Properties

Label 650.2.d.c.51.3
Level $650$
Weight $2$
Character 650.51
Analytic conductor $5.190$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(51,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.51"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-6,0,0,0,0,18,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.126157824.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 18x^{4} + 81x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.3
Root \(-2.88202i\) of defining polynomial
Character \(\chi\) \(=\) 650.51
Dual form 650.2.d.c.51.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +2.88202 q^{3} -1.00000 q^{4} -2.88202i q^{6} -1.88202i q^{7} +1.00000i q^{8} +5.30604 q^{9} -6.18806i q^{11} -2.88202 q^{12} +(-3.59403 + 0.287989i) q^{13} -1.88202 q^{14} +1.00000 q^{16} +3.00000 q^{17} -5.30604i q^{18} +4.88202i q^{19} -5.42402i q^{21} -6.18806 q^{22} +0.575978 q^{23} +2.88202i q^{24} +(0.287989 + 3.59403i) q^{26} +6.64606 q^{27} +1.88202i q^{28} +5.07008 q^{29} +7.30604i q^{31} -1.00000i q^{32} -17.8341i q^{33} -3.00000i q^{34} -5.30604 q^{36} -9.18806i q^{37} +4.88202 q^{38} +(-10.3581 + 0.829990i) q^{39} +5.45800i q^{41} -5.42402 q^{42} +4.00000 q^{43} +6.18806i q^{44} -0.575978i q^{46} +2.45800i q^{47} +2.88202 q^{48} +3.45800 q^{49} +8.64606 q^{51} +(3.59403 - 0.287989i) q^{52} -11.0701 q^{53} -6.64606i q^{54} +1.88202 q^{56} +14.0701i q^{57} -5.07008i q^{58} +8.83412i q^{59} +3.64606 q^{61} +7.30604 q^{62} -9.98608i q^{63} -1.00000 q^{64} -17.8341 q^{66} +3.57598i q^{67} -3.00000 q^{68} +1.65998 q^{69} +5.30604i q^{72} +11.8341i q^{73} -9.18806 q^{74} -4.88202i q^{76} -11.6461 q^{77} +(0.829990 + 10.3581i) q^{78} -11.1881 q^{79} +3.23596 q^{81} +5.45800 q^{82} +0.188063i q^{83} +5.42402i q^{84} -4.00000i q^{86} +14.6121 q^{87} +6.18806 q^{88} +11.4580i q^{89} +(0.542001 + 6.76404i) q^{91} -0.575978 q^{92} +21.0562i q^{93} +2.45800 q^{94} -2.88202i q^{96} -15.7640i q^{97} -3.45800i q^{98} -32.8341i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} + 18 q^{9} - 6 q^{13} + 6 q^{14} + 6 q^{16} + 18 q^{17} - 6 q^{22} - 12 q^{27} - 18 q^{29} - 18 q^{36} + 12 q^{38} - 12 q^{39} - 36 q^{42} + 24 q^{43} + 6 q^{52} - 18 q^{53} - 6 q^{56} - 30 q^{61}+ \cdots - 6 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.88202 1.66394 0.831968 0.554824i \(-0.187214\pi\)
0.831968 + 0.554824i \(0.187214\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 2.88202i 1.17658i
\(7\) 1.88202i 0.711337i −0.934612 0.355668i \(-0.884253\pi\)
0.934612 0.355668i \(-0.115747\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 5.30604 1.76868
\(10\) 0 0
\(11\) 6.18806i 1.86577i −0.360173 0.932886i \(-0.617282\pi\)
0.360173 0.932886i \(-0.382718\pi\)
\(12\) −2.88202 −0.831968
\(13\) −3.59403 + 0.287989i −0.996805 + 0.0798738i
\(14\) −1.88202 −0.502991
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 5.30604i 1.25065i
\(19\) 4.88202i 1.12001i 0.828488 + 0.560006i \(0.189201\pi\)
−0.828488 + 0.560006i \(0.810799\pi\)
\(20\) 0 0
\(21\) 5.42402i 1.18362i
\(22\) −6.18806 −1.31930
\(23\) 0.575978 0.120100 0.0600499 0.998195i \(-0.480874\pi\)
0.0600499 + 0.998195i \(0.480874\pi\)
\(24\) 2.88202i 0.588290i
\(25\) 0 0
\(26\) 0.287989 + 3.59403i 0.0564793 + 0.704848i
\(27\) 6.64606 1.27904
\(28\) 1.88202i 0.355668i
\(29\) 5.07008 0.941491 0.470745 0.882269i \(-0.343985\pi\)
0.470745 + 0.882269i \(0.343985\pi\)
\(30\) 0 0
\(31\) 7.30604i 1.31220i 0.754672 + 0.656102i \(0.227796\pi\)
−0.754672 + 0.656102i \(0.772204\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 17.8341i 3.10452i
\(34\) 3.00000i 0.514496i
\(35\) 0 0
\(36\) −5.30604 −0.884340
\(37\) 9.18806i 1.51051i −0.655432 0.755254i \(-0.727513\pi\)
0.655432 0.755254i \(-0.272487\pi\)
\(38\) 4.88202 0.791968
\(39\) −10.3581 + 0.829990i −1.65862 + 0.132905i
\(40\) 0 0
\(41\) 5.45800i 0.852396i 0.904630 + 0.426198i \(0.140147\pi\)
−0.904630 + 0.426198i \(0.859853\pi\)
\(42\) −5.42402 −0.836945
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 6.18806i 0.932886i
\(45\) 0 0
\(46\) 0.575978i 0.0849233i
\(47\) 2.45800i 0.358536i 0.983800 + 0.179268i \(0.0573729\pi\)
−0.983800 + 0.179268i \(0.942627\pi\)
\(48\) 2.88202 0.415984
\(49\) 3.45800 0.494000
\(50\) 0 0
\(51\) 8.64606 1.21069
\(52\) 3.59403 0.287989i 0.498402 0.0399369i
\(53\) −11.0701 −1.52059 −0.760296 0.649576i \(-0.774946\pi\)
−0.760296 + 0.649576i \(0.774946\pi\)
\(54\) 6.64606i 0.904414i
\(55\) 0 0
\(56\) 1.88202 0.251496
\(57\) 14.0701i 1.86363i
\(58\) 5.07008i 0.665735i
\(59\) 8.83412i 1.15011i 0.818116 + 0.575053i \(0.195018\pi\)
−0.818116 + 0.575053i \(0.804982\pi\)
\(60\) 0 0
\(61\) 3.64606 0.466830 0.233415 0.972377i \(-0.425010\pi\)
0.233415 + 0.972377i \(0.425010\pi\)
\(62\) 7.30604 0.927868
\(63\) 9.98608i 1.25813i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −17.8341 −2.19523
\(67\) 3.57598i 0.436875i 0.975851 + 0.218438i \(0.0700960\pi\)
−0.975851 + 0.218438i \(0.929904\pi\)
\(68\) −3.00000 −0.363803
\(69\) 1.65998 0.199838
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 5.30604i 0.625323i
\(73\) 11.8341i 1.38508i 0.721380 + 0.692540i \(0.243508\pi\)
−0.721380 + 0.692540i \(0.756492\pi\)
\(74\) −9.18806 −1.06809
\(75\) 0 0
\(76\) 4.88202i 0.560006i
\(77\) −11.6461 −1.32719
\(78\) 0.829990 + 10.3581i 0.0939779 + 1.17282i
\(79\) −11.1881 −1.25876 −0.629378 0.777100i \(-0.716690\pi\)
−0.629378 + 0.777100i \(0.716690\pi\)
\(80\) 0 0
\(81\) 3.23596 0.359551
\(82\) 5.45800 0.602735
\(83\) 0.188063i 0.0206426i 0.999947 + 0.0103213i \(0.00328543\pi\)
−0.999947 + 0.0103213i \(0.996715\pi\)
\(84\) 5.42402i 0.591809i
\(85\) 0 0
\(86\) 4.00000i 0.431331i
\(87\) 14.6121 1.56658
\(88\) 6.18806 0.659650
\(89\) 11.4580i 1.21455i 0.794493 + 0.607273i \(0.207736\pi\)
−0.794493 + 0.607273i \(0.792264\pi\)
\(90\) 0 0
\(91\) 0.542001 + 6.76404i 0.0568172 + 0.709064i
\(92\) −0.575978 −0.0600499
\(93\) 21.0562i 2.18342i
\(94\) 2.45800 0.253523
\(95\) 0 0
\(96\) 2.88202i 0.294145i
\(97\) 15.7640i 1.60060i −0.599603 0.800298i \(-0.704675\pi\)
0.599603 0.800298i \(-0.295325\pi\)
\(98\) 3.45800i 0.349311i
\(99\) 32.8341i 3.29995i
\(100\) 0 0
\(101\) 10.4941 1.04420 0.522101 0.852884i \(-0.325148\pi\)
0.522101 + 0.852884i \(0.325148\pi\)
\(102\) 8.64606i 0.856088i
\(103\) −17.1881 −1.69359 −0.846795 0.531919i \(-0.821471\pi\)
−0.846795 + 0.531919i \(0.821471\pi\)
\(104\) −0.287989 3.59403i −0.0282397 0.352424i
\(105\) 0 0
\(106\) 11.0701i 1.07522i
\(107\) 1.49411 0.144441 0.0722203 0.997389i \(-0.476992\pi\)
0.0722203 + 0.997389i \(0.476992\pi\)
\(108\) −6.64606 −0.639518
\(109\) 12.9521i 1.24059i −0.784370 0.620293i \(-0.787014\pi\)
0.784370 0.620293i \(-0.212986\pi\)
\(110\) 0 0
\(111\) 26.4802i 2.51339i
\(112\) 1.88202i 0.177834i
\(113\) −9.22204 −0.867537 −0.433768 0.901024i \(-0.642816\pi\)
−0.433768 + 0.901024i \(0.642816\pi\)
\(114\) 14.0701 1.31778
\(115\) 0 0
\(116\) −5.07008 −0.470745
\(117\) −19.0701 + 1.52808i −1.76303 + 0.141271i
\(118\) 8.83412 0.813247
\(119\) 5.64606i 0.517574i
\(120\) 0 0
\(121\) −27.2921 −2.48110
\(122\) 3.64606i 0.330099i
\(123\) 15.7301i 1.41833i
\(124\) 7.30604i 0.656102i
\(125\) 0 0
\(126\) −9.98608 −0.889631
\(127\) −4.37613 −0.388318 −0.194159 0.980970i \(-0.562198\pi\)
−0.194159 + 0.980970i \(0.562198\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 11.5281 1.01499
\(130\) 0 0
\(131\) 22.1402 1.93440 0.967198 0.254025i \(-0.0817545\pi\)
0.967198 + 0.254025i \(0.0817545\pi\)
\(132\) 17.8341i 1.55226i
\(133\) 9.18806 0.796706
\(134\) 3.57598 0.308917
\(135\) 0 0
\(136\) 3.00000i 0.257248i
\(137\) 5.83412i 0.498443i −0.968447 0.249221i \(-0.919825\pi\)
0.968447 0.249221i \(-0.0801747\pi\)
\(138\) 1.65998i 0.141307i
\(139\) 4.26994 0.362171 0.181086 0.983467i \(-0.442039\pi\)
0.181086 + 0.983467i \(0.442039\pi\)
\(140\) 0 0
\(141\) 7.08400i 0.596581i
\(142\) 0 0
\(143\) 1.78209 + 22.2401i 0.149026 + 1.85981i
\(144\) 5.30604 0.442170
\(145\) 0 0
\(146\) 11.8341 0.979399
\(147\) 9.96602 0.821984
\(148\) 9.18806i 0.755254i
\(149\) 16.9160i 1.38581i 0.721028 + 0.692906i \(0.243670\pi\)
−0.721028 + 0.692906i \(0.756330\pi\)
\(150\) 0 0
\(151\) 17.4462i 1.41975i 0.704326 + 0.709876i \(0.251249\pi\)
−0.704326 + 0.709876i \(0.748751\pi\)
\(152\) −4.88202 −0.395984
\(153\) 15.9181 1.28690
\(154\) 11.6461i 0.938466i
\(155\) 0 0
\(156\) 10.3581 0.829990i 0.829310 0.0664524i
\(157\) −2.73006 −0.217883 −0.108941 0.994048i \(-0.534746\pi\)
−0.108941 + 0.994048i \(0.534746\pi\)
\(158\) 11.1881i 0.890074i
\(159\) −31.9042 −2.53017
\(160\) 0 0
\(161\) 1.08400i 0.0854314i
\(162\) 3.23596i 0.254241i
\(163\) 15.7980i 1.23740i −0.785629 0.618698i \(-0.787660\pi\)
0.785629 0.618698i \(-0.212340\pi\)
\(164\) 5.45800i 0.426198i
\(165\) 0 0
\(166\) 0.188063 0.0145965
\(167\) 15.5642i 1.20439i 0.798348 + 0.602197i \(0.205708\pi\)
−0.798348 + 0.602197i \(0.794292\pi\)
\(168\) 5.42402 0.418472
\(169\) 12.8341 2.07008i 0.987240 0.159237i
\(170\) 0 0
\(171\) 25.9042i 1.98094i
\(172\) −4.00000 −0.304997
\(173\) 5.64606 0.429262 0.214631 0.976695i \(-0.431145\pi\)
0.214631 + 0.976695i \(0.431145\pi\)
\(174\) 14.6121i 1.10774i
\(175\) 0 0
\(176\) 6.18806i 0.466443i
\(177\) 25.4601i 1.91370i
\(178\) 11.4580 0.858813
\(179\) 13.4941 1.00860 0.504298 0.863529i \(-0.331751\pi\)
0.504298 + 0.863529i \(0.331751\pi\)
\(180\) 0 0
\(181\) 2.73006 0.202924 0.101462 0.994839i \(-0.467648\pi\)
0.101462 + 0.994839i \(0.467648\pi\)
\(182\) 6.76404 0.542001i 0.501384 0.0401758i
\(183\) 10.5080 0.776776
\(184\) 0.575978i 0.0424617i
\(185\) 0 0
\(186\) 21.0562 1.54391
\(187\) 18.5642i 1.35755i
\(188\) 2.45800i 0.179268i
\(189\) 12.5080i 0.909825i
\(190\) 0 0
\(191\) −4.84804 −0.350792 −0.175396 0.984498i \(-0.556121\pi\)
−0.175396 + 0.984498i \(0.556121\pi\)
\(192\) −2.88202 −0.207992
\(193\) 10.6822i 0.768919i −0.923142 0.384460i \(-0.874388\pi\)
0.923142 0.384460i \(-0.125612\pi\)
\(194\) −15.7640 −1.13179
\(195\) 0 0
\(196\) −3.45800 −0.247000
\(197\) 15.5642i 1.10890i 0.832216 + 0.554451i \(0.187072\pi\)
−0.832216 + 0.554451i \(0.812928\pi\)
\(198\) −32.8341 −2.33342
\(199\) −0.272066 −0.0192862 −0.00964311 0.999954i \(-0.503070\pi\)
−0.00964311 + 0.999954i \(0.503070\pi\)
\(200\) 0 0
\(201\) 10.3060i 0.726932i
\(202\) 10.4941i 0.738363i
\(203\) 9.54200i 0.669717i
\(204\) −8.64606 −0.605345
\(205\) 0 0
\(206\) 17.1881i 1.19755i
\(207\) 3.05616 0.212418
\(208\) −3.59403 + 0.287989i −0.249201 + 0.0199684i
\(209\) 30.2103 2.08969
\(210\) 0 0
\(211\) −17.0222 −1.17186 −0.585928 0.810363i \(-0.699270\pi\)
−0.585928 + 0.810363i \(0.699270\pi\)
\(212\) 11.0701 0.760296
\(213\) 0 0
\(214\) 1.49411i 0.102135i
\(215\) 0 0
\(216\) 6.64606i 0.452207i
\(217\) 13.7501 0.933419
\(218\) −12.9521 −0.877227
\(219\) 34.1062i 2.30468i
\(220\) 0 0
\(221\) −10.7821 + 0.863967i −0.725282 + 0.0581167i
\(222\) −26.4802 −1.77723
\(223\) 1.65998i 0.111161i −0.998454 0.0555803i \(-0.982299\pi\)
0.998454 0.0555803i \(-0.0177009\pi\)
\(224\) −1.88202 −0.125748
\(225\) 0 0
\(226\) 9.22204i 0.613441i
\(227\) 8.45800i 0.561377i −0.959799 0.280689i \(-0.909437\pi\)
0.959799 0.280689i \(-0.0905628\pi\)
\(228\) 14.0701i 0.931814i
\(229\) 9.38792i 0.620371i −0.950676 0.310185i \(-0.899609\pi\)
0.950676 0.310185i \(-0.100391\pi\)
\(230\) 0 0
\(231\) −33.5642 −2.20836
\(232\) 5.07008i 0.332867i
\(233\) 20.9882 1.37498 0.687492 0.726192i \(-0.258712\pi\)
0.687492 + 0.726192i \(0.258712\pi\)
\(234\) 1.52808 + 19.0701i 0.0998939 + 1.24665i
\(235\) 0 0
\(236\) 8.83412i 0.575053i
\(237\) −32.2442 −2.09449
\(238\) −5.64606 −0.365980
\(239\) 14.4580i 0.935210i −0.883937 0.467605i \(-0.845117\pi\)
0.883937 0.467605i \(-0.154883\pi\)
\(240\) 0 0
\(241\) 9.92992i 0.639642i −0.947478 0.319821i \(-0.896377\pi\)
0.947478 0.319821i \(-0.103623\pi\)
\(242\) 27.2921i 1.75440i
\(243\) −10.6121 −0.680766
\(244\) −3.64606 −0.233415
\(245\) 0 0
\(246\) 15.7301 1.00291
\(247\) −1.40597 17.5461i −0.0894596 1.11643i
\(248\) −7.30604 −0.463934
\(249\) 0.542001i 0.0343479i
\(250\) 0 0
\(251\) −14.6461 −0.924451 −0.462226 0.886762i \(-0.652949\pi\)
−0.462226 + 0.886762i \(0.652949\pi\)
\(252\) 9.98608i 0.629064i
\(253\) 3.56419i 0.224079i
\(254\) 4.37613i 0.274583i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 23.0701 1.43907 0.719536 0.694455i \(-0.244354\pi\)
0.719536 + 0.694455i \(0.244354\pi\)
\(258\) 11.5281i 0.717707i
\(259\) −17.2921 −1.07448
\(260\) 0 0
\(261\) 26.9021 1.66520
\(262\) 22.1402i 1.36782i
\(263\) −9.56419 −0.589753 −0.294877 0.955535i \(-0.595279\pi\)
−0.294877 + 0.955535i \(0.595279\pi\)
\(264\) 17.8341 1.09761
\(265\) 0 0
\(266\) 9.18806i 0.563356i
\(267\) 33.0222i 2.02093i
\(268\) 3.57598i 0.218438i
\(269\) 5.07008 0.309128 0.154564 0.987983i \(-0.450603\pi\)
0.154564 + 0.987983i \(0.450603\pi\)
\(270\) 0 0
\(271\) 0.730064i 0.0443482i 0.999754 + 0.0221741i \(0.00705882\pi\)
−0.999754 + 0.0221741i \(0.992941\pi\)
\(272\) 3.00000 0.181902
\(273\) 1.56206 + 19.4941i 0.0945401 + 1.17984i
\(274\) −5.83412 −0.352452
\(275\) 0 0
\(276\) −1.65998 −0.0999191
\(277\) −5.56419 −0.334320 −0.167160 0.985930i \(-0.553460\pi\)
−0.167160 + 0.985930i \(0.553460\pi\)
\(278\) 4.26994i 0.256094i
\(279\) 38.7662i 2.32087i
\(280\) 0 0
\(281\) 23.2921i 1.38949i −0.719255 0.694746i \(-0.755517\pi\)
0.719255 0.694746i \(-0.244483\pi\)
\(282\) 7.08400 0.421846
\(283\) −14.1062 −0.838526 −0.419263 0.907865i \(-0.637711\pi\)
−0.419263 + 0.907865i \(0.637711\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 22.2401 1.78209i 1.31508 0.105377i
\(287\) 10.2721 0.606341
\(288\) 5.30604i 0.312662i
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 45.4323i 2.66329i
\(292\) 11.8341i 0.692540i
\(293\) 6.00000i 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) 9.96602i 0.581230i
\(295\) 0 0
\(296\) 9.18806 0.534045
\(297\) 41.1262i 2.38639i
\(298\) 16.9160 0.979917
\(299\) −2.07008 + 0.165875i −0.119716 + 0.00959282i
\(300\) 0 0
\(301\) 7.52808i 0.433911i
\(302\) 17.4462 1.00392
\(303\) 30.2442 1.73749
\(304\) 4.88202i 0.280003i
\(305\) 0 0
\(306\) 15.9181i 0.909979i
\(307\) 9.42189i 0.537736i 0.963177 + 0.268868i \(0.0866495\pi\)
−0.963177 + 0.268868i \(0.913350\pi\)
\(308\) 11.6461 0.663596
\(309\) −49.5364 −2.81802
\(310\) 0 0
\(311\) −31.7044 −1.79779 −0.898895 0.438165i \(-0.855629\pi\)
−0.898895 + 0.438165i \(0.855629\pi\)
\(312\) −0.829990 10.3581i −0.0469890 0.586410i
\(313\) 15.3740 0.868990 0.434495 0.900674i \(-0.356927\pi\)
0.434495 + 0.900674i \(0.356927\pi\)
\(314\) 2.73006i 0.154066i
\(315\) 0 0
\(316\) 11.1881 0.629378
\(317\) 3.18806i 0.179059i 0.995984 + 0.0895297i \(0.0285364\pi\)
−0.995984 + 0.0895297i \(0.971464\pi\)
\(318\) 31.9042i 1.78910i
\(319\) 31.3740i 1.75661i
\(320\) 0 0
\(321\) 4.30604 0.240340
\(322\) −1.08400 −0.0604091
\(323\) 14.6461i 0.814929i
\(324\) −3.23596 −0.179775
\(325\) 0 0
\(326\) −15.7980 −0.874971
\(327\) 37.3282i 2.06426i
\(328\) −5.45800 −0.301368
\(329\) 4.62600 0.255040
\(330\) 0 0
\(331\) 9.02219i 0.495904i −0.968772 0.247952i \(-0.920242\pi\)
0.968772 0.247952i \(-0.0797576\pi\)
\(332\) 0.188063i 0.0103213i
\(333\) 48.7523i 2.67161i
\(334\) 15.5642 0.851635
\(335\) 0 0
\(336\) 5.42402i 0.295905i
\(337\) 16.2921 0.887489 0.443744 0.896153i \(-0.353650\pi\)
0.443744 + 0.896153i \(0.353650\pi\)
\(338\) −2.07008 12.8341i −0.112598 0.698084i
\(339\) −26.5781 −1.44352
\(340\) 0 0
\(341\) 45.2103 2.44827
\(342\) 25.9042 1.40074
\(343\) 19.6822i 1.06274i
\(344\) 4.00000i 0.215666i
\(345\) 0 0
\(346\) 5.64606i 0.303534i
\(347\) −12.3421 −0.662561 −0.331281 0.943532i \(-0.607481\pi\)
−0.331281 + 0.943532i \(0.607481\pi\)
\(348\) −14.6121 −0.783290
\(349\) 18.7523i 1.00379i −0.864930 0.501893i \(-0.832637\pi\)
0.864930 0.501893i \(-0.167363\pi\)
\(350\) 0 0
\(351\) −23.8862 + 1.91399i −1.27495 + 0.102161i
\(352\) −6.18806 −0.329825
\(353\) 0.707877i 0.0376765i 0.999823 + 0.0188382i \(0.00599675\pi\)
−0.999823 + 0.0188382i \(0.994003\pi\)
\(354\) 25.4601 1.35319
\(355\) 0 0
\(356\) 11.4580i 0.607273i
\(357\) 16.2721i 0.861209i
\(358\) 13.4941i 0.713186i
\(359\) 0.0221876i 0.00117101i 1.00000 0.000585507i \(0.000186373\pi\)
−1.00000 0.000585507i \(0.999814\pi\)
\(360\) 0 0
\(361\) −4.83412 −0.254428
\(362\) 2.73006i 0.143489i
\(363\) −78.6565 −4.12839
\(364\) −0.542001 6.76404i −0.0284086 0.354532i
\(365\) 0 0
\(366\) 10.5080i 0.549263i
\(367\) −15.8363 −0.826646 −0.413323 0.910585i \(-0.635632\pi\)
−0.413323 + 0.910585i \(0.635632\pi\)
\(368\) 0.575978 0.0300249
\(369\) 28.9604i 1.50762i
\(370\) 0 0
\(371\) 20.8341i 1.08165i
\(372\) 21.0562i 1.09171i
\(373\) −4.35394 −0.225438 −0.112719 0.993627i \(-0.535956\pi\)
−0.112719 + 0.993627i \(0.535956\pi\)
\(374\) −18.5642 −0.959931
\(375\) 0 0
\(376\) −2.45800 −0.126762
\(377\) −18.2220 + 1.46013i −0.938483 + 0.0752004i
\(378\) −12.5080 −0.643343
\(379\) 2.42402i 0.124514i −0.998060 0.0622568i \(-0.980170\pi\)
0.998060 0.0622568i \(-0.0198298\pi\)
\(380\) 0 0
\(381\) −12.6121 −0.646137
\(382\) 4.84804i 0.248047i
\(383\) 7.46013i 0.381195i −0.981668 0.190597i \(-0.938958\pi\)
0.981668 0.190597i \(-0.0610425\pi\)
\(384\) 2.88202i 0.147072i
\(385\) 0 0
\(386\) −10.6822 −0.543708
\(387\) 21.2242 1.07889
\(388\) 15.7640i 0.800298i
\(389\) 6.57598 0.333415 0.166708 0.986006i \(-0.446686\pi\)
0.166708 + 0.986006i \(0.446686\pi\)
\(390\) 0 0
\(391\) 1.72793 0.0873854
\(392\) 3.45800i 0.174655i
\(393\) 63.8084 3.21871
\(394\) 15.5642 0.784113
\(395\) 0 0
\(396\) 32.8341i 1.64998i
\(397\) 6.95210i 0.348916i −0.984665 0.174458i \(-0.944183\pi\)
0.984665 0.174458i \(-0.0558173\pi\)
\(398\) 0.272066i 0.0136374i
\(399\) 26.4802 1.32567
\(400\) 0 0
\(401\) 6.91813i 0.345475i −0.984968 0.172737i \(-0.944739\pi\)
0.984968 0.172737i \(-0.0552612\pi\)
\(402\) 10.3060 0.514019
\(403\) −2.10406 26.2581i −0.104811 1.30801i
\(404\) −10.4941 −0.522101
\(405\) 0 0
\(406\) −9.54200 −0.473562
\(407\) −56.8563 −2.81826
\(408\) 8.64606i 0.428044i
\(409\) 15.9299i 0.787684i 0.919178 + 0.393842i \(0.128854\pi\)
−0.919178 + 0.393842i \(0.871146\pi\)
\(410\) 0 0
\(411\) 16.8141i 0.829377i
\(412\) 17.1881 0.846795
\(413\) 16.6260 0.818112
\(414\) 3.05616i 0.150202i
\(415\) 0 0
\(416\) 0.287989 + 3.59403i 0.0141198 + 0.176212i
\(417\) 12.3060 0.602629
\(418\) 30.2103i 1.47763i
\(419\) −22.9500 −1.12118 −0.560590 0.828094i \(-0.689426\pi\)
−0.560590 + 0.828094i \(0.689426\pi\)
\(420\) 0 0
\(421\) 24.7523i 1.20635i 0.797609 + 0.603175i \(0.206098\pi\)
−0.797609 + 0.603175i \(0.793902\pi\)
\(422\) 17.0222i 0.828627i
\(423\) 13.0422i 0.634136i
\(424\) 11.0701i 0.537611i
\(425\) 0 0
\(426\) 0 0
\(427\) 6.86196i 0.332074i
\(428\) −1.49411 −0.0722203
\(429\) 5.13603 + 64.0964i 0.247970 + 3.09460i
\(430\) 0 0
\(431\) 32.1041i 1.54640i −0.634163 0.773199i \(-0.718655\pi\)
0.634163 0.773199i \(-0.281345\pi\)
\(432\) 6.64606 0.319759
\(433\) −16.2103 −0.779015 −0.389507 0.921023i \(-0.627355\pi\)
−0.389507 + 0.921023i \(0.627355\pi\)
\(434\) 13.7501i 0.660027i
\(435\) 0 0
\(436\) 12.9521i 0.620293i
\(437\) 2.81194i 0.134513i
\(438\) 34.1062 1.62966
\(439\) 22.1041 1.05497 0.527485 0.849565i \(-0.323135\pi\)
0.527485 + 0.849565i \(0.323135\pi\)
\(440\) 0 0
\(441\) 18.3483 0.873728
\(442\) 0.863967 + 10.7821i 0.0410947 + 0.512852i
\(443\) −2.64606 −0.125718 −0.0628591 0.998022i \(-0.520022\pi\)
−0.0628591 + 0.998022i \(0.520022\pi\)
\(444\) 26.4802i 1.25669i
\(445\) 0 0
\(446\) −1.65998 −0.0786024
\(447\) 48.7523i 2.30590i
\(448\) 1.88202i 0.0889171i
\(449\) 35.1262i 1.65771i −0.559463 0.828855i \(-0.688993\pi\)
0.559463 0.828855i \(-0.311007\pi\)
\(450\) 0 0
\(451\) 33.7744 1.59038
\(452\) 9.22204 0.433768
\(453\) 50.2803i 2.36238i
\(454\) −8.45800 −0.396954
\(455\) 0 0
\(456\) −14.0701 −0.658892
\(457\) 18.9181i 0.884953i 0.896780 + 0.442476i \(0.145900\pi\)
−0.896780 + 0.442476i \(0.854100\pi\)
\(458\) −9.38792 −0.438668
\(459\) 19.9382 0.930635
\(460\) 0 0
\(461\) 8.81194i 0.410413i 0.978719 + 0.205206i \(0.0657866\pi\)
−0.978719 + 0.205206i \(0.934213\pi\)
\(462\) 33.5642i 1.56155i
\(463\) 28.5621i 1.32739i −0.748003 0.663696i \(-0.768987\pi\)
0.748003 0.663696i \(-0.231013\pi\)
\(464\) 5.07008 0.235373
\(465\) 0 0
\(466\) 20.9882i 0.972260i
\(467\) −22.1402 −1.02452 −0.512262 0.858829i \(-0.671192\pi\)
−0.512262 + 0.858829i \(0.671192\pi\)
\(468\) 19.0701 1.52808i 0.881515 0.0706356i
\(469\) 6.73006 0.310765
\(470\) 0 0
\(471\) −7.86810 −0.362543
\(472\) −8.83412 −0.406624
\(473\) 24.7523i 1.13811i
\(474\) 32.2442i 1.48103i
\(475\) 0 0
\(476\) 5.64606i 0.258787i
\(477\) −58.7383 −2.68944
\(478\) −14.4580 −0.661293
\(479\) 19.7501i 0.902406i 0.892421 + 0.451203i \(0.149005\pi\)
−0.892421 + 0.451203i \(0.850995\pi\)
\(480\) 0 0
\(481\) 2.64606 + 33.0222i 0.120650 + 1.50568i
\(482\) −9.92992 −0.452295
\(483\) 3.12412i 0.142152i
\(484\) 27.2921 1.24055
\(485\) 0 0
\(486\) 10.6121i 0.481374i
\(487\) 3.78623i 0.171570i 0.996314 + 0.0857852i \(0.0273399\pi\)
−0.996314 + 0.0857852i \(0.972660\pi\)
\(488\) 3.64606i 0.165049i
\(489\) 45.5302i 2.05895i
\(490\) 0 0
\(491\) 18.4441 0.832370 0.416185 0.909280i \(-0.363367\pi\)
0.416185 + 0.909280i \(0.363367\pi\)
\(492\) 15.7301i 0.709166i
\(493\) 15.2103 0.685035
\(494\) −17.5461 + 1.40597i −0.789438 + 0.0632575i
\(495\) 0 0
\(496\) 7.30604i 0.328051i
\(497\) 0 0
\(498\) 0.542001 0.0242877
\(499\) 9.98608i 0.447038i −0.974700 0.223519i \(-0.928245\pi\)
0.974700 0.223519i \(-0.0717545\pi\)
\(500\) 0 0
\(501\) 44.8563i 2.00403i
\(502\) 14.6461i 0.653686i
\(503\) −2.30391 −0.102726 −0.0513632 0.998680i \(-0.516357\pi\)
−0.0513632 + 0.998680i \(0.516357\pi\)
\(504\) 9.98608 0.444815
\(505\) 0 0
\(506\) −3.56419 −0.158448
\(507\) 36.9882 5.96602i 1.64270 0.264960i
\(508\) 4.37613 0.194159
\(509\) 19.0201i 0.843049i 0.906817 + 0.421525i \(0.138505\pi\)
−0.906817 + 0.421525i \(0.861495\pi\)
\(510\) 0 0
\(511\) 22.2721 0.985258
\(512\) 1.00000i 0.0441942i
\(513\) 32.4462i 1.43254i
\(514\) 23.0701i 1.01758i
\(515\) 0 0
\(516\) −11.5281 −0.507496
\(517\) 15.2103 0.668946
\(518\) 17.2921i 0.759772i
\(519\) 16.2721 0.714264
\(520\) 0 0
\(521\) −21.2220 −0.929754 −0.464877 0.885375i \(-0.653902\pi\)
−0.464877 + 0.885375i \(0.653902\pi\)
\(522\) 26.9021i 1.17747i
\(523\) −28.3143 −1.23810 −0.619049 0.785352i \(-0.712482\pi\)
−0.619049 + 0.785352i \(0.712482\pi\)
\(524\) −22.1402 −0.967198
\(525\) 0 0
\(526\) 9.56419i 0.417018i
\(527\) 21.9181i 0.954769i
\(528\) 17.8341i 0.776131i
\(529\) −22.6682 −0.985576
\(530\) 0 0
\(531\) 46.8742i 2.03417i
\(532\) −9.18806 −0.398353
\(533\) −1.57184 19.6162i −0.0680841 0.849673i
\(534\) 33.0222 1.42901
\(535\) 0 0
\(536\) −3.57598 −0.154459
\(537\) 38.8903 1.67824
\(538\) 5.07008i 0.218587i
\(539\) 21.3983i 0.921691i
\(540\) 0 0
\(541\) 24.6204i 1.05851i −0.848462 0.529256i \(-0.822471\pi\)
0.848462 0.529256i \(-0.177529\pi\)
\(542\) 0.730064 0.0313589
\(543\) 7.86810 0.337653
\(544\) 3.00000i 0.128624i
\(545\) 0 0
\(546\) 19.4941 1.56206i 0.834271 0.0668500i
\(547\) 17.9382 0.766981 0.383491 0.923545i \(-0.374722\pi\)
0.383491 + 0.923545i \(0.374722\pi\)
\(548\) 5.83412i 0.249221i
\(549\) 19.3462 0.825674
\(550\) 0 0
\(551\) 24.7523i 1.05448i
\(552\) 1.65998i 0.0706535i
\(553\) 21.0562i 0.895399i
\(554\) 5.56419i 0.236400i
\(555\) 0 0
\(556\) −4.26994 −0.181086
\(557\) 26.4802i 1.12200i 0.827815 + 0.561001i \(0.189584\pi\)
−0.827815 + 0.561001i \(0.810416\pi\)
\(558\) 38.7662 1.64110
\(559\) −14.3761 + 1.15196i −0.608045 + 0.0487226i
\(560\) 0 0
\(561\) 53.5024i 2.25887i
\(562\) −23.2921 −0.982519
\(563\) 14.2803 0.601844 0.300922 0.953649i \(-0.402706\pi\)
0.300922 + 0.953649i \(0.402706\pi\)
\(564\) 7.08400i 0.298290i
\(565\) 0 0
\(566\) 14.1062i 0.592927i
\(567\) 6.09014i 0.255762i
\(568\) 0 0
\(569\) −4.85983 −0.203735 −0.101867 0.994798i \(-0.532482\pi\)
−0.101867 + 0.994798i \(0.532482\pi\)
\(570\) 0 0
\(571\) −6.53987 −0.273685 −0.136843 0.990593i \(-0.543695\pi\)
−0.136843 + 0.990593i \(0.543695\pi\)
\(572\) −1.78209 22.2401i −0.0745131 0.929905i
\(573\) −13.9722 −0.583695
\(574\) 10.2721i 0.428748i
\(575\) 0 0
\(576\) −5.30604 −0.221085
\(577\) 43.7383i 1.82085i −0.413673 0.910425i \(-0.635754\pi\)
0.413673 0.910425i \(-0.364246\pi\)
\(578\) 8.00000i 0.332756i
\(579\) 30.7862i 1.27943i
\(580\) 0 0
\(581\) 0.353938 0.0146838
\(582\) −45.4323 −1.88323
\(583\) 68.5024i 2.83708i
\(584\) −11.8341 −0.489700
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 13.2721i 0.547797i −0.961759 0.273898i \(-0.911687\pi\)
0.961759 0.273898i \(-0.0883132\pi\)
\(588\) −9.96602 −0.410992
\(589\) −35.6682 −1.46968
\(590\) 0 0
\(591\) 44.8563i 1.84514i
\(592\) 9.18806i 0.377627i
\(593\) 25.6704i 1.05416i 0.849817 + 0.527078i \(0.176712\pi\)
−0.849817 + 0.527078i \(0.823288\pi\)
\(594\) −41.1262 −1.68743
\(595\) 0 0
\(596\) 16.9160i 0.692906i
\(597\) −0.784099 −0.0320910
\(598\) 0.165875 + 2.07008i 0.00678315 + 0.0846520i
\(599\) 16.8480 0.688392 0.344196 0.938898i \(-0.388151\pi\)
0.344196 + 0.938898i \(0.388151\pi\)
\(600\) 0 0
\(601\) −16.2921 −0.664570 −0.332285 0.943179i \(-0.607820\pi\)
−0.332285 + 0.943179i \(0.607820\pi\)
\(602\) −7.52808 −0.306822
\(603\) 18.9743i 0.772693i
\(604\) 17.4462i 0.709876i
\(605\) 0 0
\(606\) 30.2442i 1.22859i
\(607\) 31.5642 1.28115 0.640575 0.767895i \(-0.278696\pi\)
0.640575 + 0.767895i \(0.278696\pi\)
\(608\) 4.88202 0.197992
\(609\) 27.5002i 1.11437i
\(610\) 0 0
\(611\) −0.707877 8.83412i −0.0286376 0.357390i
\(612\) −15.9181 −0.643452
\(613\) 27.8320i 1.12412i −0.827095 0.562062i \(-0.810008\pi\)
0.827095 0.562062i \(-0.189992\pi\)
\(614\) 9.42189 0.380237
\(615\) 0 0
\(616\) 11.6461i 0.469233i
\(617\) 1.08400i 0.0436403i 0.999762 + 0.0218202i \(0.00694612\pi\)
−0.999762 + 0.0218202i \(0.993054\pi\)
\(618\) 49.5364i 1.99264i
\(619\) 27.0562i 1.08748i 0.839254 + 0.543740i \(0.182992\pi\)
−0.839254 + 0.543740i \(0.817008\pi\)
\(620\) 0 0
\(621\) 3.82799 0.153612
\(622\) 31.7044i 1.27123i
\(623\) 21.5642 0.863951
\(624\) −10.3581 + 0.829990i −0.414655 + 0.0332262i
\(625\) 0 0
\(626\) 15.3740i 0.614468i
\(627\) 87.0666 3.47710
\(628\) 2.73006 0.108941
\(629\) 27.5642i 1.09906i
\(630\) 0 0
\(631\) 23.4240i 0.932496i −0.884654 0.466248i \(-0.845606\pi\)
0.884654 0.466248i \(-0.154394\pi\)
\(632\) 11.1881i 0.445037i
\(633\) −49.0583 −1.94989
\(634\) 3.18806 0.126614
\(635\) 0 0
\(636\) 31.9042 1.26508
\(637\) −12.4282 + 0.995866i −0.492421 + 0.0394576i
\(638\) −31.3740 −1.24211
\(639\) 0 0
\(640\) 0 0
\(641\) −6.22204 −0.245756 −0.122878 0.992422i \(-0.539212\pi\)
−0.122878 + 0.992422i \(0.539212\pi\)
\(642\) 4.30604i 0.169946i
\(643\) 37.8363i 1.49212i 0.665881 + 0.746058i \(0.268056\pi\)
−0.665881 + 0.746058i \(0.731944\pi\)
\(644\) 1.08400i 0.0427157i
\(645\) 0 0
\(646\) 14.6461 0.576242
\(647\) −38.8563 −1.52760 −0.763800 0.645453i \(-0.776668\pi\)
−0.763800 + 0.645453i \(0.776668\pi\)
\(648\) 3.23596i 0.127120i
\(649\) 54.6661 2.14583
\(650\) 0 0
\(651\) 39.6281 1.55315
\(652\) 15.7980i 0.618698i
\(653\) 25.3740 0.992961 0.496481 0.868048i \(-0.334625\pi\)
0.496481 + 0.868048i \(0.334625\pi\)
\(654\) −37.3282 −1.45965
\(655\) 0 0
\(656\) 5.45800i 0.213099i
\(657\) 62.7924i 2.44976i
\(658\) 4.62600i 0.180340i
\(659\) 16.5059 0.642978 0.321489 0.946913i \(-0.395817\pi\)
0.321489 + 0.946913i \(0.395817\pi\)
\(660\) 0 0
\(661\) 8.81194i 0.342745i −0.985206 0.171372i \(-0.945180\pi\)
0.985206 0.171372i \(-0.0548201\pi\)
\(662\) −9.02219 −0.350657
\(663\) −31.0742 + 2.48997i −1.20682 + 0.0967025i
\(664\) −0.188063 −0.00729826
\(665\) 0 0
\(666\) −48.7523 −1.88911
\(667\) 2.92026 0.113073
\(668\) 15.5642i 0.602197i
\(669\) 4.78410i 0.184964i
\(670\) 0 0
\(671\) 22.5621i 0.870999i
\(672\) −5.42402 −0.209236
\(673\) −4.08187 −0.157345 −0.0786723 0.996901i \(-0.525068\pi\)
−0.0786723 + 0.996901i \(0.525068\pi\)
\(674\) 16.2921i 0.627549i
\(675\) 0 0
\(676\) −12.8341 + 2.07008i −0.493620 + 0.0796186i
\(677\) 24.4441 0.939462 0.469731 0.882810i \(-0.344351\pi\)
0.469731 + 0.882810i \(0.344351\pi\)
\(678\) 26.5781i 1.02073i
\(679\) −29.6682 −1.13856
\(680\) 0 0
\(681\) 24.3761i 0.934095i
\(682\) 45.2103i 1.73119i
\(683\) 23.4802i 0.898444i 0.893420 + 0.449222i \(0.148299\pi\)
−0.893420 + 0.449222i \(0.851701\pi\)
\(684\) 25.9042i 0.990472i
\(685\) 0 0
\(686\) −19.6822 −0.751469
\(687\) 27.0562i 1.03226i
\(688\) 4.00000 0.152499
\(689\) 39.7862 3.18806i 1.51573 0.121456i
\(690\) 0 0
\(691\) 11.4358i 0.435039i 0.976056 + 0.217519i \(0.0697965\pi\)
−0.976056 + 0.217519i \(0.930203\pi\)
\(692\) −5.64606 −0.214631
\(693\) −61.7945 −2.34738
\(694\) 12.3421i 0.468502i
\(695\) 0 0
\(696\) 14.6121i 0.553870i
\(697\) 16.3740i 0.620209i
\(698\) −18.7523 −0.709783
\(699\) 60.4885 2.28788
\(700\) 0 0
\(701\) −9.23383 −0.348757 −0.174378 0.984679i \(-0.555792\pi\)
−0.174378 + 0.984679i \(0.555792\pi\)
\(702\) 1.91399 + 23.8862i 0.0722390 + 0.901525i
\(703\) 44.8563 1.69179
\(704\) 6.18806i 0.233221i
\(705\) 0 0
\(706\) 0.707877 0.0266413
\(707\) 19.7501i 0.742780i
\(708\) 25.4601i 0.956850i
\(709\) 18.1999i 0.683510i −0.939789 0.341755i \(-0.888979\pi\)
0.939789 0.341755i \(-0.111021\pi\)
\(710\) 0 0
\(711\) −59.3643 −2.22634
\(712\) −11.4580 −0.429407
\(713\) 4.20812i 0.157595i
\(714\) −16.2721 −0.608967
\(715\) 0 0
\(716\) −13.4941 −0.504298
\(717\) 41.6682i 1.55613i
\(718\) 0.0221876 0.000828033
\(719\) −16.8480 −0.628326 −0.314163 0.949369i \(-0.601724\pi\)
−0.314163 + 0.949369i \(0.601724\pi\)
\(720\) 0 0
\(721\) 32.3483i 1.20471i
\(722\) 4.83412i 0.179907i
\(723\) 28.6182i 1.06432i
\(724\) −2.73006 −0.101462
\(725\) 0 0
\(726\) 78.6565i 2.91922i
\(727\) −35.0201 −1.29882 −0.649411 0.760438i \(-0.724985\pi\)
−0.649411 + 0.760438i \(0.724985\pi\)
\(728\) −6.76404 + 0.542001i −0.250692 + 0.0200879i
\(729\) −40.2921 −1.49230
\(730\) 0 0
\(731\) 12.0000 0.443836
\(732\) −10.5080 −0.388388
\(733\) 18.1083i 0.668846i 0.942423 + 0.334423i \(0.108541\pi\)
−0.942423 + 0.334423i \(0.891459\pi\)
\(734\) 15.8363i 0.584527i
\(735\) 0 0
\(736\) 0.575978i 0.0212308i
\(737\) 22.1284 0.815109
\(738\) 28.9604 1.06605
\(739\) 15.9181i 0.585558i −0.956180 0.292779i \(-0.905420\pi\)
0.956180 0.292779i \(-0.0945800\pi\)
\(740\) 0 0
\(741\) −4.05203 50.5683i −0.148855 1.85767i
\(742\) 20.8341 0.764845
\(743\) 43.8584i 1.60901i −0.593946 0.804505i \(-0.702431\pi\)
0.593946 0.804505i \(-0.297569\pi\)
\(744\) −21.0562 −0.771956
\(745\) 0 0
\(746\) 4.35394i 0.159409i
\(747\) 0.997870i 0.0365102i
\(748\) 18.5642i 0.678774i
\(749\) 2.81194i 0.102746i
\(750\) 0 0
\(751\) 39.7723 1.45131 0.725656 0.688058i \(-0.241536\pi\)
0.725656 + 0.688058i \(0.241536\pi\)
\(752\) 2.45800i 0.0896340i
\(753\) −42.2103 −1.53823
\(754\) 1.46013 + 18.2220i 0.0531747 + 0.663608i
\(755\) 0 0
\(756\) 12.5080i 0.454912i
\(757\) 42.2943 1.53721 0.768605 0.639723i \(-0.220951\pi\)
0.768605 + 0.639723i \(0.220951\pi\)
\(758\) −2.42402 −0.0880444
\(759\) 10.2721i 0.372852i
\(760\) 0 0
\(761\) 3.99787i 0.144923i 0.997371 + 0.0724613i \(0.0230854\pi\)
−0.997371 + 0.0724613i \(0.976915\pi\)
\(762\) 12.6121i 0.456888i
\(763\) −24.3761 −0.882475
\(764\) 4.84804 0.175396
\(765\) 0 0
\(766\) −7.46013 −0.269545
\(767\) −2.54413 31.7501i −0.0918633 1.14643i
\(768\) 2.88202 0.103996
\(769\) 39.9063i 1.43906i 0.694462 + 0.719530i \(0.255643\pi\)
−0.694462 + 0.719530i \(0.744357\pi\)
\(770\) 0 0
\(771\) 66.4885 2.39452
\(772\) 10.6822i 0.384460i
\(773\) 15.1881i 0.546277i 0.961975 + 0.273138i \(0.0880617\pi\)
−0.961975 + 0.273138i \(0.911938\pi\)
\(774\) 21.2242i 0.762887i
\(775\) 0 0
\(776\) 15.7640 0.565896
\(777\) −49.8363 −1.78787
\(778\) 6.57598i 0.235760i
\(779\) −26.6461 −0.954694
\(780\) 0 0
\(781\) 0 0
\(782\) 1.72793i 0.0617908i
\(783\) 33.6961 1.20420
\(784\) 3.45800 0.123500
\(785\) 0 0
\(786\) 63.8084i 2.27597i
\(787\) 7.68217i 0.273840i −0.990582 0.136920i \(-0.956280\pi\)
0.990582 0.136920i \(-0.0437203\pi\)
\(788\) 15.5642i 0.554451i
\(789\) −27.5642 −0.981311
\(790\) 0 0
\(791\) 17.3561i 0.617111i
\(792\) 32.8341 1.16671
\(793\) −13.1041 + 1.05003i −0.465339 + 0.0372875i
\(794\) −6.95210 −0.246721
\(795\) 0 0
\(796\) 0.272066 0.00964311
\(797\) 33.0784 1.17170 0.585848 0.810421i \(-0.300762\pi\)
0.585848 + 0.810421i \(0.300762\pi\)
\(798\) 26.4802i 0.937388i
\(799\) 7.37400i 0.260873i
\(800\) 0 0
\(801\) 60.7966i 2.14814i
\(802\) −6.91813 −0.244288
\(803\) 73.2303 2.58424
\(804\) 10.3060i 0.363466i
\(805\) 0 0
\(806\) −26.2581 + 2.10406i −0.924904 + 0.0741124i
\(807\) 14.6121 0.514370
\(808\) 10.4941i 0.369181i
\(809\) 23.2921 0.818907 0.409454 0.912331i \(-0.365719\pi\)
0.409454 + 0.912331i \(0.365719\pi\)
\(810\) 0 0
\(811\) 2.14983i 0.0754906i 0.999287 + 0.0377453i \(0.0120176\pi\)
−0.999287 + 0.0377453i \(0.987982\pi\)
\(812\) 9.54200i 0.334859i
\(813\) 2.10406i 0.0737926i
\(814\) 56.8563i 1.99281i
\(815\) 0 0
\(816\) 8.64606 0.302673
\(817\) 19.5281i 0.683201i
\(818\) 15.9299 0.556976
\(819\) 2.87588 + 35.8903i 0.100491 + 1.25411i
\(820\) 0 0
\(821\) 26.8563i 0.937292i 0.883386 + 0.468646i \(0.155258\pi\)
−0.883386 + 0.468646i \(0.844742\pi\)
\(822\) −16.8141 −0.586458
\(823\) 4.00000 0.139431 0.0697156 0.997567i \(-0.477791\pi\)
0.0697156 + 0.997567i \(0.477791\pi\)
\(824\) 17.1881i 0.598775i
\(825\) 0 0
\(826\) 16.6260i 0.578493i
\(827\) 32.0243i 1.11359i 0.830648 + 0.556797i \(0.187970\pi\)
−0.830648 + 0.556797i \(0.812030\pi\)
\(828\) −3.05616 −0.106209
\(829\) −19.2699 −0.669273 −0.334636 0.942347i \(-0.608613\pi\)
−0.334636 + 0.942347i \(0.608613\pi\)
\(830\) 0 0
\(831\) −16.0361 −0.556286
\(832\) 3.59403 0.287989i 0.124601 0.00998422i
\(833\) 10.3740 0.359438
\(834\) 12.3060i 0.426123i
\(835\) 0 0
\(836\) −30.2103 −1.04484
\(837\) 48.5564i 1.67835i
\(838\) 22.9500i 0.792794i
\(839\) 14.8119i 0.511365i 0.966761 + 0.255682i \(0.0823001\pi\)
−0.966761 + 0.255682i \(0.917700\pi\)
\(840\) 0 0
\(841\) −3.29425 −0.113595
\(842\) 24.7523 0.853019
\(843\) 67.1284i 2.31202i
\(844\) 17.0222 0.585928
\(845\) 0 0
\(846\) 13.0422 0.448402
\(847\) 51.3643i 1.76490i
\(848\) −11.0701 −0.380148
\(849\) −40.6543 −1.39525
\(850\) 0 0
\(851\) 5.29212i 0.181412i
\(852\) 0 0
\(853\) 36.5524i 1.25153i −0.780012 0.625765i \(-0.784787\pi\)
0.780012 0.625765i \(-0.215213\pi\)
\(854\) −6.86196 −0.234812
\(855\) 0 0
\(856\) 1.49411i 0.0510675i
\(857\) 27.9299 0.954068 0.477034 0.878885i \(-0.341712\pi\)
0.477034 + 0.878885i \(0.341712\pi\)
\(858\) 64.0964 5.13603i 2.18822 0.175341i
\(859\) −46.6461 −1.59154 −0.795772 0.605597i \(-0.792934\pi\)
−0.795772 + 0.605597i \(0.792934\pi\)
\(860\) 0 0
\(861\) 29.6043 1.00891
\(862\) −32.1041 −1.09347
\(863\) 37.1062i 1.26311i 0.775331 + 0.631555i \(0.217583\pi\)
−0.775331 + 0.631555i \(0.782417\pi\)
\(864\) 6.64606i 0.226104i
\(865\) 0 0
\(866\) 16.2103i 0.550847i
\(867\) −23.0562 −0.783028
\(868\) −13.7501 −0.466710
\(869\) 69.2324i 2.34855i
\(870\) 0 0
\(871\) −1.02984 12.8522i −0.0348949 0.435479i
\(872\) 12.9521 0.438614
\(873\) 83.6447i 2.83094i
\(874\) 2.81194 0.0951152
\(875\) 0 0
\(876\) 34.1062i 1.15234i
\(877\) 46.8924i 1.58344i 0.610881 + 0.791722i \(0.290815\pi\)
−0.610881 + 0.791722i \(0.709185\pi\)
\(878\) 22.1041i 0.745976i
\(879\) 17.2921i 0.583249i
\(880\) 0 0
\(881\) 30.2220 1.01821 0.509103 0.860705i \(-0.329977\pi\)
0.509103 + 0.860705i \(0.329977\pi\)
\(882\) 18.3483i 0.617819i
\(883\) 3.93818 0.132530 0.0662652 0.997802i \(-0.478892\pi\)
0.0662652 + 0.997802i \(0.478892\pi\)
\(884\) 10.7821 0.863967i 0.362641 0.0290584i
\(885\) 0 0
\(886\) 2.64606i 0.0888962i
\(887\) 4.16375 0.139805 0.0699024 0.997554i \(-0.477731\pi\)
0.0699024 + 0.997554i \(0.477731\pi\)
\(888\) 26.4802 0.888617
\(889\) 8.23596i 0.276225i
\(890\) 0 0
\(891\) 20.0243i 0.670840i
\(892\) 1.65998i 0.0555803i
\(893\) −12.0000 −0.401565
\(894\) 48.7523 1.63052
\(895\) 0 0
\(896\) 1.88202 0.0628739
\(897\) −5.96602 + 0.478056i −0.199200 + 0.0159618i
\(898\) −35.1262 −1.17218
\(899\) 37.0422i 1.23543i
\(900\) 0 0
\(901\) −33.2103 −1.10639
\(902\) 33.7744i 1.12457i
\(903\) 21.6961i 0.722001i
\(904\) 9.22204i 0.306720i
\(905\) 0 0
\(906\) 50.2803 1.67045
\(907\) −27.6682 −0.918709 −0.459355 0.888253i \(-0.651919\pi\)
−0.459355 + 0.888253i \(0.651919\pi\)
\(908\) 8.45800i 0.280689i
\(909\) 55.6822 1.84686
\(910\) 0 0
\(911\) −48.5524 −1.60861 −0.804306 0.594215i \(-0.797463\pi\)
−0.804306 + 0.594215i \(0.797463\pi\)
\(912\) 14.0701i 0.465907i
\(913\) 1.16375 0.0385144
\(914\) 18.9181 0.625756
\(915\) 0 0
\(916\) 9.38792i 0.310185i
\(917\) 41.6682i 1.37601i
\(918\) 19.9382i 0.658058i
\(919\) −8.26781 −0.272730 −0.136365 0.990659i \(-0.543542\pi\)
−0.136365 + 0.990659i \(0.543542\pi\)
\(920\) 0 0
\(921\) 27.1541i 0.894758i
\(922\) 8.81194 0.290206
\(923\) 0 0
\(924\) 33.5642 1.10418
\(925\) 0 0
\(926\) −28.5621 −0.938607
\(927\) −91.2006 −2.99542
\(928\) 5.07008i 0.166434i
\(929\) 24.0000i 0.787414i −0.919236 0.393707i \(-0.871192\pi\)
0.919236 0.393707i \(-0.128808\pi\)
\(930\) 0 0
\(931\) 16.8820i 0.553286i
\(932\) −20.9882 −0.687492
\(933\) −91.3726 −2.99140
\(934\) 22.1402i 0.724448i
\(935\) 0 0
\(936\) −1.52808 19.0701i −0.0499469 0.623325i
\(937\) −46.8764 −1.53138 −0.765692 0.643207i \(-0.777603\pi\)
−0.765692 + 0.643207i \(0.777603\pi\)
\(938\) 6.73006i 0.219744i
\(939\) 44.3082 1.44594
\(940\) 0 0
\(941\) 10.2721i 0.334860i −0.985884 0.167430i \(-0.946453\pi\)
0.985884 0.167430i \(-0.0535468\pi\)
\(942\) 7.86810i 0.256357i
\(943\) 3.14369i 0.102373i
\(944\) 8.83412i 0.287526i
\(945\) 0 0
\(946\) −24.7523 −0.804765
\(947\) 38.1262i 1.23894i 0.785022 + 0.619468i \(0.212652\pi\)
−0.785022 + 0.619468i \(0.787348\pi\)
\(948\) 32.2442 1.04724
\(949\) −3.40810 42.5322i −0.110632 1.38065i
\(950\) 0 0
\(951\) 9.18806i 0.297943i
\(952\) 5.64606 0.182990
\(953\) −44.2921 −1.43476 −0.717381 0.696681i \(-0.754659\pi\)
−0.717381 + 0.696681i \(0.754659\pi\)
\(954\) 58.7383i 1.90172i
\(955\) 0 0
\(956\) 14.4580i 0.467605i
\(957\) 90.4205i 2.92288i
\(958\) 19.7501 0.638097
\(959\) −10.9799 −0.354561
\(960\) 0 0
\(961\) −22.3783 −0.721879
\(962\) 33.0222 2.64606i 1.06468 0.0853125i
\(963\) 7.92779 0.255469
\(964\) 9.92992i 0.319821i
\(965\) 0 0
\(966\) −3.12412 −0.100517
\(967\) 44.1262i 1.41900i −0.704703 0.709502i \(-0.748920\pi\)
0.704703 0.709502i \(-0.251080\pi\)
\(968\) 27.2921i 0.877202i
\(969\) 42.2103i 1.35599i
\(970\) 0 0
\(971\) −0.809807 −0.0259879 −0.0129940 0.999916i \(-0.504136\pi\)
−0.0129940 + 0.999916i \(0.504136\pi\)
\(972\) 10.6121 0.340383
\(973\) 8.03611i 0.257626i
\(974\) 3.78623 0.121319
\(975\) 0 0
\(976\) 3.64606 0.116708
\(977\) 62.0465i 1.98504i −0.122068 0.992522i \(-0.538952\pi\)
0.122068 0.992522i \(-0.461048\pi\)
\(978\) −45.5302 −1.45590
\(979\) 70.9028 2.26606
\(980\) 0 0
\(981\) 68.7244i 2.19420i
\(982\) 18.4441i 0.588574i
\(983\) 2.72580i 0.0869397i 0.999055 + 0.0434698i \(0.0138412\pi\)
−0.999055 + 0.0434698i \(0.986159\pi\)
\(984\) −15.7301 −0.501456
\(985\) 0 0
\(986\) 15.2103i 0.484393i
\(987\) 13.3322 0.424370
\(988\) 1.40597 + 17.5461i 0.0447298 + 0.558217i
\(989\) 2.30391 0.0732602
\(990\) 0 0
\(991\) 25.2921 0.803431 0.401715 0.915765i \(-0.368414\pi\)
0.401715 + 0.915765i \(0.368414\pi\)
\(992\) 7.30604 0.231967
\(993\) 26.0021i 0.825153i
\(994\) 0 0
\(995\) 0 0
\(996\) 0.542001i 0.0171740i
\(997\) 2.29425 0.0726597 0.0363299 0.999340i \(-0.488433\pi\)
0.0363299 + 0.999340i \(0.488433\pi\)
\(998\) −9.98608 −0.316104
\(999\) 61.0644i 1.93199i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.d.c.51.3 6
5.2 odd 4 650.2.c.f.649.2 6
5.3 odd 4 650.2.c.e.649.5 6
5.4 even 2 650.2.d.d.51.4 yes 6
13.5 odd 4 8450.2.a.br.1.3 3
13.8 odd 4 8450.2.a.cd.1.3 3
13.12 even 2 inner 650.2.d.c.51.6 yes 6
65.12 odd 4 650.2.c.e.649.2 6
65.34 odd 4 8450.2.a.bq.1.1 3
65.38 odd 4 650.2.c.f.649.5 6
65.44 odd 4 8450.2.a.ce.1.1 3
65.64 even 2 650.2.d.d.51.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.c.e.649.2 6 65.12 odd 4
650.2.c.e.649.5 6 5.3 odd 4
650.2.c.f.649.2 6 5.2 odd 4
650.2.c.f.649.5 6 65.38 odd 4
650.2.d.c.51.3 6 1.1 even 1 trivial
650.2.d.c.51.6 yes 6 13.12 even 2 inner
650.2.d.d.51.1 yes 6 65.64 even 2
650.2.d.d.51.4 yes 6 5.4 even 2
8450.2.a.bq.1.1 3 65.34 odd 4
8450.2.a.br.1.3 3 13.5 odd 4
8450.2.a.cd.1.3 3 13.8 odd 4
8450.2.a.ce.1.1 3 65.44 odd 4