(226\) 12.0000 0.798228
\(227\) 20.7846 + 12.0000i 1.37952 + 0.796468i 0.992102 0.125435i \(-0.0400326\pi\)
0.387421 + 0.921903i \(0.373366\pi\)
\(228\) −8.66025 5.00000i −0.573539 0.331133i
\(229\) 4.00000 0.264327 0.132164 0.991228i \(-0.457808\pi\)
0.132164 + 0.991228i \(0.457808\pi\)
\(230\) 0 0
\(231\) −3.00000 5.19615i −0.197386 0.341882i
\(232\) 0 0
\(233\) 24.0000i 1.57229i 0.618041 + 0.786146i \(0.287927\pi\)
−0.618041 + 0.786146i \(0.712073\pi\)
\(234\) 2.50000 + 2.59808i 0.163430 + 0.169842i
\(235\) 0 0
\(236\) 0 0
\(237\) 27.7128 16.0000i 1.80014 1.03931i
\(238\) −5.19615 3.00000i −0.336817 0.194461i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −11.5000 + 19.9186i −0.740780 + 1.28307i 0.211360 + 0.977408i \(0.432211\pi\)
−0.952141 + 0.305661i \(0.901123\pi\)
\(242\) 2.00000i 0.128565i
\(243\) 8.66025 + 5.00000i 0.555556 + 0.320750i
\(244\) 4.00000 + 6.92820i 0.256074 + 0.443533i
\(245\) 0 0
\(246\) 12.0000 0.765092
\(247\) −4.33013 17.5000i −0.275519 1.11350i
\(248\) 4.00000i 0.254000i
\(249\) 6.00000 + 10.3923i 0.380235 + 0.658586i
\(250\) 0 0
\(251\) 7.50000 12.9904i 0.473396 0.819946i −0.526140 0.850398i \(-0.676361\pi\)
0.999536 + 0.0304521i \(0.00969471\pi\)
\(252\) 1.00000i 0.0629941i
\(253\) 0 0
\(254\) 0.500000 0.866025i 0.0313728 0.0543393i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 10.3923 6.00000i 0.648254 0.374270i −0.139533 0.990217i \(-0.544560\pi\)
0.787787 + 0.615948i \(0.211227\pi\)
\(258\) −3.46410 + 2.00000i −0.215666 + 0.124515i
\(259\) 11.0000 0.683507
\(260\) 0 0
\(261\) 0 0
\(262\) 7.79423 4.50000i 0.481529 0.278011i
\(263\) −7.79423 + 4.50000i −0.480613 + 0.277482i −0.720672 0.693276i \(-0.756167\pi\)
0.240059 + 0.970758i \(0.422833\pi\)
\(264\) 3.00000 5.19615i 0.184637 0.319801i
\(265\) 0 0
\(266\) −2.50000 + 4.33013i −0.153285 + 0.265497i
\(267\) 15.5885 + 9.00000i 0.953998 + 0.550791i
\(268\) 16.0000i 0.977356i
\(269\) 3.00000 5.19615i 0.182913 0.316815i −0.759958 0.649972i \(-0.774781\pi\)
0.942871 + 0.333157i \(0.108114\pi\)
\(270\) 0 0
\(271\) −10.0000 17.3205i −0.607457 1.05215i −0.991658 0.128897i \(-0.958856\pi\)
0.384201 0.923249i \(-0.374477\pi\)
\(272\) 6.00000i 0.363803i
\(273\) 5.19615 5.00000i 0.314485 0.302614i
\(274\) 6.00000 0.362473
\(275\) 0 0
\(276\) 0 0
\(277\) 0.866025 + 0.500000i 0.0520344 + 0.0300421i 0.525792 0.850613i \(-0.323769\pi\)
−0.473757 + 0.880656i \(0.657103\pi\)
\(278\) 19.0000i 1.13954i
\(279\) −2.00000 + 3.46410i −0.119737 + 0.207390i
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 5.19615 + 3.00000i 0.309426 + 0.178647i
\(283\) −12.1244 + 7.00000i −0.720718 + 0.416107i −0.815017 0.579437i \(-0.803272\pi\)
0.0942988 + 0.995544i \(0.469939\pi\)
\(284\) 3.00000 + 5.19615i 0.178017 + 0.308335i
\(285\) 0 0
\(286\) 10.5000 2.59808i 0.620878 0.153627i
\(287\) 6.00000i 0.354169i
\(288\) 0.866025 0.500000i 0.0510310 0.0294628i
\(289\) 9.50000 + 16.4545i 0.558824 + 0.967911i
\(290\) 0 0
\(291\) 20.0000 1.17242
\(292\) −12.1244 7.00000i −0.709524 0.409644i
\(293\) 7.79423 + 4.50000i 0.455344 + 0.262893i 0.710084 0.704117i \(-0.248657\pi\)
−0.254741 + 0.967009i \(0.581990\pi\)
\(294\) 12.0000 0.699854
\(295\) 0 0
\(296\) 5.50000 + 9.52628i 0.319681 + 0.553704i
\(297\) 10.3923 6.00000i 0.603023 0.348155i
\(298\) 18.0000i 1.04271i
\(299\) 0 0
\(300\) 0 0
\(301\) 1.00000 + 1.73205i 0.0576390 + 0.0998337i
\(302\) 13.8564 8.00000i 0.797347 0.460348i
\(303\) 10.3923 + 6.00000i 0.597022 + 0.344691i
\(304\) −5.00000 −0.286770
\(305\) 0 0
\(306\) −3.00000 + 5.19615i −0.171499 + 0.297044i
\(307\) 2.00000i 0.114146i 0.998370 + 0.0570730i \(0.0181768\pi\)
−0.998370 + 0.0570730i \(0.981823\pi\)
\(308\) −2.59808 1.50000i −0.148039 0.0854704i
\(309\) −5.00000 8.66025i −0.284440 0.492665i
\(310\) 0 0
\(311\) 30.0000 1.70114 0.850572 0.525859i \(-0.176256\pi\)
0.850572 + 0.525859i \(0.176256\pi\)
\(312\) 6.92820 + 2.00000i 0.392232 + 0.113228i
\(313\) 14.0000i 0.791327i −0.918396 0.395663i \(-0.870515\pi\)
0.918396 0.395663i \(-0.129485\pi\)
\(314\) −8.50000 14.7224i −0.479683 0.830835i
\(315\) 0 0
\(316\) 8.00000 13.8564i 0.450035 0.779484i
\(317\) 15.0000i 0.842484i 0.906948 + 0.421242i \(0.138406\pi\)
−0.906948 + 0.421242i \(0.861594\pi\)
\(318\) −15.5885 9.00000i −0.874157 0.504695i
\(319\) 0 0
\(320\) 0 0
\(321\) −12.0000 + 20.7846i −0.669775 + 1.16008i
\(322\) 0 0
\(323\) 25.9808 15.0000i 1.44561 0.834622i
\(324\) 11.0000 0.611111
\(325\) 0 0
\(326\) −2.00000 −0.110770
\(327\) −3.46410 + 2.00000i −0.191565 + 0.110600i
\(328\) 5.19615 3.00000i 0.286910 0.165647i
\(329\) 1.50000 2.59808i 0.0826977 0.143237i
\(330\) 0 0
\(331\) −10.0000 + 17.3205i −0.549650 + 0.952021i 0.448649 + 0.893708i \(0.351905\pi\)
−0.998298 + 0.0583130i \(0.981428\pi\)
\(332\) 5.19615 + 3.00000i 0.285176 + 0.164646i
\(333\) 11.0000i 0.602796i
\(334\) 7.50000 12.9904i 0.410382 0.710802i
\(335\) 0 0
\(336\) −1.00000 1.73205i −0.0545545 0.0944911i
\(337\) 16.0000i 0.871576i −0.900049 0.435788i \(-0.856470\pi\)
0.900049 0.435788i \(-0.143530\pi\)
\(338\) 6.06218 + 11.5000i 0.329739 + 0.625518i
\(339\) −24.0000 −1.30350
\(340\) 0 0
\(341\) 6.00000 + 10.3923i 0.324918 + 0.562775i
\(342\) 4.33013 + 2.50000i 0.234146 + 0.135185i
\(343\) 13.0000i 0.701934i
\(344\) −1.00000 + 1.73205i −0.0539164 + 0.0933859i
\(345\) 0 0
\(346\) −15.0000 −0.806405
\(347\) −5.19615 3.00000i −0.278944 0.161048i 0.354001 0.935245i \(-0.384821\pi\)
−0.632945 + 0.774197i \(0.718154\pi\)
\(348\) 0 0
\(349\) 1.00000 + 1.73205i 0.0535288 + 0.0927146i 0.891548 0.452926i \(-0.149620\pi\)
−0.838019 + 0.545640i \(0.816286\pi\)
\(350\) 0 0
\(351\) 10.0000 + 10.3923i 0.533761 + 0.554700i
\(352\) 3.00000i 0.159901i
\(353\) −5.19615 + 3.00000i −0.276563 + 0.159674i −0.631867 0.775077i \(-0.717711\pi\)
0.355303 + 0.934751i \(0.384378\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 9.00000 0.476999
\(357\) 10.3923 + 6.00000i 0.550019 + 0.317554i
\(358\) 20.7846 + 12.0000i 1.09850 + 0.634220i
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) −3.00000 5.19615i −0.157895 0.273482i
\(362\) −6.92820 + 4.00000i −0.364138 + 0.210235i
\(363\) 4.00000i 0.209946i
\(364\) 1.00000 3.46410i 0.0524142 0.181568i
\(365\) 0 0
\(366\) −8.00000 13.8564i −0.418167 0.724286i
\(367\) 27.7128 16.0000i 1.44660 0.835193i 0.448320 0.893873i \(-0.352022\pi\)
0.998277 + 0.0586798i \(0.0186891\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) −4.50000 + 7.79423i −0.233628 + 0.404656i
\(372\) 8.00000i 0.414781i
\(373\) 12.1244 + 7.00000i 0.627775 + 0.362446i 0.779890 0.625917i \(-0.215275\pi\)
−0.152115 + 0.988363i \(0.548608\pi\)
\(374\) 9.00000 + 15.5885i 0.465379 + 0.806060i
\(375\) 0 0
\(376\) 3.00000 0.154713
\(377\) 0 0
\(378\) 4.00000i 0.205738i
\(379\) −9.50000 16.4545i −0.487982 0.845210i 0.511922 0.859032i \(-0.328934\pi\)
−0.999904 + 0.0138218i \(0.995600\pi\)
\(380\) 0 0
\(381\) −1.00000 + 1.73205i −0.0512316 + 0.0887357i
\(382\) 0 0
\(383\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(384\) 1.00000 1.73205i 0.0510310 0.0883883i
\(385\) 0 0
\(386\) −2.00000 + 3.46410i −0.101797 + 0.176318i
\(387\) 1.73205 1.00000i 0.0880451 0.0508329i
\(388\) 8.66025 5.00000i 0.439658 0.253837i
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 5.19615 3.00000i 0.262445 0.151523i
\(393\) −15.5885 + 9.00000i −0.786334 + 0.453990i
\(394\) 13.5000 23.3827i 0.680120 1.17800i
\(395\) 0 0
\(396\) −1.50000 + 2.59808i −0.0753778 + 0.130558i
\(397\) 11.2583 + 6.50000i 0.565039 + 0.326226i 0.755166 0.655534i \(-0.227556\pi\)
−0.190126 + 0.981760i \(0.560890\pi\)
\(398\) 10.0000i 0.501255i
\(399\) 5.00000 8.66025i 0.250313 0.433555i
\(400\) 0 0
\(401\) 7.50000 + 12.9904i 0.374532 + 0.648709i 0.990257 0.139253i \(-0.0444700\pi\)
−0.615725 + 0.787961i \(0.711137\pi\)
\(402\) 32.0000i 1.59601i
\(403\) −10.3923 + 10.0000i −0.517678 + 0.498135i
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) −28.5788 16.5000i −1.41660 0.817875i
\(408\) 12.0000i 0.594089i
\(409\) 2.50000 4.33013i 0.123617 0.214111i −0.797574 0.603220i \(-0.793884\pi\)
0.921192 + 0.389109i \(0.127217\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) −4.33013 2.50000i −0.213330 0.123166i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 3.50000 0.866025i 0.171602 0.0424604i
\(417\) 38.0000i 1.86087i
\(418\) 12.9904 7.50000i 0.635380 0.366837i
\(419\) −18.0000 31.1769i −0.879358 1.52309i −0.852047 0.523465i \(-0.824639\pi\)
−0.0273103 0.999627i \(-0.508694\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 19.9186 + 11.5000i 0.969622 + 0.559811i
\(423\) −2.59808 1.50000i −0.126323 0.0729325i
\(424\) −9.00000 −0.437079
\(425\) 0 0
\(426\) −6.00000 10.3923i −0.290701 0.503509i
\(427\) −6.92820 + 4.00000i −0.335279 + 0.193574i
\(428\) 12.0000i 0.580042i
\(429\) −21.0000 + 5.19615i −1.01389 + 0.250873i
\(430\) 0 0
\(431\) −15.0000 25.9808i −0.722525 1.25145i −0.959985 0.280052i \(-0.909648\pi\)
0.237460 0.971397i \(-0.423685\pi\)
\(432\) 3.46410 2.00000i 0.166667 0.0962250i
\(433\) −13.8564 8.00000i −0.665896 0.384455i 0.128624 0.991693i \(-0.458944\pi\)
−0.794520 + 0.607238i \(0.792277\pi\)
\(434\) 4.00000 0.192006
\(435\) 0 0
\(436\) −1.00000 + 1.73205i −0.0478913 + 0.0829502i
\(437\) 0 0
\(438\) 24.2487 + 14.0000i 1.15865 + 0.668946i
\(439\) 10.0000 + 17.3205i 0.477274 + 0.826663i 0.999661 0.0260459i \(-0.00829161\pi\)
−0.522387 + 0.852709i \(0.674958\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) −15.5885 + 15.0000i −0.741467 + 0.713477i
\(443\) 18.0000i 0.855206i 0.903967 + 0.427603i \(0.140642\pi\)
−0.903967 + 0.427603i \(0.859358\pi\)
\(444\) −11.0000 19.0526i −0.522037 0.904194i
\(445\) 0 0
\(446\) −9.50000 + 16.4545i −0.449838 + 0.779142i
\(447\) 36.0000i 1.70274i
\(448\) −0.866025 0.500000i −0.0409159 0.0236228i
\(449\) 4.50000 7.79423i 0.212368 0.367832i −0.740087 0.672511i \(-0.765216\pi\)
0.952455 + 0.304679i \(0.0985491\pi\)
\(450\) 0 0
\(451\) −9.00000 + 15.5885i −0.423793 + 0.734032i
\(452\) −10.3923 + 6.00000i −0.488813 + 0.282216i
\(453\) −27.7128 + 16.0000i −1.30206 + 0.751746i
\(454\) −24.0000 −1.12638
\(455\) 0 0
\(456\) 10.0000 0.468293
\(457\) −3.46410 + 2.00000i −0.162044 + 0.0935561i −0.578829 0.815449i \(-0.696490\pi\)
0.416785 + 0.909005i \(0.363157\pi\)
\(458\) −3.46410 + 2.00000i −0.161867 + 0.0934539i
\(459\) −12.0000 + 20.7846i −0.560112 + 0.970143i
\(460\) 0 0
\(461\) 21.0000 36.3731i 0.978068 1.69406i 0.308651 0.951175i \(-0.400123\pi\)
0.669417 0.742887i \(-0.266544\pi\)
\(462\) 5.19615 + 3.00000i 0.241747 + 0.139573i
\(463\) 8.00000i 0.371792i −0.982569 0.185896i \(-0.940481\pi\)
0.982569 0.185896i \(-0.0595187\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −12.0000 20.7846i −0.555889 0.962828i
\(467\) 12.0000i 0.555294i −0.960683 0.277647i \(-0.910445\pi\)
0.960683 0.277647i \(-0.0895545\pi\)
\(468\) −3.46410 1.00000i −0.160128 0.0462250i
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) 17.0000 + 29.4449i 0.783319 + 1.35675i
\(472\) 0 0
\(473\) 6.00000i 0.275880i
\(474\) −16.0000 + 27.7128i −0.734904 + 1.27289i
\(475\) 0 0
\(476\) 6.00000 0.275010
\(477\) 7.79423 + 4.50000i 0.356873 + 0.206041i
\(478\) 0 0
\(479\) −15.0000 25.9808i −0.685367 1.18709i −0.973321 0.229447i \(-0.926308\pi\)
0.287954 0.957644i \(-0.407025\pi\)
\(480\) 0 0
\(481\) 11.0000 38.1051i 0.501557 1.73744i
\(482\) 23.0000i 1.04762i
\(483\) 0 0
\(484\) −1.00000 1.73205i −0.0454545 0.0787296i
\(485\) 0 0
\(486\) −10.0000 −0.453609
\(487\) 16.4545 + 9.50000i 0.745624 + 0.430486i 0.824110 0.566429i \(-0.191675\pi\)
−0.0784867 + 0.996915i \(0.525009\pi\)
\(488\) −6.92820 4.00000i −0.313625 0.181071i
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) −13.5000 23.3827i −0.609246 1.05525i −0.991365 0.131132i \(-0.958139\pi\)
0.382118 0.924113i \(-0.375195\pi\)
\(492\) −10.3923 + 6.00000i −0.468521 + 0.270501i
\(493\) 0 0
\(494\) 12.5000 + 12.9904i 0.562402 + 0.584465i
\(495\) 0 0
\(496\) 2.00000 + 3.46410i 0.0898027 + 0.155543i
\(497\) −5.19615 + 3.00000i −0.233079 + 0.134568i
\(498\) −10.3923 6.00000i −0.465690 0.268866i
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 0 0
\(501\) −15.0000 + 25.9808i −0.670151 + 1.16073i
\(502\) 15.0000i 0.669483i
\(503\) 7.79423 + 4.50000i 0.347527 + 0.200645i 0.663596 0.748091i \(-0.269030\pi\)
−0.316068 + 0.948736i \(0.602363\pi\)
\(504\) 0.500000 + 0.866025i 0.0222718 + 0.0385758i
\(505\) 0 0
\(506\) 0 0
\(507\) −12.1244 23.0000i −0.538462 1.02147i
\(508\) 1.00000i 0.0443678i
\(509\) 3.00000 + 5.19615i 0.132973 + 0.230315i 0.924821 0.380402i \(-0.124214\pi\)
−0.791849 + 0.610718i \(0.790881\pi\)
\(510\) 0 0
\(511\) 7.00000 12.1244i 0.309662 0.536350i
\(512\) 1.00000i 0.0441942i
\(513\) 17.3205 + 10.0000i 0.764719 + 0.441511i
\(514\) −6.00000 + 10.3923i −0.264649 + 0.458385i
\(515\) 0 0
\(516\) 2.00000 3.46410i 0.0880451 0.152499i
\(517\) −7.79423 + 4.50000i −0.342790 + 0.197910i
\(518\) −9.52628 + 5.50000i −0.418561 + 0.241656i
\(519\) 30.0000 1.31685
\(520\) 0 0
\(521\) −27.0000 −1.18289 −0.591446 0.806345i \(-0.701443\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(522\) 0 0
\(523\) −12.1244 + 7.00000i −0.530161 + 0.306089i −0.741082 0.671414i \(-0.765687\pi\)
0.210921 + 0.977503i \(0.432354\pi\)
\(524\) −4.50000 + 7.79423i −0.196583 + 0.340492i
\(525\) 0 0
\(526\) 4.50000 7.79423i 0.196209 0.339845i
\(527\) −20.7846 12.0000i −0.905392 0.522728i
\(528\) 6.00000i 0.261116i
\(529\) −11.5000 + 19.9186i −0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 5.00000i 0.216777i
\(533\) −20.7846 6.00000i −0.900281 0.259889i
\(534\) −18.0000 −0.778936
\(535\) 0 0
\(536\) −8.00000 13.8564i −0.345547 0.598506i
\(537\) −41.5692 24.0000i −1.79384 1.03568i
\(538\) 6.00000i 0.258678i
\(539\) −9.00000 + 15.5885i −0.387657 + 0.671442i
\(540\) 0 0
\(541\) 20.0000 0.859867 0.429934 0.902861i \(-0.358537\pi\)
0.429934 + 0.902861i \(0.358537\pi\)
\(542\) 17.3205 + 10.0000i 0.743980 + 0.429537i
\(543\) 13.8564 8.00000i 0.594635 0.343313i
\(544\) 3.00000 + 5.19615i 0.128624 + 0.222783i
\(545\) 0 0
\(546\) −2.00000 + 6.92820i −0.0855921 + 0.296500i
\(547\) 34.0000i 1.45374i −0.686778 0.726868i \(-0.740975\pi\)
0.686778 0.726868i \(-0.259025\pi\)
\(548\) −5.19615 + 3.00000i −0.221969 + 0.128154i
\(549\) 4.00000 + 6.92820i 0.170716 + 0.295689i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 13.8564 + 8.00000i 0.589234 + 0.340195i
\(554\) −1.00000 −0.0424859
\(555\) 0 0
\(556\) 9.50000 + 16.4545i 0.402890 + 0.697826i
\(557\) 18.1865 10.5000i 0.770588 0.444899i −0.0624962 0.998045i \(-0.519906\pi\)
0.833084 + 0.553146i \(0.186573\pi\)
\(558\) 4.00000i 0.169334i
\(559\) 7.00000 1.73205i 0.296068 0.0732579i
\(560\) 0 0
\(561\) −18.0000 31.1769i −0.759961 1.31629i
\(562\) 5.19615 3.00000i 0.219186 0.126547i
\(563\) −31.1769 18.0000i −1.31395 0.758610i −0.331202 0.943560i \(-0.607454\pi\)
−0.982748 + 0.184950i \(0.940788\pi\)
\(564\) −6.00000 −0.252646
\(565\) 0 0
\(566\) 7.00000 12.1244i 0.294232 0.509625i
\(567\) 11.0000i 0.461957i
\(568\) −5.19615 3.00000i −0.218026 0.125877i
\(569\) 4.50000 + 7.79423i 0.188650 + 0.326751i 0.944800 0.327647i \(-0.106256\pi\)
−0.756151 + 0.654398i \(0.772922\pi\)
\(570\) 0 0
\(571\) 17.0000 0.711428 0.355714 0.934595i \(-0.384238\pi\)
0.355714 + 0.934595i \(0.384238\pi\)
\(572\) −7.79423 + 7.50000i −0.325893 + 0.313591i
\(573\) 0 0
\(574\) 3.00000 + 5.19615i 0.125218 + 0.216883i
\(575\) 0 0
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 32.0000i 1.33218i 0.745873 + 0.666089i \(0.232033\pi\)
−0.745873 + 0.666089i \(0.767967\pi\)
\(578\) −16.4545 9.50000i −0.684416 0.395148i
\(579\) 4.00000 6.92820i 0.166234 0.287926i
\(580\) 0 0
\(581\) −3.00000 + 5.19615i −0.124461 + 0.215573i
\(582\) −17.3205 + 10.0000i −0.717958 + 0.414513i
\(583\) 23.3827 13.5000i 0.968412 0.559113i
\(584\) 14.0000 0.579324
\(585\) 0 0
\(586\) −9.00000 −0.371787
\(587\) −5.19615 + 3.00000i −0.214468 + 0.123823i −0.603386 0.797449i \(-0.706182\pi\)
0.388918 + 0.921272i \(0.372849\pi\)
\(588\) −10.3923 + 6.00000i −0.428571 + 0.247436i
\(589\) −10.0000 + 17.3205i −0.412043 + 0.713679i
\(590\) 0 0
\(591\) −27.0000 + 46.7654i −1.11063 + 1.92367i
\(592\) −9.52628 5.50000i −0.391528 0.226049i
\(593\) 24.0000i 0.985562i −0.870153 0.492781i \(-0.835980\pi\)
0.870153 0.492781i \(-0.164020\pi\)
\(594\) −6.00000 + 10.3923i −0.246183 + 0.426401i
\(595\) 0 0
\(596\) 9.00000 + 15.5885i 0.368654 + 0.638528i
\(597\) 20.0000i 0.818546i
\(598\) 0 0
\(599\) 18.0000 0.735460 0.367730 0.929933i \(-0.380135\pi\)
0.367730 + 0.929933i \(0.380135\pi\)
\(600\) 0 0
\(601\) 9.50000 + 16.4545i 0.387513 + 0.671192i 0.992114 0.125336i \(-0.0400009\pi\)
−0.604601 + 0.796528i \(0.706668\pi\)
\(602\) −1.73205 1.00000i −0.0705931 0.0407570i
\(603\) 16.0000i 0.651570i
\(604\) −8.00000 + 13.8564i −0.325515 + 0.563809i
\(605\) 0 0
\(606\) −12.0000 −0.487467
\(607\) 11.2583 + 6.50000i 0.456962 + 0.263827i 0.710766 0.703429i \(-0.248349\pi\)
−0.253804 + 0.967256i \(0.581682\pi\)
\(608\) 4.33013 2.50000i 0.175610 0.101388i
\(609\) 0 0
\(610\) 0 0
\(611\) −7.50000 7.79423i −0.303418 0.315321i
\(612\) 6.00000i 0.242536i
\(613\) 11.2583 6.50000i 0.454720 0.262533i −0.255102 0.966914i \(-0.582109\pi\)
0.709821 + 0.704382i \(0.248776\pi\)
\(614\) −1.00000 1.73205i −0.0403567 0.0698999i
\(615\) 0 0
\(616\) 3.00000 0.120873
\(617\) −15.5885 9.00000i −0.627568 0.362326i 0.152242 0.988343i \(-0.451351\pi\)
−0.779809 + 0.626017i \(0.784684\pi\)
\(618\) 8.66025 + 5.00000i 0.348367 + 0.201129i
\(619\) 1.00000 0.0401934 0.0200967 0.999798i \(-0.493603\pi\)
0.0200967 + 0.999798i \(0.493603\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −25.9808 + 15.0000i −1.04173 + 0.601445i
\(623\) 9.00000i 0.360577i
\(624\) −7.00000 + 1.73205i −0.280224 + 0.0693375i
\(625\) 0 0
\(626\) 7.00000 + 12.1244i 0.279776 + 0.484587i
\(627\) −25.9808 + 15.0000i −1.03757 + 0.599042i
\(628\) 14.7224 + 8.50000i 0.587489 + 0.339187i
\(629\) 66.0000 2.63159
\(630\) 0 0
\(631\) 14.0000 24.2487i 0.557331 0.965326i −0.440387 0.897808i \(-0.645159\pi\)
0.997718 0.0675178i \(-0.0215080\pi\)
\(632\) 16.0000i 0.636446i
\(633\) −39.8372 23.0000i −1.58339 0.914168i
\(634\) −7.50000 12.9904i −0.297863 0.515914i
\(635\) 0 0
\(636\) 18.0000 0.713746
\(637\) −20.7846 6.00000i −0.823516 0.237729i
\(638\) 0 0
\(639\) 3.00000 + 5.19615i 0.118678 + 0.205557i
\(640\) 0 0
\(641\) 4.50000 7.79423i 0.177739 0.307854i −0.763367 0.645966i \(-0.776455\pi\)
0.941106 + 0.338112i \(0.109788\pi\)
\(642\) 24.0000i 0.947204i
\(643\) 1.73205 + 1.00000i 0.0683054 + 0.0394362i 0.533764 0.845634i \(-0.320777\pi\)
−0.465458 + 0.885070i \(0.654110\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −15.0000 + 25.9808i −0.590167 + 1.02220i
\(647\) −7.79423 + 4.50000i −0.306423 + 0.176913i −0.645325 0.763908i \(-0.723278\pi\)
0.338902 + 0.940822i \(0.389945\pi\)
\(648\) −9.52628 + 5.50000i −0.374228 + 0.216060i
\(649\) 0 0
\(650\) 0 0
\(651\) −8.00000 −0.313545
\(652\) 1.73205 1.00000i 0.0678323 0.0391630i
\(653\) 23.3827 13.5000i 0.915035 0.528296i 0.0329874 0.999456i \(-0.489498\pi\)
0.882048 + 0.471160i \(0.156165\pi\)
\(654\) 2.00000 3.46410i 0.0782062 0.135457i
\(655\) 0 0
\(656\) −3.00000 + 5.19615i −0.117130 + 0.202876i
\(657\) −12.1244 7.00000i −0.473016 0.273096i
\(658\) 3.00000i 0.116952i
\(659\) 6.00000 10.3923i 0.233727 0.404827i −0.725175 0.688565i \(-0.758241\pi\)
0.958902 + 0.283738i \(0.0915745\pi\)
\(660\) 0 0
\(661\) 2.00000 + 3.46410i 0.0777910 + 0.134738i 0.902297 0.431116i \(-0.141880\pi\)
−0.824506 + 0.565854i \(0.808547\pi\)
\(662\) 20.0000i 0.777322i
\(663\) 31.1769 30.0000i 1.21081 1.16510i
\(664\) −6.00000 −0.232845
\(665\) 0 0
\(666\) 5.50000 + 9.52628i 0.213121 + 0.369136i
\(667\) 0 0
\(668\) 15.0000i 0.580367i
\(669\) 19.0000 32.9090i 0.734582 1.27233i
\(670\) 0 0
\(671\) 24.0000 0.926510
\(672\) 1.73205 + 1.00000i 0.0668153 + 0.0385758i
\(673\) −17.3205 + 10.0000i −0.667657 + 0.385472i −0.795188 0.606363i \(-0.792628\pi\)
0.127532 + 0.991835i \(0.459295\pi\)
\(674\) 8.00000 + 13.8564i 0.308148 + 0.533729i
\(675\) 0 0
\(676\) −11.0000 6.92820i −0.423077 0.266469i
\(677\) 18.0000i 0.691796i −0.938272 0.345898i \(-0.887574\pi\)
0.938272 0.345898i \(-0.112426\pi\)
\(678\) 20.7846 12.0000i 0.798228 0.460857i
\(679\) 5.00000 + 8.66025i 0.191882 + 0.332350i
\(680\) 0 0
\(681\) 48.0000 1.83936
\(682\) −10.3923 6.00000i −0.397942 0.229752i
\(683\) −5.19615 3.00000i −0.198825 0.114792i 0.397282 0.917697i \(-0.369953\pi\)
−0.596107 + 0.802905i \(0.703287\pi\)
\(684\) −5.00000 −0.191180
\(685\) 0 0
\(686\) 6.50000 + 11.2583i 0.248171 + 0.429845i
\(687\) 6.92820 4.00000i 0.264327 0.152610i
\(688\) 2.00000i 0.0762493i
\(689\) 22.5000 + 23.3827i 0.857182 + 0.890809i
\(690\) 0 0
\(691\) 6.50000 + 11.2583i 0.247272 + 0.428287i 0.962768 0.270330i \(-0.0871327\pi\)
−0.715496 + 0.698617i \(0.753799\pi\)
\(692\) 12.9904 7.50000i 0.493820 0.285107i
\(693\) −2.59808 1.50000i −0.0986928 0.0569803i
\(694\) 6.00000 0.227757
\(695\) 0 0
\(696\) 0 0
\(697\) 36.0000i 1.36360i
\(698\) −1.73205 1.00000i −0.0655591 0.0378506i
\(699\) 24.0000 + 41.5692i 0.907763 + 1.57229i
\(700\) 0 0
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) −13.8564 4.00000i −0.522976 0.150970i
\(703\) 55.0000i 2.07436i
\(704\) 1.50000 + 2.59808i 0.0565334 + 0.0979187i
\(705\) 0 0
\(706\) 3.00000 5.19615i 0.112906 0.195560i
\(707\) 6.00000i 0.225653i
\(708\) 0 0
\(709\) −5.00000 + 8.66025i −0.187779 + 0.325243i −0.944509 0.328484i \(-0.893462\pi\)
0.756730 + 0.653727i \(0.226796\pi\)
\(710\) 0 0
\(711\) 8.00000 13.8564i 0.300023 0.519656i
\(712\) −7.79423 + 4.50000i −0.292101 + 0.168645i
\(713\) 0 0
\(714\) −12.0000 −0.449089
\(715\) 0 0
\(716\) −24.0000 −0.896922
\(717\) 0 0
\(718\) −5.19615 + 3.00000i −0.193919 + 0.111959i
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 0 0
\(721\) 2.50000 4.33013i 0.0931049 0.161262i
\(722\) 5.19615 + 3.00000i 0.193381 + 0.111648i
\(723\) 46.0000i 1.71076i
\(724\) 4.00000 6.92820i 0.148659 0.257485i
\(725\) 0 0
\(726\) 2.00000 + 3.46410i 0.0742270 + 0.128565i
\(727\) 29.0000i 1.07555i 0.843088 + 0.537775i \(0.180735\pi\)
−0.843088 + 0.537775i \(0.819265\pi\)
\(728\) 0.866025 + 3.50000i 0.0320970 + 0.129719i
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 6.00000 + 10.3923i 0.221918 + 0.384373i
\(732\) 13.8564 + 8.00000i 0.512148 + 0.295689i
\(733\) 25.0000i 0.923396i 0.887037 + 0.461698i \(0.152760\pi\)
−0.887037 + 0.461698i \(0.847240\pi\)
\(734\) −16.0000 + 27.7128i −0.590571 + 1.02290i
\(735\) 0 0
\(736\) 0 0
\(737\) 41.5692 + 24.0000i 1.53122 + 0.884051i
\(738\) 5.19615 3.00000i 0.191273 0.110432i
\(739\) −3.50000 6.06218i −0.128750 0.223001i 0.794443 0.607339i \(-0.207763\pi\)
−0.923192 + 0.384338i \(0.874430\pi\)
\(740\) 0 0
\(741\) −25.0000 25.9808i −0.918398 0.954427i
\(742\) 9.00000i 0.330400i
\(743\) −10.3923 + 6.00000i −0.381257 + 0.220119i −0.678365 0.734725i \(-0.737311\pi\)
0.297108 + 0.954844i \(0.403978\pi\)
\(744\) −4.00000 6.92820i −0.146647 0.254000i
\(745\) 0 0
\(746\) −14.0000 −0.512576
\(747\) 5.19615 + 3.00000i 0.190117 + 0.109764i
\(748\) −15.5885 9.00000i −0.569970 0.329073i
\(749\) −12.0000 −0.438470
\(750\) 0 0
\(751\) 20.0000 + 34.6410i 0.729810 + 1.26407i 0.956963 + 0.290209i \(0.0937250\pi\)
−0.227153 + 0.973859i \(0.572942\pi\)
\(752\) −2.59808 + 1.50000i −0.0947421 + 0.0546994i
\(753\) 30.0000i 1.09326i
\(754\) 0 0
\(755\) 0 0
\(756\) 2.00000 + 3.46410i 0.0727393 + 0.125988i
\(757\) 19.9186 11.5000i 0.723953 0.417975i −0.0922527 0.995736i \(-0.529407\pi\)
0.816206 + 0.577761i \(0.196073\pi\)
\(758\) 16.4545 + 9.50000i 0.597654 + 0.345056i
\(759\) 0 0
\(760\) 0 0
\(761\) 1.50000 2.59808i 0.0543750 0.0941802i −0.837557 0.546350i \(-0.816017\pi\)
0.891932 + 0.452170i \(0.149350\pi\)
\(762\) 2.00000i 0.0724524i
\(763\) −1.73205 1.00000i −0.0627044 0.0362024i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 2.00000i 0.0721688i
\(769\) −17.0000 29.4449i −0.613036 1.06181i −0.990726 0.135877i \(-0.956615\pi\)
0.377690 0.925932i \(-0.376718\pi\)
\(770\) 0 0
\(771\) 12.0000 20.7846i 0.432169 0.748539i
\(772\) 4.00000i 0.143963i
\(773\) 33.7750 + 19.5000i 1.21480 + 0.701366i 0.963802 0.266621i \(-0.0859071\pi\)
0.251000 + 0.967987i \(0.419240\pi\)
\(774\) −1.00000 + 1.73205i −0.0359443 + 0.0622573i
\(775\) 0 0
\(776\) −5.00000 + 8.66025i −0.179490 + 0.310885i
\(777\) 19.0526 11.0000i 0.683507 0.394623i
\(778\) −25.9808 + 15.0000i −0.931455 + 0.537776i
\(779\) −30.0000 −1.07486
\(780\) 0 0
\(781\) 18.0000 0.644091
\(782\) 0 0
\(783\) 0 0
\(784\) −3.00000 + 5.19615i −0.107143 + 0.185577i
\(785\) 0 0
\(786\) 9.00000 15.5885i 0.321019 0.556022i
\(787\) 19.0526 + 11.0000i 0.679150 + 0.392108i 0.799535 0.600620i \(-0.205079\pi\)
−0.120384 + 0.992727i \(0.538413\pi\)
\(788\) 27.0000i 0.961835i
\(789\) −9.00000 + 15.5885i −0.320408 + 0.554964i
\(790\) 0 0
\(791\) −6.00000 10.3923i −0.213335 0.369508i
\(792\) 3.00000i 0.106600i
\(793\) 6.92820 + 28.0000i 0.246028 + 0.994309i
\(794\) −13.0000 −0.461353
\(795\) 0 0
\(796\) 5.00000 + 8.66025i 0.177220 + 0.306955i
\(797\) −36.3731 21.0000i −1.28840 0.743858i −0.310031 0.950726i \(-0.600340\pi\)
−0.978369 + 0.206868i \(0.933673\pi\)
\(798\) 10.0000i 0.353996i
\(799\) 9.00000 15.5885i 0.318397 0.551480i
\(800\) 0 0
\(801\) 9.00000 0.317999
\(802\) −12.9904 7.50000i −0.458706 0.264834i
\(803\) −36.3731 + 21.0000i −1.28358 + 0.741074i
\(804\) 16.0000 + 27.7128i 0.564276 + 0.977356i
\(805\) 0 0
\(806\) 4.00000 13.8564i 0.140894 0.488071i
\(807\) 12.0000i 0.422420i
\(808\) −5.19615 + 3.00000i −0.182800 + 0.105540i
\(809\) −9.00000 15.5885i −0.316423 0.548061i 0.663316 0.748340i \(-0.269149\pi\)
−0.979739 + 0.200279i \(0.935815\pi\)
\(810\) 0 0
\(811\) −49.0000 −1.72062 −0.860311 0.509769i \(-0.829731\pi\)
−0.860311 + 0.509769i \(0.829731\pi\)
\(812\) 0 0
\(813\) −34.6410 20.0000i −1.21491 0.701431i
\(814\) 33.0000 1.15665
\(815\) 0 0
\(816\) −6.00000 10.3923i −0.210042 0.363803i
\(817\) 8.66025 5.00000i 0.302984 0.174928i
\(818\) 5.00000i 0.174821i
\(819\) 1.00000 3.46410i 0.0349428 0.121046i
\(820\) 0 0
\(821\) −18.0000 31.1769i −0.628204 1.08808i −0.987912 0.155017i \(-0.950457\pi\)
0.359708 0.933065i \(-0.382876\pi\)
\(822\) 10.3923 6.00000i 0.362473 0.209274i
\(823\) −37.2391 21.5000i −1.29807 0.749443i −0.318002 0.948090i \(-0.603012\pi\)
−0.980071 + 0.198647i \(0.936345\pi\)
\(824\) 5.00000 0.174183
\(825\) 0 0
\(826\) 0 0
\(827\) 36.0000i 1.25184i 0.779886 + 0.625921i \(0.215277\pi\)
−0.779886 + 0.625921i \(0.784723\pi\)
\(828\) 0 0
\(829\) −20.0000 34.6410i −0.694629 1.20313i −0.970306 0.241882i \(-0.922235\pi\)
0.275677 0.961250i \(-0.411098\pi\)
\(830\) 0 0
\(831\) 2.00000 0.0693792
\(832\) −2.59808 + 2.50000i −0.0900721 + 0.0866719i
\(833\) 36.0000i 1.24733i
\(834\) −19.0000 32.9090i −0.657916 1.13954i
\(835\) 0 0
\(836\) −7.50000 + 12.9904i −0.259393 + 0.449282i
\(837\) 16.0000i 0.553041i
\(838\) 31.1769 + 18.0000i 1.07699 + 0.621800i
\(839\) −12.0000 + 20.7846i −0.414286 + 0.717564i −0.995353 0.0962912i \(-0.969302\pi\)
0.581067 + 0.813856i \(0.302635\pi\)
\(840\) 0 0
\(841\) 14.5000 25.1147i 0.500000 0.866025i
\(842\) 8.66025 5.00000i 0.298452 0.172311i
\(843\) −10.3923 + 6.00000i −0.357930 + 0.206651i
\(844\) −23.0000 −0.791693
\(845\) 0 0
\(846\) 3.00000 0.103142
\(847\) 1.73205 1.00000i 0.0595140 0.0343604i
\(848\) 7.79423 4.50000i 0.267655 0.154531i
\(849\) −14.0000 + 24.2487i −0.480479 + 0.832214i
\(850\) 0 0
\(851\) 0 0
\(852\) 10.3923 + 6.00000i 0.356034 + 0.205557i
\(853\) 46.0000i 1.57501i 0.616308 + 0.787505i \(0.288628\pi\)
−0.616308 + 0.787505i \(0.711372\pi\)
\(854\) 4.00000 6.92820i 0.136877 0.237078i
\(855\) 0 0
\(856\) −6.00000 10.3923i −0.205076 0.355202i
\(857\) 12.0000i 0.409912i −0.978771 0.204956i \(-0.934295\pi\)
0.978771 0.204956i \(-0.0657052\pi\)
\(858\) 15.5885 15.0000i 0.532181 0.512092i
\(859\) 31.0000 1.05771 0.528853 0.848713i \(-0.322622\pi\)
0.528853 + 0.848713i \(0.322622\pi\)
\(860\) 0 0
\(861\) −6.00000 10.3923i −0.204479 0.354169i
\(862\) 25.9808 + 15.0000i 0.884908 + 0.510902i
\(863\) 36.0000i 1.22545i −0.790295 0.612727i \(-0.790072\pi\)
0.790295 0.612727i \(-0.209928\pi\)
\(864\) −2.00000 + 3.46410i −0.0680414 + 0.117851i
\(865\) 0 0
\(866\) 16.0000 0.543702
\(867\) 32.9090 + 19.0000i 1.11765 + 0.645274i
\(868\) −3.46410 + 2.00000i −0.117579 + 0.0678844i
\(869\) −24.0000 41.5692i −0.814144 1.41014i
\(870\) 0 0
\(871\) −16.0000 + 55.4256i −0.542139 + 1.87803i
\(872\) 2.00000i 0.0677285i
\(873\) 8.66025 5.00000i 0.293105 0.169224i
\(874\) 0 0
\(875\) 0 0
\(876\) −28.0000 −0.946032
\(877\) 8.66025 + 5.00000i 0.292436 + 0.168838i 0.639040 0.769174i \(-0.279332\pi\)
−0.346604 + 0.938012i \(0.612665\pi\)
\(878\) −17.3205 10.0000i −0.584539 0.337484i
\(879\) 18.0000 0.607125
\(880\) 0 0
\(881\) 7.50000 + 12.9904i 0.252681 + 0.437657i 0.964263 0.264946i \(-0.0853542\pi\)
−0.711582 + 0.702603i \(0.752021\pi\)
\(882\) 5.19615 3.00000i 0.174964 0.101015i
\(883\) 52.0000i 1.74994i 0.484178 + 0.874970i \(0.339119\pi\)
−0.484178 + 0.874970i \(0.660881\pi\)
\(884\) 6.00000 20.7846i 0.201802 0.699062i
\(885\) 0 0
\(886\) −9.00000 15.5885i −0.302361 0.523704i
\(887\) −23.3827 + 13.5000i −0.785114 + 0.453286i −0.838240 0.545302i \(-0.816415\pi\)
0.0531258 + 0.998588i \(0.483082\pi\)
\(888\) 19.0526 + 11.0000i 0.639362 + 0.369136i
\(889\) −1.00000 −0.0335389
\(890\) 0 0
\(891\) 16.5000 28.5788i 0.552771 0.957427i
\(892\) 19.0000i 0.636167i
\(893\) −12.9904 7.50000i −0.434707 0.250978i
\(894\) −18.0000 31.1769i −0.602010 1.04271i
\(895\) 0 0
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) 9.00000i 0.300334i
\(899\) 0 0
\(900\) 0 0
\(901\) −27.0000 + 46.7654i −0.899500 + 1.55798i
\(902\) 18.0000i 0.599334i
\(903\) 3.46410 + 2.00000i 0.115278 + 0.0665558i
\(904\) 6.00000 10.3923i 0.199557 0.345643i
\(905\) 0 0
\(906\) 16.0000 27.7128i 0.531564 0.920697i
\(907\) 6.92820 4.00000i 0.230047 0.132818i −0.380547 0.924762i \(-0.624264\pi\)
0.610594 + 0.791944i \(0.290931\pi\)
\(908\) 20.7846 12.0000i 0.689761 0.398234i
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) −8.66025 + 5.00000i −0.286770 + 0.165567i
\(913\) 15.5885 9.00000i 0.515903 0.297857i
\(914\) 2.00000 3.46410i 0.0661541 0.114582i
\(915\) 0 0
\(916\) 2.00000 3.46410i 0.0660819 0.114457i
\(917\) −7.79423 4.50000i −0.257388 0.148603i
\(918\) 24.0000i 0.792118i
\(919\) −17.0000 + 29.4449i −0.560778 + 0.971296i 0.436650 + 0.899631i \(0.356165\pi\)
−0.997429 + 0.0716652i \(0.977169\pi\)
\(920\) 0 0
\(921\) 2.00000 + 3.46410i 0.0659022 + 0.114146i
\(922\) 42.0000i 1.38320i
\(923\) 5.19615 + 21.0000i 0.171033 + 0.691223i
\(924\) −6.00000 −0.197386
\(925\) 0 0
\(926\) 4.00000 + 6.92820i 0.131448 + 0.227675i
\(927\) −4.33013 2.50000i −0.142220 0.0821108i
\(928\) 0 0
\(929\) 21.0000 36.3731i 0.688988 1.19336i −0.283178 0.959067i \(-0.591389\pi\)
0.972166 0.234294i \(-0.0752779\pi\)
\(930\) 0 0
\(931\) −30.0000 −0.983210
\(932\) 20.7846 + 12.0000i 0.680823 + 0.393073i
\(933\) 51.9615 30.0000i 1.70114 0.982156i
\(934\) 6.00000 + 10.3923i 0.196326 + 0.340047i
\(935\) 0 0
\(936\) 3.50000 0.866025i 0.114401 0.0283069i
\(937\) 50.0000i 1.63343i 0.577042 + 0.816714i \(0.304207\pi\)
−0.577042 + 0.816714i \(0.695793\pi\)
\(938\) 13.8564 8.00000i 0.452428 0.261209i
\(939\) −14.0000 24.2487i −0.456873 0.791327i
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) −29.4449 17.0000i −0.959366 0.553890i
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 3.00000 + 5.19615i 0.0975384 + 0.168941i
\(947\) 41.5692 24.0000i 1.35082 0.779895i 0.362454 0.932002i \(-0.381939\pi\)
0.988364 + 0.152106i \(0.0486057\pi\)
\(948\) 32.0000i 1.03931i
\(949\) −35.0000 36.3731i −1.13615 1.18072i
\(950\) 0 0
\(951\) 15.0000 + 25.9808i 0.486408 + 0.842484i
\(952\) −5.19615 + 3.00000i −0.168408 + 0.0972306i
\(953\) 20.7846 + 12.0000i 0.673280 + 0.388718i 0.797318 0.603559i \(-0.206251\pi\)
−0.124039 + 0.992277i \(0.539585\pi\)
\(954\) −9.00000 −0.291386
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 25.9808 + 15.0000i 0.839400 + 0.484628i
\(959\) −3.00000 5.19615i −0.0968751 0.167793i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 9.52628 + 38.5000i 0.307140 + 1.24129i
\(963\) 12.0000i 0.386695i
\(964\) 11.5000 + 19.9186i 0.370390 + 0.641534i
\(965\) 0 0
\(966\) 0 0
\(967\) 5.00000i 0.160789i 0.996763 + 0.0803946i \(0.0256180\pi\)
−0.996763 + 0.0803946i \(0.974382\pi\)
\(968\) 1.73205 + 1.00000i 0.0556702 + 0.0321412i
\(969\) 30.0000 51.9615i 0.963739 1.66924i
\(970\) 0 0
\(971\) −16.5000 + 28.5788i −0.529510 + 0.917139i 0.469897 + 0.882721i \(0.344291\pi\)
−0.999408 + 0.0344175i \(0.989042\pi\)
\(972\) 8.66025 5.00000i 0.277778 0.160375i
\(973\) −16.4545 + 9.50000i −0.527506 + 0.304556i
\(974\) −19.0000 −0.608799
\(975\) 0 0
\(976\) 8.00000 0.256074
\(977\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(978\) −3.46410 + 2.00000i −0.110770 + 0.0639529i
\(979\) 13.5000 23.3827i 0.431462 0.747314i
\(980\) 0 0
\(981\) −1.00000 + 1.73205i −0.0319275 + 0.0553001i
\(982\) 23.3827 + 13.5000i 0.746171 + 0.430802i
\(983\) 39.0000i 1.24391i −0.783054 0.621953i \(-0.786339\pi\)
0.783054 0.621953i \(-0.213661\pi\)
\(984\) 6.00000 10.3923i 0.191273 0.331295i
\(985\) 0 0
\(986\) 0 0
\(987\) 6.00000i 0.190982i
\(988\) −17.3205 5.00000i −0.551039 0.159071i
\(989\) 0 0
\(990\) 0 0
\(991\) 11.0000 + 19.0526i 0.349427 + 0.605224i 0.986148 0.165870i \(-0.0530431\pi\)
−0.636721 + 0.771094i \(0.719710\pi\)
\(992\) −3.46410 2.00000i −0.109985 0.0635001i
\(993\) 40.0000i 1.26936i
\(994\) 3.00000 5.19615i 0.0951542 0.164812i
\(995\) 0 0
\(996\) 12.0000 0.380235
\(997\) −35.5070 20.5000i −1.12452 0.649242i −0.181968 0.983304i \(-0.558247\pi\)
−0.942551 + 0.334063i \(0.891580\pi\)
\(998\) −3.46410 + 2.00000i −0.109654 + 0.0633089i
\(999\) 22.0000 + 38.1051i 0.696049 + 1.20559i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.o.b.549.1 4
5.2 odd 4 650.2.e.a.601.1 2
5.3 odd 4 130.2.e.b.81.1 yes 2
5.4 even 2 inner 650.2.o.b.549.2 4
13.9 even 3 inner 650.2.o.b.399.2 4
15.8 even 4 1170.2.i.f.991.1 2
20.3 even 4 1040.2.q.c.81.1 2
65.3 odd 12 1690.2.a.a.1.1 1
65.8 even 4 1690.2.l.i.361.1 4
65.9 even 6 inner 650.2.o.b.399.1 4
65.18 even 4 1690.2.l.i.361.2 4
65.22 odd 12 650.2.e.a.451.1 2
65.23 odd 12 1690.2.a.g.1.1 1
65.28 even 12 1690.2.d.a.1351.2 2
65.33 even 12 1690.2.l.i.1161.2 4
65.38 odd 4 1690.2.e.e.991.1 2
65.42 odd 12 8450.2.a.w.1.1 1
65.43 odd 12 1690.2.e.e.191.1 2
65.48 odd 12 130.2.e.b.61.1 2
65.58 even 12 1690.2.l.i.1161.1 4
65.62 odd 12 8450.2.a.k.1.1 1
65.63 even 12 1690.2.d.a.1351.1 2
195.113 even 12 1170.2.i.f.451.1 2
260.243 even 12 1040.2.q.c.321.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.e.b.61.1 2 65.48 odd 12
130.2.e.b.81.1 yes 2 5.3 odd 4
650.2.e.a.451.1 2 65.22 odd 12
650.2.e.a.601.1 2 5.2 odd 4
650.2.o.b.399.1 4 65.9 even 6 inner
650.2.o.b.399.2 4 13.9 even 3 inner
650.2.o.b.549.1 4 1.1 even 1 trivial
650.2.o.b.549.2 4 5.4 even 2 inner
1040.2.q.c.81.1 2 20.3 even 4
1040.2.q.c.321.1 2 260.243 even 12
1170.2.i.f.451.1 2 195.113 even 12
1170.2.i.f.991.1 2 15.8 even 4
1690.2.a.a.1.1 1 65.3 odd 12
1690.2.a.g.1.1 1 65.23 odd 12
1690.2.d.a.1351.1 2 65.63 even 12
1690.2.d.a.1351.2 2 65.28 even 12
1690.2.e.e.191.1 2 65.43 odd 12
1690.2.e.e.991.1 2 65.38 odd 4
1690.2.l.i.361.1 4 65.8 even 4
1690.2.l.i.361.2 4 65.18 even 4
1690.2.l.i.1161.1 4 65.58 even 12
1690.2.l.i.1161.2 4 65.33 even 12
8450.2.a.k.1.1 1 65.62 odd 12
8450.2.a.w.1.1 1 65.42 odd 12