Properties

Label 1040.2.q.c.321.1
Level $1040$
Weight $2$
Character 1040.321
Analytic conductor $8.304$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,2,Mod(81,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,-2,0,-1,0,-1,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 321.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1040.321
Dual form 1040.2.q.c.81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{3} -1.00000 q^{5} +(-0.500000 - 0.866025i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(1.50000 - 2.59808i) q^{11} +(2.50000 - 2.59808i) q^{13} +(1.00000 - 1.73205i) q^{15} +(3.00000 + 5.19615i) q^{17} +(2.50000 + 4.33013i) q^{19} +2.00000 q^{21} +1.00000 q^{25} -4.00000 q^{27} +4.00000 q^{31} +(3.00000 + 5.19615i) q^{33} +(0.500000 + 0.866025i) q^{35} +(-5.50000 + 9.52628i) q^{37} +(2.00000 + 6.92820i) q^{39} +(-3.00000 + 5.19615i) q^{41} +(1.00000 + 1.73205i) q^{43} +(0.500000 + 0.866025i) q^{45} +3.00000 q^{47} +(3.00000 - 5.19615i) q^{49} -12.0000 q^{51} -9.00000 q^{53} +(-1.50000 + 2.59808i) q^{55} -10.0000 q^{57} +(-4.00000 - 6.92820i) q^{61} +(-0.500000 + 0.866025i) q^{63} +(-2.50000 + 2.59808i) q^{65} +(-8.00000 + 13.8564i) q^{67} +(3.00000 + 5.19615i) q^{71} +14.0000 q^{73} +(-1.00000 + 1.73205i) q^{75} -3.00000 q^{77} +16.0000 q^{79} +(5.50000 - 9.52628i) q^{81} +6.00000 q^{83} +(-3.00000 - 5.19615i) q^{85} +(-4.50000 + 7.79423i) q^{89} +(-3.50000 - 0.866025i) q^{91} +(-4.00000 + 6.92820i) q^{93} +(-2.50000 - 4.33013i) q^{95} +(5.00000 + 8.66025i) q^{97} -3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{5} - q^{7} - q^{9} + 3 q^{11} + 5 q^{13} + 2 q^{15} + 6 q^{17} + 5 q^{19} + 4 q^{21} + 2 q^{25} - 8 q^{27} + 8 q^{31} + 6 q^{33} + q^{35} - 11 q^{37} + 4 q^{39} - 6 q^{41} + 2 q^{43}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 + 1.73205i −0.577350 + 1.00000i 0.418432 + 0.908248i \(0.362580\pi\)
−0.995782 + 0.0917517i \(0.970753\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −0.500000 0.866025i −0.188982 0.327327i 0.755929 0.654654i \(-0.227186\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 1.50000 2.59808i 0.452267 0.783349i −0.546259 0.837616i \(-0.683949\pi\)
0.998526 + 0.0542666i \(0.0172821\pi\)
\(12\) 0 0
\(13\) 2.50000 2.59808i 0.693375 0.720577i
\(14\) 0 0
\(15\) 1.00000 1.73205i 0.258199 0.447214i
\(16\) 0 0
\(17\) 3.00000 + 5.19615i 0.727607 + 1.26025i 0.957892 + 0.287129i \(0.0927008\pi\)
−0.230285 + 0.973123i \(0.573966\pi\)
\(18\) 0 0
\(19\) 2.50000 + 4.33013i 0.573539 + 0.993399i 0.996199 + 0.0871106i \(0.0277634\pi\)
−0.422659 + 0.906289i \(0.638903\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 3.00000 + 5.19615i 0.522233 + 0.904534i
\(34\) 0 0
\(35\) 0.500000 + 0.866025i 0.0845154 + 0.146385i
\(36\) 0 0
\(37\) −5.50000 + 9.52628i −0.904194 + 1.56611i −0.0821995 + 0.996616i \(0.526194\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) 2.00000 + 6.92820i 0.320256 + 1.10940i
\(40\) 0 0
\(41\) −3.00000 + 5.19615i −0.468521 + 0.811503i −0.999353 0.0359748i \(-0.988546\pi\)
0.530831 + 0.847477i \(0.321880\pi\)
\(42\) 0 0
\(43\) 1.00000 + 1.73205i 0.152499 + 0.264135i 0.932145 0.362084i \(-0.117935\pi\)
−0.779647 + 0.626219i \(0.784601\pi\)
\(44\) 0 0
\(45\) 0.500000 + 0.866025i 0.0745356 + 0.129099i
\(46\) 0 0
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) 0 0
\(49\) 3.00000 5.19615i 0.428571 0.742307i
\(50\) 0 0
\(51\) −12.0000 −1.68034
\(52\) 0 0
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) 0 0
\(55\) −1.50000 + 2.59808i −0.202260 + 0.350325i
\(56\) 0 0
\(57\) −10.0000 −1.32453
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) −4.00000 6.92820i −0.512148 0.887066i −0.999901 0.0140840i \(-0.995517\pi\)
0.487753 0.872982i \(-0.337817\pi\)
\(62\) 0 0
\(63\) −0.500000 + 0.866025i −0.0629941 + 0.109109i
\(64\) 0 0
\(65\) −2.50000 + 2.59808i −0.310087 + 0.322252i
\(66\) 0 0
\(67\) −8.00000 + 13.8564i −0.977356 + 1.69283i −0.305424 + 0.952217i \(0.598798\pi\)
−0.671932 + 0.740613i \(0.734535\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.00000 + 5.19615i 0.356034 + 0.616670i 0.987294 0.158901i \(-0.0507952\pi\)
−0.631260 + 0.775571i \(0.717462\pi\)
\(72\) 0 0
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) 0 0
\(75\) −1.00000 + 1.73205i −0.115470 + 0.200000i
\(76\) 0 0
\(77\) −3.00000 −0.341882
\(78\) 0 0
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) 0 0
\(81\) 5.50000 9.52628i 0.611111 1.05848i
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) −3.00000 5.19615i −0.325396 0.563602i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.50000 + 7.79423i −0.476999 + 0.826187i −0.999653 0.0263586i \(-0.991609\pi\)
0.522654 + 0.852545i \(0.324942\pi\)
\(90\) 0 0
\(91\) −3.50000 0.866025i −0.366900 0.0907841i
\(92\) 0 0
\(93\) −4.00000 + 6.92820i −0.414781 + 0.718421i
\(94\) 0 0
\(95\) −2.50000 4.33013i −0.256495 0.444262i
\(96\) 0 0
\(97\) 5.00000 + 8.66025i 0.507673 + 0.879316i 0.999961 + 0.00888289i \(0.00282755\pi\)
−0.492287 + 0.870433i \(0.663839\pi\)
\(98\) 0 0
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) 3.00000 5.19615i 0.298511 0.517036i −0.677284 0.735721i \(-0.736843\pi\)
0.975796 + 0.218685i \(0.0701767\pi\)
\(102\) 0 0
\(103\) −5.00000 −0.492665 −0.246332 0.969185i \(-0.579225\pi\)
−0.246332 + 0.969185i \(0.579225\pi\)
\(104\) 0 0
\(105\) −2.00000 −0.195180
\(106\) 0 0
\(107\) −6.00000 + 10.3923i −0.580042 + 1.00466i 0.415432 + 0.909624i \(0.363630\pi\)
−0.995474 + 0.0950377i \(0.969703\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) −11.0000 19.0526i −1.04407 1.80839i
\(112\) 0 0
\(113\) 6.00000 + 10.3923i 0.564433 + 0.977626i 0.997102 + 0.0760733i \(0.0242383\pi\)
−0.432670 + 0.901553i \(0.642428\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −3.50000 0.866025i −0.323575 0.0800641i
\(118\) 0 0
\(119\) 3.00000 5.19615i 0.275010 0.476331i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 0 0
\(123\) −6.00000 10.3923i −0.541002 0.937043i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −0.500000 + 0.866025i −0.0443678 + 0.0768473i −0.887357 0.461084i \(-0.847461\pi\)
0.842989 + 0.537931i \(0.180794\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 9.00000 0.786334 0.393167 0.919467i \(-0.371379\pi\)
0.393167 + 0.919467i \(0.371379\pi\)
\(132\) 0 0
\(133\) 2.50000 4.33013i 0.216777 0.375470i
\(134\) 0 0
\(135\) 4.00000 0.344265
\(136\) 0 0
\(137\) −3.00000 5.19615i −0.256307 0.443937i 0.708942 0.705266i \(-0.249173\pi\)
−0.965250 + 0.261329i \(0.915839\pi\)
\(138\) 0 0
\(139\) −9.50000 16.4545i −0.805779 1.39565i −0.915764 0.401718i \(-0.868413\pi\)
0.109984 0.993933i \(-0.464920\pi\)
\(140\) 0 0
\(141\) −3.00000 + 5.19615i −0.252646 + 0.437595i
\(142\) 0 0
\(143\) −3.00000 10.3923i −0.250873 0.869048i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 6.00000 + 10.3923i 0.494872 + 0.857143i
\(148\) 0 0
\(149\) 9.00000 + 15.5885i 0.737309 + 1.27706i 0.953703 + 0.300750i \(0.0972370\pi\)
−0.216394 + 0.976306i \(0.569430\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 3.00000 5.19615i 0.242536 0.420084i
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 17.0000 1.35675 0.678374 0.734717i \(-0.262685\pi\)
0.678374 + 0.734717i \(0.262685\pi\)
\(158\) 0 0
\(159\) 9.00000 15.5885i 0.713746 1.23625i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.00000 + 1.73205i 0.0783260 + 0.135665i 0.902528 0.430632i \(-0.141709\pi\)
−0.824202 + 0.566296i \(0.808376\pi\)
\(164\) 0 0
\(165\) −3.00000 5.19615i −0.233550 0.404520i
\(166\) 0 0
\(167\) −7.50000 + 12.9904i −0.580367 + 1.00523i 0.415068 + 0.909790i \(0.363758\pi\)
−0.995436 + 0.0954356i \(0.969576\pi\)
\(168\) 0 0
\(169\) −0.500000 12.9904i −0.0384615 0.999260i
\(170\) 0 0
\(171\) 2.50000 4.33013i 0.191180 0.331133i
\(172\) 0 0
\(173\) −7.50000 12.9904i −0.570214 0.987640i −0.996544 0.0830722i \(-0.973527\pi\)
0.426329 0.904568i \(-0.359807\pi\)
\(174\) 0 0
\(175\) −0.500000 0.866025i −0.0377964 0.0654654i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.0000 + 20.7846i −0.896922 + 1.55351i −0.0655145 + 0.997852i \(0.520869\pi\)
−0.831408 + 0.555663i \(0.812464\pi\)
\(180\) 0 0
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) 0 0
\(183\) 16.0000 1.18275
\(184\) 0 0
\(185\) 5.50000 9.52628i 0.404368 0.700386i
\(186\) 0 0
\(187\) 18.0000 1.31629
\(188\) 0 0
\(189\) 2.00000 + 3.46410i 0.145479 + 0.251976i
\(190\) 0 0
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 0 0
\(193\) 2.00000 3.46410i 0.143963 0.249351i −0.785022 0.619467i \(-0.787349\pi\)
0.928986 + 0.370116i \(0.120682\pi\)
\(194\) 0 0
\(195\) −2.00000 6.92820i −0.143223 0.496139i
\(196\) 0 0
\(197\) 13.5000 23.3827i 0.961835 1.66595i 0.243947 0.969788i \(-0.421558\pi\)
0.717888 0.696159i \(-0.245109\pi\)
\(198\) 0 0
\(199\) −5.00000 8.66025i −0.354441 0.613909i 0.632581 0.774494i \(-0.281995\pi\)
−0.987022 + 0.160585i \(0.948662\pi\)
\(200\) 0 0
\(201\) −16.0000 27.7128i −1.12855 1.95471i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 3.00000 5.19615i 0.209529 0.362915i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 15.0000 1.03757
\(210\) 0 0
\(211\) 11.5000 19.9186i 0.791693 1.37125i −0.133226 0.991086i \(-0.542533\pi\)
0.924918 0.380166i \(-0.124133\pi\)
\(212\) 0 0
\(213\) −12.0000 −0.822226
\(214\) 0 0
\(215\) −1.00000 1.73205i −0.0681994 0.118125i
\(216\) 0 0
\(217\) −2.00000 3.46410i −0.135769 0.235159i
\(218\) 0 0
\(219\) −14.0000 + 24.2487i −0.946032 + 1.63858i
\(220\) 0 0
\(221\) 21.0000 + 5.19615i 1.41261 + 0.349531i
\(222\) 0 0
\(223\) −9.50000 + 16.4545i −0.636167 + 1.10187i 0.350100 + 0.936713i \(0.386148\pi\)
−0.986267 + 0.165161i \(0.947186\pi\)
\(224\) 0 0
\(225\) −0.500000 0.866025i −0.0333333 0.0577350i
\(226\) 0 0
\(227\) −12.0000 20.7846i −0.796468 1.37952i −0.921903 0.387421i \(-0.873366\pi\)
0.125435 0.992102i \(-0.459967\pi\)
\(228\) 0 0
\(229\) −4.00000 −0.264327 −0.132164 0.991228i \(-0.542192\pi\)
−0.132164 + 0.991228i \(0.542192\pi\)
\(230\) 0 0
\(231\) 3.00000 5.19615i 0.197386 0.341882i
\(232\) 0 0
\(233\) −24.0000 −1.57229 −0.786146 0.618041i \(-0.787927\pi\)
−0.786146 + 0.618041i \(0.787927\pi\)
\(234\) 0 0
\(235\) −3.00000 −0.195698
\(236\) 0 0
\(237\) −16.0000 + 27.7128i −1.03931 + 1.80014i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −11.5000 19.9186i −0.740780 1.28307i −0.952141 0.305661i \(-0.901123\pi\)
0.211360 0.977408i \(-0.432211\pi\)
\(242\) 0 0
\(243\) 5.00000 + 8.66025i 0.320750 + 0.555556i
\(244\) 0 0
\(245\) −3.00000 + 5.19615i −0.191663 + 0.331970i
\(246\) 0 0
\(247\) 17.5000 + 4.33013i 1.11350 + 0.275519i
\(248\) 0 0
\(249\) −6.00000 + 10.3923i −0.380235 + 0.658586i
\(250\) 0 0
\(251\) −7.50000 12.9904i −0.473396 0.819946i 0.526140 0.850398i \(-0.323639\pi\)
−0.999536 + 0.0304521i \(0.990305\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 12.0000 0.751469
\(256\) 0 0
\(257\) −6.00000 + 10.3923i −0.374270 + 0.648254i −0.990217 0.139533i \(-0.955440\pi\)
0.615948 + 0.787787i \(0.288773\pi\)
\(258\) 0 0
\(259\) 11.0000 0.683507
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.50000 7.79423i 0.277482 0.480613i −0.693276 0.720672i \(-0.743833\pi\)
0.970758 + 0.240059i \(0.0771668\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) −9.00000 15.5885i −0.550791 0.953998i
\(268\) 0 0
\(269\) −3.00000 5.19615i −0.182913 0.316815i 0.759958 0.649972i \(-0.225219\pi\)
−0.942871 + 0.333157i \(0.891886\pi\)
\(270\) 0 0
\(271\) 10.0000 17.3205i 0.607457 1.05215i −0.384201 0.923249i \(-0.625523\pi\)
0.991658 0.128897i \(-0.0411435\pi\)
\(272\) 0 0
\(273\) 5.00000 5.19615i 0.302614 0.314485i
\(274\) 0 0
\(275\) 1.50000 2.59808i 0.0904534 0.156670i
\(276\) 0 0
\(277\) 0.500000 + 0.866025i 0.0300421 + 0.0520344i 0.880656 0.473757i \(-0.157103\pi\)
−0.850613 + 0.525792i \(0.823769\pi\)
\(278\) 0 0
\(279\) −2.00000 3.46410i −0.119737 0.207390i
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 7.00000 12.1244i 0.416107 0.720718i −0.579437 0.815017i \(-0.696728\pi\)
0.995544 + 0.0942988i \(0.0300609\pi\)
\(284\) 0 0
\(285\) 10.0000 0.592349
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) 0 0
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) 0 0
\(291\) −20.0000 −1.17242
\(292\) 0 0
\(293\) −4.50000 7.79423i −0.262893 0.455344i 0.704117 0.710084i \(-0.251343\pi\)
−0.967009 + 0.254741i \(0.918010\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −6.00000 + 10.3923i −0.348155 + 0.603023i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.00000 1.73205i 0.0576390 0.0998337i
\(302\) 0 0
\(303\) 6.00000 + 10.3923i 0.344691 + 0.597022i
\(304\) 0 0
\(305\) 4.00000 + 6.92820i 0.229039 + 0.396708i
\(306\) 0 0
\(307\) −2.00000 −0.114146 −0.0570730 0.998370i \(-0.518177\pi\)
−0.0570730 + 0.998370i \(0.518177\pi\)
\(308\) 0 0
\(309\) 5.00000 8.66025i 0.284440 0.492665i
\(310\) 0 0
\(311\) −30.0000 −1.70114 −0.850572 0.525859i \(-0.823744\pi\)
−0.850572 + 0.525859i \(0.823744\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) 0.500000 0.866025i 0.0281718 0.0487950i
\(316\) 0 0
\(317\) 15.0000 0.842484 0.421242 0.906948i \(-0.361594\pi\)
0.421242 + 0.906948i \(0.361594\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −12.0000 20.7846i −0.669775 1.16008i
\(322\) 0 0
\(323\) −15.0000 + 25.9808i −0.834622 + 1.44561i
\(324\) 0 0
\(325\) 2.50000 2.59808i 0.138675 0.144115i
\(326\) 0 0
\(327\) −2.00000 + 3.46410i −0.110600 + 0.191565i
\(328\) 0 0
\(329\) −1.50000 2.59808i −0.0826977 0.143237i
\(330\) 0 0
\(331\) 10.0000 + 17.3205i 0.549650 + 0.952021i 0.998298 + 0.0583130i \(0.0185721\pi\)
−0.448649 + 0.893708i \(0.648095\pi\)
\(332\) 0 0
\(333\) 11.0000 0.602796
\(334\) 0 0
\(335\) 8.00000 13.8564i 0.437087 0.757056i
\(336\) 0 0
\(337\) −16.0000 −0.871576 −0.435788 0.900049i \(-0.643530\pi\)
−0.435788 + 0.900049i \(0.643530\pi\)
\(338\) 0 0
\(339\) −24.0000 −1.30350
\(340\) 0 0
\(341\) 6.00000 10.3923i 0.324918 0.562775i
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.00000 + 5.19615i 0.161048 + 0.278944i 0.935245 0.354001i \(-0.115179\pi\)
−0.774197 + 0.632945i \(0.781846\pi\)
\(348\) 0 0
\(349\) −1.00000 + 1.73205i −0.0535288 + 0.0927146i −0.891548 0.452926i \(-0.850380\pi\)
0.838019 + 0.545640i \(0.183714\pi\)
\(350\) 0 0
\(351\) −10.0000 + 10.3923i −0.533761 + 0.554700i
\(352\) 0 0
\(353\) −3.00000 + 5.19615i −0.159674 + 0.276563i −0.934751 0.355303i \(-0.884378\pi\)
0.775077 + 0.631867i \(0.217711\pi\)
\(354\) 0 0
\(355\) −3.00000 5.19615i −0.159223 0.275783i
\(356\) 0 0
\(357\) 6.00000 + 10.3923i 0.317554 + 0.550019i
\(358\) 0 0
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) −3.00000 + 5.19615i −0.157895 + 0.273482i
\(362\) 0 0
\(363\) −4.00000 −0.209946
\(364\) 0 0
\(365\) −14.0000 −0.732793
\(366\) 0 0
\(367\) 16.0000 27.7128i 0.835193 1.44660i −0.0586798 0.998277i \(-0.518689\pi\)
0.893873 0.448320i \(-0.147978\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 4.50000 + 7.79423i 0.233628 + 0.404656i
\(372\) 0 0
\(373\) −7.00000 12.1244i −0.362446 0.627775i 0.625917 0.779890i \(-0.284725\pi\)
−0.988363 + 0.152115i \(0.951392\pi\)
\(374\) 0 0
\(375\) 1.00000 1.73205i 0.0516398 0.0894427i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −9.50000 + 16.4545i −0.487982 + 0.845210i −0.999904 0.0138218i \(-0.995600\pi\)
0.511922 + 0.859032i \(0.328934\pi\)
\(380\) 0 0
\(381\) −1.00000 1.73205i −0.0512316 0.0887357i
\(382\) 0 0
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0 0
\(385\) 3.00000 0.152894
\(386\) 0 0
\(387\) 1.00000 1.73205i 0.0508329 0.0880451i
\(388\) 0 0
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −9.00000 + 15.5885i −0.453990 + 0.786334i
\(394\) 0 0
\(395\) −16.0000 −0.805047
\(396\) 0 0
\(397\) 6.50000 + 11.2583i 0.326226 + 0.565039i 0.981760 0.190126i \(-0.0608897\pi\)
−0.655534 + 0.755166i \(0.727556\pi\)
\(398\) 0 0
\(399\) 5.00000 + 8.66025i 0.250313 + 0.433555i
\(400\) 0 0
\(401\) 7.50000 12.9904i 0.374532 0.648709i −0.615725 0.787961i \(-0.711137\pi\)
0.990257 + 0.139253i \(0.0444700\pi\)
\(402\) 0 0
\(403\) 10.0000 10.3923i 0.498135 0.517678i
\(404\) 0 0
\(405\) −5.50000 + 9.52628i −0.273297 + 0.473365i
\(406\) 0 0
\(407\) 16.5000 + 28.5788i 0.817875 + 1.41660i
\(408\) 0 0
\(409\) −2.50000 4.33013i −0.123617 0.214111i 0.797574 0.603220i \(-0.206116\pi\)
−0.921192 + 0.389109i \(0.872783\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −6.00000 −0.294528
\(416\) 0 0
\(417\) 38.0000 1.86087
\(418\) 0 0
\(419\) −18.0000 + 31.1769i −0.879358 + 1.52309i −0.0273103 + 0.999627i \(0.508694\pi\)
−0.852047 + 0.523465i \(0.824639\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) −1.50000 2.59808i −0.0729325 0.126323i
\(424\) 0 0
\(425\) 3.00000 + 5.19615i 0.145521 + 0.252050i
\(426\) 0 0
\(427\) −4.00000 + 6.92820i −0.193574 + 0.335279i
\(428\) 0 0
\(429\) 21.0000 + 5.19615i 1.01389 + 0.250873i
\(430\) 0 0
\(431\) 15.0000 25.9808i 0.722525 1.25145i −0.237460 0.971397i \(-0.576315\pi\)
0.959985 0.280052i \(-0.0903517\pi\)
\(432\) 0 0
\(433\) 8.00000 + 13.8564i 0.384455 + 0.665896i 0.991693 0.128624i \(-0.0410559\pi\)
−0.607238 + 0.794520i \(0.707723\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 10.0000 17.3205i 0.477274 0.826663i −0.522387 0.852709i \(-0.674958\pi\)
0.999661 + 0.0260459i \(0.00829161\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) 18.0000 0.855206 0.427603 0.903967i \(-0.359358\pi\)
0.427603 + 0.903967i \(0.359358\pi\)
\(444\) 0 0
\(445\) 4.50000 7.79423i 0.213320 0.369482i
\(446\) 0 0
\(447\) −36.0000 −1.70274
\(448\) 0 0
\(449\) −4.50000 7.79423i −0.212368 0.367832i 0.740087 0.672511i \(-0.234784\pi\)
−0.952455 + 0.304679i \(0.901451\pi\)
\(450\) 0 0
\(451\) 9.00000 + 15.5885i 0.423793 + 0.734032i
\(452\) 0 0
\(453\) −16.0000 + 27.7128i −0.751746 + 1.30206i
\(454\) 0 0
\(455\) 3.50000 + 0.866025i 0.164083 + 0.0405999i
\(456\) 0 0
\(457\) 2.00000 3.46410i 0.0935561 0.162044i −0.815449 0.578829i \(-0.803510\pi\)
0.909005 + 0.416785i \(0.136843\pi\)
\(458\) 0 0
\(459\) −12.0000 20.7846i −0.560112 0.970143i
\(460\) 0 0
\(461\) 21.0000 + 36.3731i 0.978068 + 1.69406i 0.669417 + 0.742887i \(0.266544\pi\)
0.308651 + 0.951175i \(0.400123\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 0 0
\(465\) 4.00000 6.92820i 0.185496 0.321288i
\(466\) 0 0
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) −17.0000 + 29.4449i −0.783319 + 1.35675i
\(472\) 0 0
\(473\) 6.00000 0.275880
\(474\) 0 0
\(475\) 2.50000 + 4.33013i 0.114708 + 0.198680i
\(476\) 0 0
\(477\) 4.50000 + 7.79423i 0.206041 + 0.356873i
\(478\) 0 0
\(479\) −15.0000 + 25.9808i −0.685367 + 1.18709i 0.287954 + 0.957644i \(0.407025\pi\)
−0.973321 + 0.229447i \(0.926308\pi\)
\(480\) 0 0
\(481\) 11.0000 + 38.1051i 0.501557 + 1.73744i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.00000 8.66025i −0.227038 0.393242i
\(486\) 0 0
\(487\) −9.50000 16.4545i −0.430486 0.745624i 0.566429 0.824110i \(-0.308325\pi\)
−0.996915 + 0.0784867i \(0.974991\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) 13.5000 23.3827i 0.609246 1.05525i −0.382118 0.924113i \(-0.624805\pi\)
0.991365 0.131132i \(-0.0418613\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 3.00000 0.134840
\(496\) 0 0
\(497\) 3.00000 5.19615i 0.134568 0.233079i
\(498\) 0 0
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 0 0
\(501\) −15.0000 25.9808i −0.670151 1.16073i
\(502\) 0 0
\(503\) 4.50000 + 7.79423i 0.200645 + 0.347527i 0.948736 0.316068i \(-0.102363\pi\)
−0.748091 + 0.663596i \(0.769030\pi\)
\(504\) 0 0
\(505\) −3.00000 + 5.19615i −0.133498 + 0.231226i
\(506\) 0 0
\(507\) 23.0000 + 12.1244i 1.02147 + 0.538462i
\(508\) 0 0
\(509\) −3.00000 + 5.19615i −0.132973 + 0.230315i −0.924821 0.380402i \(-0.875786\pi\)
0.791849 + 0.610718i \(0.209119\pi\)
\(510\) 0 0
\(511\) −7.00000 12.1244i −0.309662 0.536350i
\(512\) 0 0
\(513\) −10.0000 17.3205i −0.441511 0.764719i
\(514\) 0 0
\(515\) 5.00000 0.220326
\(516\) 0 0
\(517\) 4.50000 7.79423i 0.197910 0.342790i
\(518\) 0 0
\(519\) 30.0000 1.31685
\(520\) 0 0
\(521\) −27.0000 −1.18289 −0.591446 0.806345i \(-0.701443\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(522\) 0 0
\(523\) 7.00000 12.1244i 0.306089 0.530161i −0.671414 0.741082i \(-0.734313\pi\)
0.977503 + 0.210921i \(0.0676463\pi\)
\(524\) 0 0
\(525\) 2.00000 0.0872872
\(526\) 0 0
\(527\) 12.0000 + 20.7846i 0.522728 + 0.905392i
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.00000 + 20.7846i 0.259889 + 0.900281i
\(534\) 0 0
\(535\) 6.00000 10.3923i 0.259403 0.449299i
\(536\) 0 0
\(537\) −24.0000 41.5692i −1.03568 1.79384i
\(538\) 0 0
\(539\) −9.00000 15.5885i −0.387657 0.671442i
\(540\) 0 0
\(541\) 20.0000 0.859867 0.429934 0.902861i \(-0.358537\pi\)
0.429934 + 0.902861i \(0.358537\pi\)
\(542\) 0 0
\(543\) −8.00000 + 13.8564i −0.343313 + 0.594635i
\(544\) 0 0
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) 34.0000 1.45374 0.726868 0.686778i \(-0.240975\pi\)
0.726868 + 0.686778i \(0.240975\pi\)
\(548\) 0 0
\(549\) −4.00000 + 6.92820i −0.170716 + 0.295689i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −8.00000 13.8564i −0.340195 0.589234i
\(554\) 0 0
\(555\) 11.0000 + 19.0526i 0.466924 + 0.808736i
\(556\) 0 0
\(557\) −10.5000 + 18.1865i −0.444899 + 0.770588i −0.998045 0.0624962i \(-0.980094\pi\)
0.553146 + 0.833084i \(0.313427\pi\)
\(558\) 0 0
\(559\) 7.00000 + 1.73205i 0.296068 + 0.0732579i
\(560\) 0 0
\(561\) −18.0000 + 31.1769i −0.759961 + 1.31629i
\(562\) 0 0
\(563\) −18.0000 31.1769i −0.758610 1.31395i −0.943560 0.331202i \(-0.892546\pi\)
0.184950 0.982748i \(-0.440788\pi\)
\(564\) 0 0
\(565\) −6.00000 10.3923i −0.252422 0.437208i
\(566\) 0 0
\(567\) −11.0000 −0.461957
\(568\) 0 0
\(569\) −4.50000 + 7.79423i −0.188650 + 0.326751i −0.944800 0.327647i \(-0.893744\pi\)
0.756151 + 0.654398i \(0.227078\pi\)
\(570\) 0 0
\(571\) −17.0000 −0.711428 −0.355714 0.934595i \(-0.615762\pi\)
−0.355714 + 0.934595i \(0.615762\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 32.0000 1.33218 0.666089 0.745873i \(-0.267967\pi\)
0.666089 + 0.745873i \(0.267967\pi\)
\(578\) 0 0
\(579\) 4.00000 + 6.92820i 0.166234 + 0.287926i
\(580\) 0 0
\(581\) −3.00000 5.19615i −0.124461 0.215573i
\(582\) 0 0
\(583\) −13.5000 + 23.3827i −0.559113 + 0.968412i
\(584\) 0 0
\(585\) 3.50000 + 0.866025i 0.144707 + 0.0358057i
\(586\) 0 0
\(587\) −3.00000 + 5.19615i −0.123823 + 0.214468i −0.921272 0.388918i \(-0.872849\pi\)
0.797449 + 0.603386i \(0.206182\pi\)
\(588\) 0 0
\(589\) 10.0000 + 17.3205i 0.412043 + 0.713679i
\(590\) 0 0
\(591\) 27.0000 + 46.7654i 1.11063 + 1.92367i
\(592\) 0 0
\(593\) 24.0000 0.985562 0.492781 0.870153i \(-0.335980\pi\)
0.492781 + 0.870153i \(0.335980\pi\)
\(594\) 0 0
\(595\) −3.00000 + 5.19615i −0.122988 + 0.213021i
\(596\) 0 0
\(597\) 20.0000 0.818546
\(598\) 0 0
\(599\) 18.0000 0.735460 0.367730 0.929933i \(-0.380135\pi\)
0.367730 + 0.929933i \(0.380135\pi\)
\(600\) 0 0
\(601\) 9.50000 16.4545i 0.387513 0.671192i −0.604601 0.796528i \(-0.706668\pi\)
0.992114 + 0.125336i \(0.0400009\pi\)
\(602\) 0 0
\(603\) 16.0000 0.651570
\(604\) 0 0
\(605\) −1.00000 1.73205i −0.0406558 0.0704179i
\(606\) 0 0
\(607\) −6.50000 11.2583i −0.263827 0.456962i 0.703429 0.710766i \(-0.251651\pi\)
−0.967256 + 0.253804i \(0.918318\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 7.50000 7.79423i 0.303418 0.315321i
\(612\) 0 0
\(613\) 6.50000 11.2583i 0.262533 0.454720i −0.704382 0.709821i \(-0.748776\pi\)
0.966914 + 0.255102i \(0.0821090\pi\)
\(614\) 0 0
\(615\) 6.00000 + 10.3923i 0.241943 + 0.419058i
\(616\) 0 0
\(617\) −9.00000 15.5885i −0.362326 0.627568i 0.626017 0.779809i \(-0.284684\pi\)
−0.988343 + 0.152242i \(0.951351\pi\)
\(618\) 0 0
\(619\) 1.00000 0.0401934 0.0200967 0.999798i \(-0.493603\pi\)
0.0200967 + 0.999798i \(0.493603\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 9.00000 0.360577
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −15.0000 + 25.9808i −0.599042 + 1.03757i
\(628\) 0 0
\(629\) −66.0000 −2.63159
\(630\) 0 0
\(631\) −14.0000 24.2487i −0.557331 0.965326i −0.997718 0.0675178i \(-0.978492\pi\)
0.440387 0.897808i \(-0.354841\pi\)
\(632\) 0 0
\(633\) 23.0000 + 39.8372i 0.914168 + 1.58339i
\(634\) 0 0
\(635\) 0.500000 0.866025i 0.0198419 0.0343672i
\(636\) 0 0
\(637\) −6.00000 20.7846i −0.237729 0.823516i
\(638\) 0 0
\(639\) 3.00000 5.19615i 0.118678 0.205557i
\(640\) 0 0
\(641\) 4.50000 + 7.79423i 0.177739 + 0.307854i 0.941106 0.338112i \(-0.109788\pi\)
−0.763367 + 0.645966i \(0.776455\pi\)
\(642\) 0 0
\(643\) 1.00000 + 1.73205i 0.0394362 + 0.0683054i 0.885070 0.465458i \(-0.154110\pi\)
−0.845634 + 0.533764i \(0.820777\pi\)
\(644\) 0 0
\(645\) 4.00000 0.157500
\(646\) 0 0
\(647\) −4.50000 + 7.79423i −0.176913 + 0.306423i −0.940822 0.338902i \(-0.889945\pi\)
0.763908 + 0.645325i \(0.223278\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 8.00000 0.313545
\(652\) 0 0
\(653\) 13.5000 23.3827i 0.528296 0.915035i −0.471160 0.882048i \(-0.656165\pi\)
0.999456 0.0329874i \(-0.0105021\pi\)
\(654\) 0 0
\(655\) −9.00000 −0.351659
\(656\) 0 0
\(657\) −7.00000 12.1244i −0.273096 0.473016i
\(658\) 0 0
\(659\) 6.00000 + 10.3923i 0.233727 + 0.404827i 0.958902 0.283738i \(-0.0915745\pi\)
−0.725175 + 0.688565i \(0.758241\pi\)
\(660\) 0 0
\(661\) 2.00000 3.46410i 0.0777910 0.134738i −0.824506 0.565854i \(-0.808547\pi\)
0.902297 + 0.431116i \(0.141880\pi\)
\(662\) 0 0
\(663\) −30.0000 + 31.1769i −1.16510 + 1.21081i
\(664\) 0 0
\(665\) −2.50000 + 4.33013i −0.0969458 + 0.167915i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −19.0000 32.9090i −0.734582 1.27233i
\(670\) 0 0
\(671\) −24.0000 −0.926510
\(672\) 0 0
\(673\) −10.0000 + 17.3205i −0.385472 + 0.667657i −0.991835 0.127532i \(-0.959295\pi\)
0.606363 + 0.795188i \(0.292628\pi\)
\(674\) 0 0
\(675\) −4.00000 −0.153960
\(676\) 0 0
\(677\) −18.0000 −0.691796 −0.345898 0.938272i \(-0.612426\pi\)
−0.345898 + 0.938272i \(0.612426\pi\)
\(678\) 0 0
\(679\) 5.00000 8.66025i 0.191882 0.332350i
\(680\) 0 0
\(681\) 48.0000 1.83936
\(682\) 0 0
\(683\) −3.00000 5.19615i −0.114792 0.198825i 0.802905 0.596107i \(-0.203287\pi\)
−0.917697 + 0.397282i \(0.869953\pi\)
\(684\) 0 0
\(685\) 3.00000 + 5.19615i 0.114624 + 0.198535i
\(686\) 0 0
\(687\) 4.00000 6.92820i 0.152610 0.264327i
\(688\) 0 0
\(689\) −22.5000 + 23.3827i −0.857182 + 0.890809i
\(690\) 0 0
\(691\) −6.50000 + 11.2583i −0.247272 + 0.428287i −0.962768 0.270330i \(-0.912867\pi\)
0.715496 + 0.698617i \(0.246201\pi\)
\(692\) 0 0
\(693\) 1.50000 + 2.59808i 0.0569803 + 0.0986928i
\(694\) 0 0
\(695\) 9.50000 + 16.4545i 0.360356 + 0.624154i
\(696\) 0 0
\(697\) −36.0000 −1.36360
\(698\) 0 0
\(699\) 24.0000 41.5692i 0.907763 1.57229i
\(700\) 0 0
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 0 0
\(703\) −55.0000 −2.07436
\(704\) 0 0
\(705\) 3.00000 5.19615i 0.112987 0.195698i
\(706\) 0 0
\(707\) −6.00000 −0.225653
\(708\) 0 0
\(709\) 5.00000 + 8.66025i 0.187779 + 0.325243i 0.944509 0.328484i \(-0.106538\pi\)
−0.756730 + 0.653727i \(0.773204\pi\)
\(710\) 0 0
\(711\) −8.00000 13.8564i −0.300023 0.519656i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 3.00000 + 10.3923i 0.112194 + 0.388650i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) 2.50000 + 4.33013i 0.0931049 + 0.161262i
\(722\) 0 0
\(723\) 46.0000 1.71076
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −29.0000 −1.07555 −0.537775 0.843088i \(-0.680735\pi\)
−0.537775 + 0.843088i \(0.680735\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −6.00000 + 10.3923i −0.221918 + 0.384373i
\(732\) 0 0
\(733\) −25.0000 −0.923396 −0.461698 0.887037i \(-0.652760\pi\)
−0.461698 + 0.887037i \(0.652760\pi\)
\(734\) 0 0
\(735\) −6.00000 10.3923i −0.221313 0.383326i
\(736\) 0 0
\(737\) 24.0000 + 41.5692i 0.884051 + 1.53122i
\(738\) 0 0
\(739\) −3.50000 + 6.06218i −0.128750 + 0.223001i −0.923192 0.384338i \(-0.874430\pi\)
0.794443 + 0.607339i \(0.207763\pi\)
\(740\) 0 0
\(741\) −25.0000 + 25.9808i −0.918398 + 0.954427i
\(742\) 0 0
\(743\) 6.00000 10.3923i 0.220119 0.381257i −0.734725 0.678365i \(-0.762689\pi\)
0.954844 + 0.297108i \(0.0960222\pi\)
\(744\) 0 0
\(745\) −9.00000 15.5885i −0.329734 0.571117i
\(746\) 0 0
\(747\) −3.00000 5.19615i −0.109764 0.190117i
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) −20.0000 + 34.6410i −0.729810 + 1.26407i 0.227153 + 0.973859i \(0.427058\pi\)
−0.956963 + 0.290209i \(0.906275\pi\)
\(752\) 0 0
\(753\) 30.0000 1.09326
\(754\) 0 0
\(755\) −16.0000 −0.582300
\(756\) 0 0
\(757\) −11.5000 + 19.9186i −0.417975 + 0.723953i −0.995736 0.0922527i \(-0.970593\pi\)
0.577761 + 0.816206i \(0.303927\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.50000 + 2.59808i 0.0543750 + 0.0941802i 0.891932 0.452170i \(-0.149350\pi\)
−0.837557 + 0.546350i \(0.816017\pi\)
\(762\) 0 0
\(763\) −1.00000 1.73205i −0.0362024 0.0627044i
\(764\) 0 0
\(765\) −3.00000 + 5.19615i −0.108465 + 0.187867i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 17.0000 29.4449i 0.613036 1.06181i −0.377690 0.925932i \(-0.623282\pi\)
0.990726 0.135877i \(-0.0433852\pi\)
\(770\) 0 0
\(771\) −12.0000 20.7846i −0.432169 0.748539i
\(772\) 0 0
\(773\) −19.5000 33.7750i −0.701366 1.21480i −0.967987 0.251000i \(-0.919240\pi\)
0.266621 0.963802i \(-0.414093\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 0 0
\(777\) −11.0000 + 19.0526i −0.394623 + 0.683507i
\(778\) 0 0
\(779\) −30.0000 −1.07486
\(780\) 0 0
\(781\) 18.0000 0.644091
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −17.0000 −0.606756
\(786\) 0 0
\(787\) −11.0000 19.0526i −0.392108 0.679150i 0.600620 0.799535i \(-0.294921\pi\)
−0.992727 + 0.120384i \(0.961587\pi\)
\(788\) 0 0
\(789\) 9.00000 + 15.5885i 0.320408 + 0.554964i
\(790\) 0 0
\(791\) 6.00000 10.3923i 0.213335 0.369508i
\(792\) 0 0
\(793\) −28.0000 6.92820i −0.994309 0.246028i
\(794\) 0 0
\(795\) −9.00000 + 15.5885i −0.319197 + 0.552866i
\(796\) 0 0
\(797\) −21.0000 36.3731i −0.743858 1.28840i −0.950726 0.310031i \(-0.899660\pi\)
0.206868 0.978369i \(-0.433673\pi\)
\(798\) 0 0
\(799\) 9.00000 + 15.5885i 0.318397 + 0.551480i
\(800\) 0 0
\(801\) 9.00000 0.317999
\(802\) 0 0
\(803\) 21.0000 36.3731i 0.741074 1.28358i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 12.0000 0.422420
\(808\) 0 0
\(809\) 9.00000 15.5885i 0.316423 0.548061i −0.663316 0.748340i \(-0.730851\pi\)
0.979739 + 0.200279i \(0.0641847\pi\)
\(810\) 0 0
\(811\) 49.0000 1.72062 0.860311 0.509769i \(-0.170269\pi\)
0.860311 + 0.509769i \(0.170269\pi\)
\(812\) 0 0
\(813\) 20.0000 + 34.6410i 0.701431 + 1.21491i
\(814\) 0 0
\(815\) −1.00000 1.73205i −0.0350285 0.0606711i
\(816\) 0 0
\(817\) −5.00000 + 8.66025i −0.174928 + 0.302984i
\(818\) 0 0
\(819\) 1.00000 + 3.46410i 0.0349428 + 0.121046i
\(820\) 0 0
\(821\) −18.0000 + 31.1769i −0.628204 + 1.08808i 0.359708 + 0.933065i \(0.382876\pi\)
−0.987912 + 0.155017i \(0.950457\pi\)
\(822\) 0 0
\(823\) −21.5000 37.2391i −0.749443 1.29807i −0.948090 0.318002i \(-0.896988\pi\)
0.198647 0.980071i \(-0.436345\pi\)
\(824\) 0 0
\(825\) 3.00000 + 5.19615i 0.104447 + 0.180907i
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) 20.0000 34.6410i 0.694629 1.20313i −0.275677 0.961250i \(-0.588902\pi\)
0.970306 0.241882i \(-0.0777647\pi\)
\(830\) 0 0
\(831\) −2.00000 −0.0693792
\(832\) 0 0
\(833\) 36.0000 1.24733
\(834\) 0 0
\(835\) 7.50000 12.9904i 0.259548 0.449551i
\(836\) 0 0
\(837\) −16.0000 −0.553041
\(838\) 0 0
\(839\) −12.0000 20.7846i −0.414286 0.717564i 0.581067 0.813856i \(-0.302635\pi\)
−0.995353 + 0.0962912i \(0.969302\pi\)
\(840\) 0 0
\(841\) 14.5000 + 25.1147i 0.500000 + 0.866025i
\(842\) 0 0
\(843\) 6.00000 10.3923i 0.206651 0.357930i
\(844\) 0 0
\(845\) 0.500000 + 12.9904i 0.0172005 + 0.446883i
\(846\) 0 0
\(847\) 1.00000 1.73205i 0.0343604 0.0595140i
\(848\) 0 0
\(849\) 14.0000 + 24.2487i 0.480479 + 0.832214i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −46.0000 −1.57501 −0.787505 0.616308i \(-0.788628\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) 0 0
\(855\) −2.50000 + 4.33013i −0.0854982 + 0.148087i
\(856\) 0 0
\(857\) −12.0000 −0.409912 −0.204956 0.978771i \(-0.565705\pi\)
−0.204956 + 0.978771i \(0.565705\pi\)
\(858\) 0 0
\(859\) 31.0000 1.05771 0.528853 0.848713i \(-0.322622\pi\)
0.528853 + 0.848713i \(0.322622\pi\)
\(860\) 0 0
\(861\) −6.00000 + 10.3923i −0.204479 + 0.354169i
\(862\) 0 0
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 0 0
\(865\) 7.50000 + 12.9904i 0.255008 + 0.441686i
\(866\) 0 0
\(867\) −19.0000 32.9090i −0.645274 1.11765i
\(868\) 0 0
\(869\) 24.0000 41.5692i 0.814144 1.41014i
\(870\) 0 0
\(871\) 16.0000 + 55.4256i 0.542139 + 1.87803i
\(872\) 0 0
\(873\) 5.00000 8.66025i 0.169224 0.293105i
\(874\) 0 0
\(875\) 0.500000 + 0.866025i 0.0169031 + 0.0292770i
\(876\) 0 0
\(877\) 5.00000 + 8.66025i 0.168838 + 0.292436i 0.938012 0.346604i \(-0.112665\pi\)
−0.769174 + 0.639040i \(0.779332\pi\)
\(878\) 0 0
\(879\) 18.0000 0.607125
\(880\) 0 0
\(881\) 7.50000 12.9904i 0.252681 0.437657i −0.711582 0.702603i \(-0.752021\pi\)
0.964263 + 0.264946i \(0.0853542\pi\)
\(882\) 0 0
\(883\) 52.0000 1.74994 0.874970 0.484178i \(-0.160881\pi\)
0.874970 + 0.484178i \(0.160881\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −13.5000 + 23.3827i −0.453286 + 0.785114i −0.998588 0.0531258i \(-0.983082\pi\)
0.545302 + 0.838240i \(0.316415\pi\)
\(888\) 0 0
\(889\) 1.00000 0.0335389
\(890\) 0 0
\(891\) −16.5000 28.5788i −0.552771 0.957427i
\(892\) 0 0
\(893\) 7.50000 + 12.9904i 0.250978 + 0.434707i
\(894\) 0 0
\(895\) 12.0000 20.7846i 0.401116 0.694753i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −27.0000 46.7654i −0.899500 1.55798i
\(902\) 0 0
\(903\) 2.00000 + 3.46410i 0.0665558 + 0.115278i
\(904\) 0 0
\(905\) −8.00000 −0.265929
\(906\) 0 0
\(907\) 4.00000 6.92820i 0.132818 0.230047i −0.791944 0.610594i \(-0.790931\pi\)
0.924762 + 0.380547i \(0.124264\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 9.00000 15.5885i 0.297857 0.515903i
\(914\) 0 0
\(915\) −16.0000 −0.528944
\(916\) 0 0
\(917\) −4.50000 7.79423i −0.148603 0.257388i
\(918\) 0 0
\(919\) −17.0000 29.4449i −0.560778 0.971296i −0.997429 0.0716652i \(-0.977169\pi\)
0.436650 0.899631i \(-0.356165\pi\)
\(920\) 0 0
\(921\) 2.00000 3.46410i 0.0659022 0.114146i
\(922\) 0 0
\(923\) 21.0000 + 5.19615i 0.691223 + 0.171033i
\(924\) 0 0
\(925\) −5.50000 + 9.52628i −0.180839 + 0.313222i
\(926\) 0 0
\(927\) 2.50000 + 4.33013i 0.0821108 + 0.142220i
\(928\) 0 0
\(929\) −21.0000 36.3731i −0.688988 1.19336i −0.972166 0.234294i \(-0.924722\pi\)
0.283178 0.959067i \(-0.408611\pi\)
\(930\) 0 0
\(931\) 30.0000 0.983210
\(932\) 0 0
\(933\) 30.0000 51.9615i 0.982156 1.70114i
\(934\) 0 0
\(935\) −18.0000 −0.588663
\(936\) 0 0
\(937\) 50.0000 1.63343 0.816714 0.577042i \(-0.195793\pi\)
0.816714 + 0.577042i \(0.195793\pi\)
\(938\) 0 0
\(939\) −14.0000 + 24.2487i −0.456873 + 0.791327i
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −2.00000 3.46410i −0.0650600 0.112687i
\(946\) 0 0
\(947\) 24.0000 41.5692i 0.779895 1.35082i −0.152106 0.988364i \(-0.548606\pi\)
0.932002 0.362454i \(-0.118061\pi\)
\(948\) 0 0
\(949\) 35.0000 36.3731i 1.13615 1.18072i
\(950\) 0 0
\(951\) −15.0000 + 25.9808i −0.486408 + 0.842484i
\(952\) 0 0
\(953\) −12.0000 20.7846i −0.388718 0.673280i 0.603559 0.797318i \(-0.293749\pi\)
−0.992277 + 0.124039i \(0.960415\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3.00000 + 5.19615i −0.0968751 + 0.167793i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 12.0000 0.386695
\(964\) 0 0
\(965\) −2.00000 + 3.46410i −0.0643823 + 0.111513i
\(966\) 0 0
\(967\) −5.00000 −0.160789 −0.0803946 0.996763i \(-0.525618\pi\)
−0.0803946 + 0.996763i \(0.525618\pi\)
\(968\) 0 0
\(969\) −30.0000 51.9615i −0.963739 1.66924i
\(970\) 0 0
\(971\) 16.5000 + 28.5788i 0.529510 + 0.917139i 0.999408 + 0.0344175i \(0.0109576\pi\)
−0.469897 + 0.882721i \(0.655709\pi\)
\(972\) 0 0
\(973\) −9.50000 + 16.4545i −0.304556 + 0.527506i
\(974\) 0 0
\(975\) 2.00000 + 6.92820i 0.0640513 + 0.221880i
\(976\) 0 0
\(977\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(978\) 0 0
\(979\) 13.5000 + 23.3827i 0.431462 + 0.747314i
\(980\) 0 0
\(981\) −1.00000 1.73205i −0.0319275 0.0553001i
\(982\) 0 0
\(983\) −39.0000 −1.24391 −0.621953 0.783054i \(-0.713661\pi\)
−0.621953 + 0.783054i \(0.713661\pi\)
\(984\) 0 0
\(985\) −13.5000 + 23.3827i −0.430146 + 0.745034i
\(986\) 0 0
\(987\) 6.00000 0.190982
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −11.0000 + 19.0526i −0.349427 + 0.605224i −0.986148 0.165870i \(-0.946957\pi\)
0.636721 + 0.771094i \(0.280290\pi\)
\(992\) 0 0
\(993\) −40.0000 −1.26936
\(994\) 0 0
\(995\) 5.00000 + 8.66025i 0.158511 + 0.274549i
\(996\) 0 0
\(997\) −20.5000 35.5070i −0.649242 1.12452i −0.983304 0.181968i \(-0.941753\pi\)
0.334063 0.942551i \(-0.391580\pi\)
\(998\) 0 0
\(999\) 22.0000 38.1051i 0.696049 1.20559i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.q.c.321.1 2
4.3 odd 2 130.2.e.b.61.1 2
12.11 even 2 1170.2.i.f.451.1 2
13.3 even 3 inner 1040.2.q.c.81.1 2
20.3 even 4 650.2.o.b.399.1 4
20.7 even 4 650.2.o.b.399.2 4
20.19 odd 2 650.2.e.a.451.1 2
52.3 odd 6 130.2.e.b.81.1 yes 2
52.7 even 12 1690.2.d.a.1351.1 2
52.11 even 12 1690.2.l.i.361.1 4
52.15 even 12 1690.2.l.i.361.2 4
52.19 even 12 1690.2.d.a.1351.2 2
52.23 odd 6 1690.2.e.e.991.1 2
52.31 even 4 1690.2.l.i.1161.1 4
52.35 odd 6 1690.2.a.a.1.1 1
52.43 odd 6 1690.2.a.g.1.1 1
52.47 even 4 1690.2.l.i.1161.2 4
52.51 odd 2 1690.2.e.e.191.1 2
156.107 even 6 1170.2.i.f.991.1 2
260.3 even 12 650.2.o.b.549.2 4
260.107 even 12 650.2.o.b.549.1 4
260.139 odd 6 8450.2.a.w.1.1 1
260.159 odd 6 650.2.e.a.601.1 2
260.199 odd 6 8450.2.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.e.b.61.1 2 4.3 odd 2
130.2.e.b.81.1 yes 2 52.3 odd 6
650.2.e.a.451.1 2 20.19 odd 2
650.2.e.a.601.1 2 260.159 odd 6
650.2.o.b.399.1 4 20.3 even 4
650.2.o.b.399.2 4 20.7 even 4
650.2.o.b.549.1 4 260.107 even 12
650.2.o.b.549.2 4 260.3 even 12
1040.2.q.c.81.1 2 13.3 even 3 inner
1040.2.q.c.321.1 2 1.1 even 1 trivial
1170.2.i.f.451.1 2 12.11 even 2
1170.2.i.f.991.1 2 156.107 even 6
1690.2.a.a.1.1 1 52.35 odd 6
1690.2.a.g.1.1 1 52.43 odd 6
1690.2.d.a.1351.1 2 52.7 even 12
1690.2.d.a.1351.2 2 52.19 even 12
1690.2.e.e.191.1 2 52.51 odd 2
1690.2.e.e.991.1 2 52.23 odd 6
1690.2.l.i.361.1 4 52.11 even 12
1690.2.l.i.361.2 4 52.15 even 12
1690.2.l.i.1161.1 4 52.31 even 4
1690.2.l.i.1161.2 4 52.47 even 4
8450.2.a.k.1.1 1 260.199 odd 6
8450.2.a.w.1.1 1 260.139 odd 6