Properties

Label 650.2.c.f.649.5
Level $650$
Weight $2$
Character 650.649
Analytic conductor $5.190$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(649,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,6,0,6,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.126157824.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 18x^{4} + 81x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.5
Root \(2.88202i\) of defining polynomial
Character \(\chi\) \(=\) 650.649
Dual form 650.2.c.f.649.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.88202i q^{3} +1.00000 q^{4} +2.88202i q^{6} +1.88202 q^{7} +1.00000 q^{8} -5.30604 q^{9} +6.18806i q^{11} +2.88202i q^{12} +(0.287989 - 3.59403i) q^{13} +1.88202 q^{14} +1.00000 q^{16} -3.00000i q^{17} -5.30604 q^{18} +4.88202i q^{19} +5.42402i q^{21} +6.18806i q^{22} +0.575978i q^{23} +2.88202i q^{24} +(0.287989 - 3.59403i) q^{26} -6.64606i q^{27} +1.88202 q^{28} -5.07008 q^{29} -7.30604i q^{31} +1.00000 q^{32} -17.8341 q^{33} -3.00000i q^{34} -5.30604 q^{36} +9.18806 q^{37} +4.88202i q^{38} +(10.3581 + 0.829990i) q^{39} -5.45800i q^{41} +5.42402i q^{42} +4.00000i q^{43} +6.18806i q^{44} +0.575978i q^{46} -2.45800 q^{47} +2.88202i q^{48} -3.45800 q^{49} +8.64606 q^{51} +(0.287989 - 3.59403i) q^{52} -11.0701i q^{53} -6.64606i q^{54} +1.88202 q^{56} -14.0701 q^{57} -5.07008 q^{58} +8.83412i q^{59} +3.64606 q^{61} -7.30604i q^{62} -9.98608 q^{63} +1.00000 q^{64} -17.8341 q^{66} -3.57598 q^{67} -3.00000i q^{68} -1.65998 q^{69} -5.30604 q^{72} +11.8341 q^{73} +9.18806 q^{74} +4.88202i q^{76} +11.6461i q^{77} +(10.3581 + 0.829990i) q^{78} +11.1881 q^{79} +3.23596 q^{81} -5.45800i q^{82} +0.188063 q^{83} +5.42402i q^{84} +4.00000i q^{86} -14.6121i q^{87} +6.18806i q^{88} +11.4580i q^{89} +(0.542001 - 6.76404i) q^{91} +0.575978i q^{92} +21.0562 q^{93} -2.45800 q^{94} +2.88202i q^{96} +15.7640 q^{97} -3.45800 q^{98} -32.8341i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + 6 q^{4} - 6 q^{7} + 6 q^{8} - 18 q^{9} - 6 q^{14} + 6 q^{16} - 18 q^{18} - 6 q^{28} + 18 q^{29} + 6 q^{32} - 24 q^{33} - 18 q^{36} + 24 q^{37} + 12 q^{39} + 6 q^{47} - 6 q^{56} - 36 q^{57}+ \cdots + 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.88202i 1.66394i 0.554824 + 0.831968i \(0.312786\pi\)
−0.554824 + 0.831968i \(0.687214\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 2.88202i 1.17658i
\(7\) 1.88202 0.711337 0.355668 0.934612i \(-0.384253\pi\)
0.355668 + 0.934612i \(0.384253\pi\)
\(8\) 1.00000 0.353553
\(9\) −5.30604 −1.76868
\(10\) 0 0
\(11\) 6.18806i 1.86577i 0.360173 + 0.932886i \(0.382718\pi\)
−0.360173 + 0.932886i \(0.617282\pi\)
\(12\) 2.88202i 0.831968i
\(13\) 0.287989 3.59403i 0.0798738 0.996805i
\(14\) 1.88202 0.502991
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.00000i 0.727607i −0.931476 0.363803i \(-0.881478\pi\)
0.931476 0.363803i \(-0.118522\pi\)
\(18\) −5.30604 −1.25065
\(19\) 4.88202i 1.12001i 0.828488 + 0.560006i \(0.189201\pi\)
−0.828488 + 0.560006i \(0.810799\pi\)
\(20\) 0 0
\(21\) 5.42402i 1.18362i
\(22\) 6.18806i 1.31930i
\(23\) 0.575978i 0.120100i 0.998195 + 0.0600499i \(0.0191260\pi\)
−0.998195 + 0.0600499i \(0.980874\pi\)
\(24\) 2.88202i 0.588290i
\(25\) 0 0
\(26\) 0.287989 3.59403i 0.0564793 0.704848i
\(27\) 6.64606i 1.27904i
\(28\) 1.88202 0.355668
\(29\) −5.07008 −0.941491 −0.470745 0.882269i \(-0.656015\pi\)
−0.470745 + 0.882269i \(0.656015\pi\)
\(30\) 0 0
\(31\) 7.30604i 1.31220i −0.754672 0.656102i \(-0.772204\pi\)
0.754672 0.656102i \(-0.227796\pi\)
\(32\) 1.00000 0.176777
\(33\) −17.8341 −3.10452
\(34\) 3.00000i 0.514496i
\(35\) 0 0
\(36\) −5.30604 −0.884340
\(37\) 9.18806 1.51051 0.755254 0.655432i \(-0.227513\pi\)
0.755254 + 0.655432i \(0.227513\pi\)
\(38\) 4.88202i 0.791968i
\(39\) 10.3581 + 0.829990i 1.65862 + 0.132905i
\(40\) 0 0
\(41\) 5.45800i 0.852396i −0.904630 0.426198i \(-0.859853\pi\)
0.904630 0.426198i \(-0.140147\pi\)
\(42\) 5.42402i 0.836945i
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 6.18806i 0.932886i
\(45\) 0 0
\(46\) 0.575978i 0.0849233i
\(47\) −2.45800 −0.358536 −0.179268 0.983800i \(-0.557373\pi\)
−0.179268 + 0.983800i \(0.557373\pi\)
\(48\) 2.88202i 0.415984i
\(49\) −3.45800 −0.494000
\(50\) 0 0
\(51\) 8.64606 1.21069
\(52\) 0.287989 3.59403i 0.0399369 0.498402i
\(53\) 11.0701i 1.52059i −0.649576 0.760296i \(-0.725054\pi\)
0.649576 0.760296i \(-0.274946\pi\)
\(54\) 6.64606i 0.904414i
\(55\) 0 0
\(56\) 1.88202 0.251496
\(57\) −14.0701 −1.86363
\(58\) −5.07008 −0.665735
\(59\) 8.83412i 1.15011i 0.818116 + 0.575053i \(0.195018\pi\)
−0.818116 + 0.575053i \(0.804982\pi\)
\(60\) 0 0
\(61\) 3.64606 0.466830 0.233415 0.972377i \(-0.425010\pi\)
0.233415 + 0.972377i \(0.425010\pi\)
\(62\) 7.30604i 0.927868i
\(63\) −9.98608 −1.25813
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −17.8341 −2.19523
\(67\) −3.57598 −0.436875 −0.218438 0.975851i \(-0.570096\pi\)
−0.218438 + 0.975851i \(0.570096\pi\)
\(68\) 3.00000i 0.363803i
\(69\) −1.65998 −0.199838
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −5.30604 −0.625323
\(73\) 11.8341 1.38508 0.692540 0.721380i \(-0.256492\pi\)
0.692540 + 0.721380i \(0.256492\pi\)
\(74\) 9.18806 1.06809
\(75\) 0 0
\(76\) 4.88202i 0.560006i
\(77\) 11.6461i 1.32719i
\(78\) 10.3581 + 0.829990i 1.17282 + 0.0939779i
\(79\) 11.1881 1.25876 0.629378 0.777100i \(-0.283310\pi\)
0.629378 + 0.777100i \(0.283310\pi\)
\(80\) 0 0
\(81\) 3.23596 0.359551
\(82\) 5.45800i 0.602735i
\(83\) 0.188063 0.0206426 0.0103213 0.999947i \(-0.496715\pi\)
0.0103213 + 0.999947i \(0.496715\pi\)
\(84\) 5.42402i 0.591809i
\(85\) 0 0
\(86\) 4.00000i 0.431331i
\(87\) 14.6121i 1.56658i
\(88\) 6.18806i 0.659650i
\(89\) 11.4580i 1.21455i 0.794493 + 0.607273i \(0.207736\pi\)
−0.794493 + 0.607273i \(0.792264\pi\)
\(90\) 0 0
\(91\) 0.542001 6.76404i 0.0568172 0.709064i
\(92\) 0.575978i 0.0600499i
\(93\) 21.0562 2.18342
\(94\) −2.45800 −0.253523
\(95\) 0 0
\(96\) 2.88202i 0.294145i
\(97\) 15.7640 1.60060 0.800298 0.599603i \(-0.204675\pi\)
0.800298 + 0.599603i \(0.204675\pi\)
\(98\) −3.45800 −0.349311
\(99\) 32.8341i 3.29995i
\(100\) 0 0
\(101\) 10.4941 1.04420 0.522101 0.852884i \(-0.325148\pi\)
0.522101 + 0.852884i \(0.325148\pi\)
\(102\) 8.64606 0.856088
\(103\) 17.1881i 1.69359i −0.531919 0.846795i \(-0.678529\pi\)
0.531919 0.846795i \(-0.321471\pi\)
\(104\) 0.287989 3.59403i 0.0282397 0.352424i
\(105\) 0 0
\(106\) 11.0701i 1.07522i
\(107\) 1.49411i 0.144441i −0.997389 0.0722203i \(-0.976992\pi\)
0.997389 0.0722203i \(-0.0230085\pi\)
\(108\) 6.64606i 0.639518i
\(109\) 12.9521i 1.24059i −0.784370 0.620293i \(-0.787014\pi\)
0.784370 0.620293i \(-0.212986\pi\)
\(110\) 0 0
\(111\) 26.4802i 2.51339i
\(112\) 1.88202 0.177834
\(113\) 9.22204i 0.867537i −0.901024 0.433768i \(-0.857184\pi\)
0.901024 0.433768i \(-0.142816\pi\)
\(114\) −14.0701 −1.31778
\(115\) 0 0
\(116\) −5.07008 −0.470745
\(117\) −1.52808 + 19.0701i −0.141271 + 1.76303i
\(118\) 8.83412i 0.813247i
\(119\) 5.64606i 0.517574i
\(120\) 0 0
\(121\) −27.2921 −2.48110
\(122\) 3.64606 0.330099
\(123\) 15.7301 1.41833
\(124\) 7.30604i 0.656102i
\(125\) 0 0
\(126\) −9.98608 −0.889631
\(127\) 4.37613i 0.388318i 0.980970 + 0.194159i \(0.0621978\pi\)
−0.980970 + 0.194159i \(0.937802\pi\)
\(128\) 1.00000 0.0883883
\(129\) −11.5281 −1.01499
\(130\) 0 0
\(131\) 22.1402 1.93440 0.967198 0.254025i \(-0.0817545\pi\)
0.967198 + 0.254025i \(0.0817545\pi\)
\(132\) −17.8341 −1.55226
\(133\) 9.18806i 0.796706i
\(134\) −3.57598 −0.308917
\(135\) 0 0
\(136\) 3.00000i 0.257248i
\(137\) 5.83412 0.498443 0.249221 0.968447i \(-0.419825\pi\)
0.249221 + 0.968447i \(0.419825\pi\)
\(138\) −1.65998 −0.141307
\(139\) −4.26994 −0.362171 −0.181086 0.983467i \(-0.557961\pi\)
−0.181086 + 0.983467i \(0.557961\pi\)
\(140\) 0 0
\(141\) 7.08400i 0.596581i
\(142\) 0 0
\(143\) 22.2401 + 1.78209i 1.85981 + 0.149026i
\(144\) −5.30604 −0.442170
\(145\) 0 0
\(146\) 11.8341 0.979399
\(147\) 9.96602i 0.821984i
\(148\) 9.18806 0.755254
\(149\) 16.9160i 1.38581i 0.721028 + 0.692906i \(0.243670\pi\)
−0.721028 + 0.692906i \(0.756330\pi\)
\(150\) 0 0
\(151\) 17.4462i 1.41975i −0.704326 0.709876i \(-0.748751\pi\)
0.704326 0.709876i \(-0.251249\pi\)
\(152\) 4.88202i 0.395984i
\(153\) 15.9181i 1.28690i
\(154\) 11.6461i 0.938466i
\(155\) 0 0
\(156\) 10.3581 + 0.829990i 0.829310 + 0.0664524i
\(157\) 2.73006i 0.217883i 0.994048 + 0.108941i \(0.0347461\pi\)
−0.994048 + 0.108941i \(0.965254\pi\)
\(158\) 11.1881 0.890074
\(159\) 31.9042 2.53017
\(160\) 0 0
\(161\) 1.08400i 0.0854314i
\(162\) 3.23596 0.254241
\(163\) −15.7980 −1.23740 −0.618698 0.785629i \(-0.712340\pi\)
−0.618698 + 0.785629i \(0.712340\pi\)
\(164\) 5.45800i 0.426198i
\(165\) 0 0
\(166\) 0.188063 0.0145965
\(167\) −15.5642 −1.20439 −0.602197 0.798348i \(-0.705708\pi\)
−0.602197 + 0.798348i \(0.705708\pi\)
\(168\) 5.42402i 0.418472i
\(169\) −12.8341 2.07008i −0.987240 0.159237i
\(170\) 0 0
\(171\) 25.9042i 1.98094i
\(172\) 4.00000i 0.304997i
\(173\) 5.64606i 0.429262i 0.976695 + 0.214631i \(0.0688549\pi\)
−0.976695 + 0.214631i \(0.931145\pi\)
\(174\) 14.6121i 1.10774i
\(175\) 0 0
\(176\) 6.18806i 0.466443i
\(177\) −25.4601 −1.91370
\(178\) 11.4580i 0.858813i
\(179\) −13.4941 −1.00860 −0.504298 0.863529i \(-0.668249\pi\)
−0.504298 + 0.863529i \(0.668249\pi\)
\(180\) 0 0
\(181\) 2.73006 0.202924 0.101462 0.994839i \(-0.467648\pi\)
0.101462 + 0.994839i \(0.467648\pi\)
\(182\) 0.542001 6.76404i 0.0401758 0.501384i
\(183\) 10.5080i 0.776776i
\(184\) 0.575978i 0.0424617i
\(185\) 0 0
\(186\) 21.0562 1.54391
\(187\) 18.5642 1.35755
\(188\) −2.45800 −0.179268
\(189\) 12.5080i 0.909825i
\(190\) 0 0
\(191\) −4.84804 −0.350792 −0.175396 0.984498i \(-0.556121\pi\)
−0.175396 + 0.984498i \(0.556121\pi\)
\(192\) 2.88202i 0.207992i
\(193\) −10.6822 −0.768919 −0.384460 0.923142i \(-0.625612\pi\)
−0.384460 + 0.923142i \(0.625612\pi\)
\(194\) 15.7640 1.13179
\(195\) 0 0
\(196\) −3.45800 −0.247000
\(197\) −15.5642 −1.10890 −0.554451 0.832216i \(-0.687072\pi\)
−0.554451 + 0.832216i \(0.687072\pi\)
\(198\) 32.8341i 2.33342i
\(199\) 0.272066 0.0192862 0.00964311 0.999954i \(-0.496930\pi\)
0.00964311 + 0.999954i \(0.496930\pi\)
\(200\) 0 0
\(201\) 10.3060i 0.726932i
\(202\) 10.4941 0.738363
\(203\) −9.54200 −0.669717
\(204\) 8.64606 0.605345
\(205\) 0 0
\(206\) 17.1881i 1.19755i
\(207\) 3.05616i 0.212418i
\(208\) 0.287989 3.59403i 0.0199684 0.249201i
\(209\) −30.2103 −2.08969
\(210\) 0 0
\(211\) −17.0222 −1.17186 −0.585928 0.810363i \(-0.699270\pi\)
−0.585928 + 0.810363i \(0.699270\pi\)
\(212\) 11.0701i 0.760296i
\(213\) 0 0
\(214\) 1.49411i 0.102135i
\(215\) 0 0
\(216\) 6.64606i 0.452207i
\(217\) 13.7501i 0.933419i
\(218\) 12.9521i 0.877227i
\(219\) 34.1062i 2.30468i
\(220\) 0 0
\(221\) −10.7821 0.863967i −0.725282 0.0581167i
\(222\) 26.4802i 1.77723i
\(223\) −1.65998 −0.111161 −0.0555803 0.998454i \(-0.517701\pi\)
−0.0555803 + 0.998454i \(0.517701\pi\)
\(224\) 1.88202 0.125748
\(225\) 0 0
\(226\) 9.22204i 0.613441i
\(227\) 8.45800 0.561377 0.280689 0.959799i \(-0.409437\pi\)
0.280689 + 0.959799i \(0.409437\pi\)
\(228\) −14.0701 −0.931814
\(229\) 9.38792i 0.620371i −0.950676 0.310185i \(-0.899609\pi\)
0.950676 0.310185i \(-0.100391\pi\)
\(230\) 0 0
\(231\) −33.5642 −2.20836
\(232\) −5.07008 −0.332867
\(233\) 20.9882i 1.37498i 0.726192 + 0.687492i \(0.241288\pi\)
−0.726192 + 0.687492i \(0.758712\pi\)
\(234\) −1.52808 + 19.0701i −0.0998939 + 1.24665i
\(235\) 0 0
\(236\) 8.83412i 0.575053i
\(237\) 32.2442i 2.09449i
\(238\) 5.64606i 0.365980i
\(239\) 14.4580i 0.935210i −0.883937 0.467605i \(-0.845117\pi\)
0.883937 0.467605i \(-0.154883\pi\)
\(240\) 0 0
\(241\) 9.92992i 0.639642i 0.947478 + 0.319821i \(0.103623\pi\)
−0.947478 + 0.319821i \(0.896377\pi\)
\(242\) −27.2921 −1.75440
\(243\) 10.6121i 0.680766i
\(244\) 3.64606 0.233415
\(245\) 0 0
\(246\) 15.7301 1.00291
\(247\) 17.5461 + 1.40597i 1.11643 + 0.0894596i
\(248\) 7.30604i 0.463934i
\(249\) 0.542001i 0.0343479i
\(250\) 0 0
\(251\) −14.6461 −0.924451 −0.462226 0.886762i \(-0.652949\pi\)
−0.462226 + 0.886762i \(0.652949\pi\)
\(252\) −9.98608 −0.629064
\(253\) −3.56419 −0.224079
\(254\) 4.37613i 0.274583i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 23.0701i 1.43907i −0.694455 0.719536i \(-0.744354\pi\)
0.694455 0.719536i \(-0.255646\pi\)
\(258\) −11.5281 −0.717707
\(259\) 17.2921 1.07448
\(260\) 0 0
\(261\) 26.9021 1.66520
\(262\) 22.1402 1.36782
\(263\) 9.56419i 0.589753i −0.955535 0.294877i \(-0.904721\pi\)
0.955535 0.294877i \(-0.0952785\pi\)
\(264\) −17.8341 −1.09761
\(265\) 0 0
\(266\) 9.18806i 0.563356i
\(267\) −33.0222 −2.02093
\(268\) −3.57598 −0.218438
\(269\) −5.07008 −0.309128 −0.154564 0.987983i \(-0.549397\pi\)
−0.154564 + 0.987983i \(0.549397\pi\)
\(270\) 0 0
\(271\) 0.730064i 0.0443482i −0.999754 0.0221741i \(-0.992941\pi\)
0.999754 0.0221741i \(-0.00705882\pi\)
\(272\) 3.00000i 0.181902i
\(273\) 19.4941 + 1.56206i 1.17984 + 0.0945401i
\(274\) 5.83412 0.352452
\(275\) 0 0
\(276\) −1.65998 −0.0999191
\(277\) 5.56419i 0.334320i 0.985930 + 0.167160i \(0.0534596\pi\)
−0.985930 + 0.167160i \(0.946540\pi\)
\(278\) −4.26994 −0.256094
\(279\) 38.7662i 2.32087i
\(280\) 0 0
\(281\) 23.2921i 1.38949i 0.719255 + 0.694746i \(0.244483\pi\)
−0.719255 + 0.694746i \(0.755517\pi\)
\(282\) 7.08400i 0.421846i
\(283\) 14.1062i 0.838526i −0.907865 0.419263i \(-0.862289\pi\)
0.907865 0.419263i \(-0.137711\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 22.2401 + 1.78209i 1.31508 + 0.105377i
\(287\) 10.2721i 0.606341i
\(288\) −5.30604 −0.312662
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 45.4323i 2.66329i
\(292\) 11.8341 0.692540
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 9.96602i 0.581230i
\(295\) 0 0
\(296\) 9.18806 0.534045
\(297\) 41.1262 2.38639
\(298\) 16.9160i 0.979917i
\(299\) 2.07008 + 0.165875i 0.119716 + 0.00959282i
\(300\) 0 0
\(301\) 7.52808i 0.433911i
\(302\) 17.4462i 1.00392i
\(303\) 30.2442i 1.73749i
\(304\) 4.88202i 0.280003i
\(305\) 0 0
\(306\) 15.9181i 0.909979i
\(307\) −9.42189 −0.537736 −0.268868 0.963177i \(-0.586650\pi\)
−0.268868 + 0.963177i \(0.586650\pi\)
\(308\) 11.6461i 0.663596i
\(309\) 49.5364 2.81802
\(310\) 0 0
\(311\) −31.7044 −1.79779 −0.898895 0.438165i \(-0.855629\pi\)
−0.898895 + 0.438165i \(0.855629\pi\)
\(312\) 10.3581 + 0.829990i 0.586410 + 0.0469890i
\(313\) 15.3740i 0.868990i 0.900674 + 0.434495i \(0.143073\pi\)
−0.900674 + 0.434495i \(0.856927\pi\)
\(314\) 2.73006i 0.154066i
\(315\) 0 0
\(316\) 11.1881 0.629378
\(317\) −3.18806 −0.179059 −0.0895297 0.995984i \(-0.528536\pi\)
−0.0895297 + 0.995984i \(0.528536\pi\)
\(318\) 31.9042 1.78910
\(319\) 31.3740i 1.75661i
\(320\) 0 0
\(321\) 4.30604 0.240340
\(322\) 1.08400i 0.0604091i
\(323\) 14.6461 0.814929
\(324\) 3.23596 0.179775
\(325\) 0 0
\(326\) −15.7980 −0.874971
\(327\) 37.3282 2.06426
\(328\) 5.45800i 0.301368i
\(329\) −4.62600 −0.255040
\(330\) 0 0
\(331\) 9.02219i 0.495904i 0.968772 + 0.247952i \(0.0797576\pi\)
−0.968772 + 0.247952i \(0.920242\pi\)
\(332\) 0.188063 0.0103213
\(333\) −48.7523 −2.67161
\(334\) −15.5642 −0.851635
\(335\) 0 0
\(336\) 5.42402i 0.295905i
\(337\) 16.2921i 0.887489i −0.896153 0.443744i \(-0.853650\pi\)
0.896153 0.443744i \(-0.146350\pi\)
\(338\) −12.8341 2.07008i −0.698084 0.112598i
\(339\) 26.5781 1.44352
\(340\) 0 0
\(341\) 45.2103 2.44827
\(342\) 25.9042i 1.40074i
\(343\) −19.6822 −1.06274
\(344\) 4.00000i 0.215666i
\(345\) 0 0
\(346\) 5.64606i 0.303534i
\(347\) 12.3421i 0.662561i 0.943532 + 0.331281i \(0.107481\pi\)
−0.943532 + 0.331281i \(0.892519\pi\)
\(348\) 14.6121i 0.783290i
\(349\) 18.7523i 1.00379i −0.864930 0.501893i \(-0.832637\pi\)
0.864930 0.501893i \(-0.167363\pi\)
\(350\) 0 0
\(351\) −23.8862 1.91399i −1.27495 0.102161i
\(352\) 6.18806i 0.329825i
\(353\) 0.707877 0.0376765 0.0188382 0.999823i \(-0.494003\pi\)
0.0188382 + 0.999823i \(0.494003\pi\)
\(354\) −25.4601 −1.35319
\(355\) 0 0
\(356\) 11.4580i 0.607273i
\(357\) 16.2721 0.861209
\(358\) −13.4941 −0.713186
\(359\) 0.0221876i 0.00117101i 1.00000 0.000585507i \(0.000186373\pi\)
−1.00000 0.000585507i \(0.999814\pi\)
\(360\) 0 0
\(361\) −4.83412 −0.254428
\(362\) 2.73006 0.143489
\(363\) 78.6565i 4.12839i
\(364\) 0.542001 6.76404i 0.0284086 0.354532i
\(365\) 0 0
\(366\) 10.5080i 0.549263i
\(367\) 15.8363i 0.826646i 0.910585 + 0.413323i \(0.135632\pi\)
−0.910585 + 0.413323i \(0.864368\pi\)
\(368\) 0.575978i 0.0300249i
\(369\) 28.9604i 1.50762i
\(370\) 0 0
\(371\) 20.8341i 1.08165i
\(372\) 21.0562 1.09171
\(373\) 4.35394i 0.225438i −0.993627 0.112719i \(-0.964044\pi\)
0.993627 0.112719i \(-0.0359560\pi\)
\(374\) 18.5642 0.959931
\(375\) 0 0
\(376\) −2.45800 −0.126762
\(377\) −1.46013 + 18.2220i −0.0752004 + 0.938483i
\(378\) 12.5080i 0.643343i
\(379\) 2.42402i 0.124514i −0.998060 0.0622568i \(-0.980170\pi\)
0.998060 0.0622568i \(-0.0198298\pi\)
\(380\) 0 0
\(381\) −12.6121 −0.646137
\(382\) −4.84804 −0.248047
\(383\) −7.46013 −0.381195 −0.190597 0.981668i \(-0.561042\pi\)
−0.190597 + 0.981668i \(0.561042\pi\)
\(384\) 2.88202i 0.147072i
\(385\) 0 0
\(386\) −10.6822 −0.543708
\(387\) 21.2242i 1.07889i
\(388\) 15.7640 0.800298
\(389\) −6.57598 −0.333415 −0.166708 0.986006i \(-0.553314\pi\)
−0.166708 + 0.986006i \(0.553314\pi\)
\(390\) 0 0
\(391\) 1.72793 0.0873854
\(392\) −3.45800 −0.174655
\(393\) 63.8084i 3.21871i
\(394\) −15.5642 −0.784113
\(395\) 0 0
\(396\) 32.8341i 1.64998i
\(397\) 6.95210 0.348916 0.174458 0.984665i \(-0.444183\pi\)
0.174458 + 0.984665i \(0.444183\pi\)
\(398\) 0.272066 0.0136374
\(399\) −26.4802 −1.32567
\(400\) 0 0
\(401\) 6.91813i 0.345475i 0.984968 + 0.172737i \(0.0552612\pi\)
−0.984968 + 0.172737i \(0.944739\pi\)
\(402\) 10.3060i 0.514019i
\(403\) −26.2581 2.10406i −1.30801 0.104811i
\(404\) 10.4941 0.522101
\(405\) 0 0
\(406\) −9.54200 −0.473562
\(407\) 56.8563i 2.81826i
\(408\) 8.64606 0.428044
\(409\) 15.9299i 0.787684i 0.919178 + 0.393842i \(0.128854\pi\)
−0.919178 + 0.393842i \(0.871146\pi\)
\(410\) 0 0
\(411\) 16.8141i 0.829377i
\(412\) 17.1881i 0.846795i
\(413\) 16.6260i 0.818112i
\(414\) 3.05616i 0.150202i
\(415\) 0 0
\(416\) 0.287989 3.59403i 0.0141198 0.176212i
\(417\) 12.3060i 0.602629i
\(418\) −30.2103 −1.47763
\(419\) 22.9500 1.12118 0.560590 0.828094i \(-0.310574\pi\)
0.560590 + 0.828094i \(0.310574\pi\)
\(420\) 0 0
\(421\) 24.7523i 1.20635i −0.797609 0.603175i \(-0.793902\pi\)
0.797609 0.603175i \(-0.206098\pi\)
\(422\) −17.0222 −0.828627
\(423\) 13.0422 0.634136
\(424\) 11.0701i 0.537611i
\(425\) 0 0
\(426\) 0 0
\(427\) 6.86196 0.332074
\(428\) 1.49411i 0.0722203i
\(429\) −5.13603 + 64.0964i −0.247970 + 3.09460i
\(430\) 0 0
\(431\) 32.1041i 1.54640i 0.634163 + 0.773199i \(0.281345\pi\)
−0.634163 + 0.773199i \(0.718655\pi\)
\(432\) 6.64606i 0.319759i
\(433\) 16.2103i 0.779015i −0.921023 0.389507i \(-0.872645\pi\)
0.921023 0.389507i \(-0.127355\pi\)
\(434\) 13.7501i 0.660027i
\(435\) 0 0
\(436\) 12.9521i 0.620293i
\(437\) −2.81194 −0.134513
\(438\) 34.1062i 1.62966i
\(439\) −22.1041 −1.05497 −0.527485 0.849565i \(-0.676865\pi\)
−0.527485 + 0.849565i \(0.676865\pi\)
\(440\) 0 0
\(441\) 18.3483 0.873728
\(442\) −10.7821 0.863967i −0.512852 0.0410947i
\(443\) 2.64606i 0.125718i −0.998022 0.0628591i \(-0.979978\pi\)
0.998022 0.0628591i \(-0.0200219\pi\)
\(444\) 26.4802i 1.25669i
\(445\) 0 0
\(446\) −1.65998 −0.0786024
\(447\) −48.7523 −2.30590
\(448\) 1.88202 0.0889171
\(449\) 35.1262i 1.65771i −0.559463 0.828855i \(-0.688993\pi\)
0.559463 0.828855i \(-0.311007\pi\)
\(450\) 0 0
\(451\) 33.7744 1.59038
\(452\) 9.22204i 0.433768i
\(453\) 50.2803 2.36238
\(454\) 8.45800 0.396954
\(455\) 0 0
\(456\) −14.0701 −0.658892
\(457\) −18.9181 −0.884953 −0.442476 0.896780i \(-0.645900\pi\)
−0.442476 + 0.896780i \(0.645900\pi\)
\(458\) 9.38792i 0.438668i
\(459\) −19.9382 −0.930635
\(460\) 0 0
\(461\) 8.81194i 0.410413i −0.978719 0.205206i \(-0.934213\pi\)
0.978719 0.205206i \(-0.0657866\pi\)
\(462\) −33.5642 −1.56155
\(463\) −28.5621 −1.32739 −0.663696 0.748003i \(-0.731013\pi\)
−0.663696 + 0.748003i \(0.731013\pi\)
\(464\) −5.07008 −0.235373
\(465\) 0 0
\(466\) 20.9882i 0.972260i
\(467\) 22.1402i 1.02452i 0.858829 + 0.512262i \(0.171192\pi\)
−0.858829 + 0.512262i \(0.828808\pi\)
\(468\) −1.52808 + 19.0701i −0.0706356 + 0.881515i
\(469\) −6.73006 −0.310765
\(470\) 0 0
\(471\) −7.86810 −0.362543
\(472\) 8.83412i 0.406624i
\(473\) −24.7523 −1.13811
\(474\) 32.2442i 1.48103i
\(475\) 0 0
\(476\) 5.64606i 0.258787i
\(477\) 58.7383i 2.68944i
\(478\) 14.4580i 0.661293i
\(479\) 19.7501i 0.902406i 0.892421 + 0.451203i \(0.149005\pi\)
−0.892421 + 0.451203i \(0.850995\pi\)
\(480\) 0 0
\(481\) 2.64606 33.0222i 0.120650 1.50568i
\(482\) 9.92992i 0.452295i
\(483\) −3.12412 −0.142152
\(484\) −27.2921 −1.24055
\(485\) 0 0
\(486\) 10.6121i 0.481374i
\(487\) −3.78623 −0.171570 −0.0857852 0.996314i \(-0.527340\pi\)
−0.0857852 + 0.996314i \(0.527340\pi\)
\(488\) 3.64606 0.165049
\(489\) 45.5302i 2.05895i
\(490\) 0 0
\(491\) 18.4441 0.832370 0.416185 0.909280i \(-0.363367\pi\)
0.416185 + 0.909280i \(0.363367\pi\)
\(492\) 15.7301 0.709166
\(493\) 15.2103i 0.685035i
\(494\) 17.5461 + 1.40597i 0.789438 + 0.0632575i
\(495\) 0 0
\(496\) 7.30604i 0.328051i
\(497\) 0 0
\(498\) 0.542001i 0.0242877i
\(499\) 9.98608i 0.447038i −0.974700 0.223519i \(-0.928245\pi\)
0.974700 0.223519i \(-0.0717545\pi\)
\(500\) 0 0
\(501\) 44.8563i 2.00403i
\(502\) −14.6461 −0.653686
\(503\) 2.30391i 0.102726i −0.998680 0.0513632i \(-0.983643\pi\)
0.998680 0.0513632i \(-0.0163566\pi\)
\(504\) −9.98608 −0.444815
\(505\) 0 0
\(506\) −3.56419 −0.158448
\(507\) 5.96602 36.9882i 0.264960 1.64270i
\(508\) 4.37613i 0.194159i
\(509\) 19.0201i 0.843049i 0.906817 + 0.421525i \(0.138505\pi\)
−0.906817 + 0.421525i \(0.861495\pi\)
\(510\) 0 0
\(511\) 22.2721 0.985258
\(512\) 1.00000 0.0441942
\(513\) 32.4462 1.43254
\(514\) 23.0701i 1.01758i
\(515\) 0 0
\(516\) −11.5281 −0.507496
\(517\) 15.2103i 0.668946i
\(518\) 17.2921 0.759772
\(519\) −16.2721 −0.714264
\(520\) 0 0
\(521\) −21.2220 −0.929754 −0.464877 0.885375i \(-0.653902\pi\)
−0.464877 + 0.885375i \(0.653902\pi\)
\(522\) 26.9021 1.17747
\(523\) 28.3143i 1.23810i −0.785352 0.619049i \(-0.787518\pi\)
0.785352 0.619049i \(-0.212482\pi\)
\(524\) 22.1402 0.967198
\(525\) 0 0
\(526\) 9.56419i 0.417018i
\(527\) −21.9181 −0.954769
\(528\) −17.8341 −0.776131
\(529\) 22.6682 0.985576
\(530\) 0 0
\(531\) 46.8742i 2.03417i
\(532\) 9.18806i 0.398353i
\(533\) −19.6162 1.57184i −0.849673 0.0680841i
\(534\) −33.0222 −1.42901
\(535\) 0 0
\(536\) −3.57598 −0.154459
\(537\) 38.8903i 1.67824i
\(538\) −5.07008 −0.218587
\(539\) 21.3983i 0.921691i
\(540\) 0 0
\(541\) 24.6204i 1.05851i 0.848462 + 0.529256i \(0.177529\pi\)
−0.848462 + 0.529256i \(0.822471\pi\)
\(542\) 0.730064i 0.0313589i
\(543\) 7.86810i 0.337653i
\(544\) 3.00000i 0.128624i
\(545\) 0 0
\(546\) 19.4941 + 1.56206i 0.834271 + 0.0668500i
\(547\) 17.9382i 0.766981i −0.923545 0.383491i \(-0.874722\pi\)
0.923545 0.383491i \(-0.125278\pi\)
\(548\) 5.83412 0.249221
\(549\) −19.3462 −0.825674
\(550\) 0 0
\(551\) 24.7523i 1.05448i
\(552\) −1.65998 −0.0706535
\(553\) 21.0562 0.895399
\(554\) 5.56419i 0.236400i
\(555\) 0 0
\(556\) −4.26994 −0.181086
\(557\) −26.4802 −1.12200 −0.561001 0.827815i \(-0.689584\pi\)
−0.561001 + 0.827815i \(0.689584\pi\)
\(558\) 38.7662i 1.64110i
\(559\) 14.3761 + 1.15196i 0.608045 + 0.0487226i
\(560\) 0 0
\(561\) 53.5024i 2.25887i
\(562\) 23.2921i 0.982519i
\(563\) 14.2803i 0.601844i 0.953649 + 0.300922i \(0.0972944\pi\)
−0.953649 + 0.300922i \(0.902706\pi\)
\(564\) 7.08400i 0.298290i
\(565\) 0 0
\(566\) 14.1062i 0.592927i
\(567\) 6.09014 0.255762
\(568\) 0 0
\(569\) 4.85983 0.203735 0.101867 0.994798i \(-0.467518\pi\)
0.101867 + 0.994798i \(0.467518\pi\)
\(570\) 0 0
\(571\) −6.53987 −0.273685 −0.136843 0.990593i \(-0.543695\pi\)
−0.136843 + 0.990593i \(0.543695\pi\)
\(572\) 22.2401 + 1.78209i 0.929905 + 0.0745131i
\(573\) 13.9722i 0.583695i
\(574\) 10.2721i 0.428748i
\(575\) 0 0
\(576\) −5.30604 −0.221085
\(577\) 43.7383 1.82085 0.910425 0.413673i \(-0.135754\pi\)
0.910425 + 0.413673i \(0.135754\pi\)
\(578\) 8.00000 0.332756
\(579\) 30.7862i 1.27943i
\(580\) 0 0
\(581\) 0.353938 0.0146838
\(582\) 45.4323i 1.88323i
\(583\) 68.5024 2.83708
\(584\) 11.8341 0.489700
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 13.2721 0.547797 0.273898 0.961759i \(-0.411687\pi\)
0.273898 + 0.961759i \(0.411687\pi\)
\(588\) 9.96602i 0.410992i
\(589\) 35.6682 1.46968
\(590\) 0 0
\(591\) 44.8563i 1.84514i
\(592\) 9.18806 0.377627
\(593\) 25.6704 1.05416 0.527078 0.849817i \(-0.323288\pi\)
0.527078 + 0.849817i \(0.323288\pi\)
\(594\) 41.1262 1.68743
\(595\) 0 0
\(596\) 16.9160i 0.692906i
\(597\) 0.784099i 0.0320910i
\(598\) 2.07008 + 0.165875i 0.0846520 + 0.00678315i
\(599\) −16.8480 −0.688392 −0.344196 0.938898i \(-0.611849\pi\)
−0.344196 + 0.938898i \(0.611849\pi\)
\(600\) 0 0
\(601\) −16.2921 −0.664570 −0.332285 0.943179i \(-0.607820\pi\)
−0.332285 + 0.943179i \(0.607820\pi\)
\(602\) 7.52808i 0.306822i
\(603\) 18.9743 0.772693
\(604\) 17.4462i 0.709876i
\(605\) 0 0
\(606\) 30.2442i 1.22859i
\(607\) 31.5642i 1.28115i −0.767895 0.640575i \(-0.778696\pi\)
0.767895 0.640575i \(-0.221304\pi\)
\(608\) 4.88202i 0.197992i
\(609\) 27.5002i 1.11437i
\(610\) 0 0
\(611\) −0.707877 + 8.83412i −0.0286376 + 0.357390i
\(612\) 15.9181i 0.643452i
\(613\) −27.8320 −1.12412 −0.562062 0.827095i \(-0.689992\pi\)
−0.562062 + 0.827095i \(0.689992\pi\)
\(614\) −9.42189 −0.380237
\(615\) 0 0
\(616\) 11.6461i 0.469233i
\(617\) −1.08400 −0.0436403 −0.0218202 0.999762i \(-0.506946\pi\)
−0.0218202 + 0.999762i \(0.506946\pi\)
\(618\) 49.5364 1.99264
\(619\) 27.0562i 1.08748i 0.839254 + 0.543740i \(0.182992\pi\)
−0.839254 + 0.543740i \(0.817008\pi\)
\(620\) 0 0
\(621\) 3.82799 0.153612
\(622\) −31.7044 −1.27123
\(623\) 21.5642i 0.863951i
\(624\) 10.3581 + 0.829990i 0.414655 + 0.0332262i
\(625\) 0 0
\(626\) 15.3740i 0.614468i
\(627\) 87.0666i 3.47710i
\(628\) 2.73006i 0.108941i
\(629\) 27.5642i 1.09906i
\(630\) 0 0
\(631\) 23.4240i 0.932496i 0.884654 + 0.466248i \(0.154394\pi\)
−0.884654 + 0.466248i \(0.845606\pi\)
\(632\) 11.1881 0.445037
\(633\) 49.0583i 1.94989i
\(634\) −3.18806 −0.126614
\(635\) 0 0
\(636\) 31.9042 1.26508
\(637\) −0.995866 + 12.4282i −0.0394576 + 0.492421i
\(638\) 31.3740i 1.24211i
\(639\) 0 0
\(640\) 0 0
\(641\) −6.22204 −0.245756 −0.122878 0.992422i \(-0.539212\pi\)
−0.122878 + 0.992422i \(0.539212\pi\)
\(642\) 4.30604 0.169946
\(643\) 37.8363 1.49212 0.746058 0.665881i \(-0.231944\pi\)
0.746058 + 0.665881i \(0.231944\pi\)
\(644\) 1.08400i 0.0427157i
\(645\) 0 0
\(646\) 14.6461 0.576242
\(647\) 38.8563i 1.52760i 0.645453 + 0.763800i \(0.276668\pi\)
−0.645453 + 0.763800i \(0.723332\pi\)
\(648\) 3.23596 0.127120
\(649\) −54.6661 −2.14583
\(650\) 0 0
\(651\) 39.6281 1.55315
\(652\) −15.7980 −0.618698
\(653\) 25.3740i 0.992961i 0.868048 + 0.496481i \(0.165375\pi\)
−0.868048 + 0.496481i \(0.834625\pi\)
\(654\) 37.3282 1.45965
\(655\) 0 0
\(656\) 5.45800i 0.213099i
\(657\) −62.7924 −2.44976
\(658\) −4.62600 −0.180340
\(659\) −16.5059 −0.642978 −0.321489 0.946913i \(-0.604183\pi\)
−0.321489 + 0.946913i \(0.604183\pi\)
\(660\) 0 0
\(661\) 8.81194i 0.342745i 0.985206 + 0.171372i \(0.0548201\pi\)
−0.985206 + 0.171372i \(0.945180\pi\)
\(662\) 9.02219i 0.350657i
\(663\) 2.48997 31.0742i 0.0967025 1.20682i
\(664\) 0.188063 0.00729826
\(665\) 0 0
\(666\) −48.7523 −1.88911
\(667\) 2.92026i 0.113073i
\(668\) −15.5642 −0.602197
\(669\) 4.78410i 0.184964i
\(670\) 0 0
\(671\) 22.5621i 0.870999i
\(672\) 5.42402i 0.209236i
\(673\) 4.08187i 0.157345i −0.996901 0.0786723i \(-0.974932\pi\)
0.996901 0.0786723i \(-0.0250681\pi\)
\(674\) 16.2921i 0.627549i
\(675\) 0 0
\(676\) −12.8341 2.07008i −0.493620 0.0796186i
\(677\) 24.4441i 0.939462i −0.882810 0.469731i \(-0.844351\pi\)
0.882810 0.469731i \(-0.155649\pi\)
\(678\) 26.5781 1.02073
\(679\) 29.6682 1.13856
\(680\) 0 0
\(681\) 24.3761i 0.934095i
\(682\) 45.2103 1.73119
\(683\) 23.4802 0.898444 0.449222 0.893420i \(-0.351701\pi\)
0.449222 + 0.893420i \(0.351701\pi\)
\(684\) 25.9042i 0.990472i
\(685\) 0 0
\(686\) −19.6822 −0.751469
\(687\) 27.0562 1.03226
\(688\) 4.00000i 0.152499i
\(689\) −39.7862 3.18806i −1.51573 0.121456i
\(690\) 0 0
\(691\) 11.4358i 0.435039i −0.976056 0.217519i \(-0.930203\pi\)
0.976056 0.217519i \(-0.0697965\pi\)
\(692\) 5.64606i 0.214631i
\(693\) 61.7945i 2.34738i
\(694\) 12.3421i 0.468502i
\(695\) 0 0
\(696\) 14.6121i 0.553870i
\(697\) −16.3740 −0.620209
\(698\) 18.7523i 0.709783i
\(699\) −60.4885 −2.28788
\(700\) 0 0
\(701\) −9.23383 −0.348757 −0.174378 0.984679i \(-0.555792\pi\)
−0.174378 + 0.984679i \(0.555792\pi\)
\(702\) −23.8862 1.91399i −0.901525 0.0722390i
\(703\) 44.8563i 1.69179i
\(704\) 6.18806i 0.233221i
\(705\) 0 0
\(706\) 0.707877 0.0266413
\(707\) 19.7501 0.742780
\(708\) −25.4601 −0.956850
\(709\) 18.1999i 0.683510i −0.939789 0.341755i \(-0.888979\pi\)
0.939789 0.341755i \(-0.111021\pi\)
\(710\) 0 0
\(711\) −59.3643 −2.22634
\(712\) 11.4580i 0.429407i
\(713\) 4.20812 0.157595
\(714\) 16.2721 0.608967
\(715\) 0 0
\(716\) −13.4941 −0.504298
\(717\) 41.6682 1.55613
\(718\) 0.0221876i 0.000828033i
\(719\) 16.8480 0.628326 0.314163 0.949369i \(-0.398276\pi\)
0.314163 + 0.949369i \(0.398276\pi\)
\(720\) 0 0
\(721\) 32.3483i 1.20471i
\(722\) −4.83412 −0.179907
\(723\) −28.6182 −1.06432
\(724\) 2.73006 0.101462
\(725\) 0 0
\(726\) 78.6565i 2.91922i
\(727\) 35.0201i 1.29882i 0.760438 + 0.649411i \(0.224985\pi\)
−0.760438 + 0.649411i \(0.775015\pi\)
\(728\) 0.542001 6.76404i 0.0200879 0.250692i
\(729\) 40.2921 1.49230
\(730\) 0 0
\(731\) 12.0000 0.443836
\(732\) 10.5080i 0.388388i
\(733\) 18.1083 0.668846 0.334423 0.942423i \(-0.391459\pi\)
0.334423 + 0.942423i \(0.391459\pi\)
\(734\) 15.8363i 0.584527i
\(735\) 0 0
\(736\) 0.575978i 0.0212308i
\(737\) 22.1284i 0.815109i
\(738\) 28.9604i 1.06605i
\(739\) 15.9181i 0.585558i −0.956180 0.292779i \(-0.905420\pi\)
0.956180 0.292779i \(-0.0945800\pi\)
\(740\) 0 0
\(741\) −4.05203 + 50.5683i −0.148855 + 1.85767i
\(742\) 20.8341i 0.764845i
\(743\) −43.8584 −1.60901 −0.804505 0.593946i \(-0.797569\pi\)
−0.804505 + 0.593946i \(0.797569\pi\)
\(744\) 21.0562 0.771956
\(745\) 0 0
\(746\) 4.35394i 0.159409i
\(747\) −0.997870 −0.0365102
\(748\) 18.5642 0.678774
\(749\) 2.81194i 0.102746i
\(750\) 0 0
\(751\) 39.7723 1.45131 0.725656 0.688058i \(-0.241536\pi\)
0.725656 + 0.688058i \(0.241536\pi\)
\(752\) −2.45800 −0.0896340
\(753\) 42.2103i 1.53823i
\(754\) −1.46013 + 18.2220i −0.0531747 + 0.663608i
\(755\) 0 0
\(756\) 12.5080i 0.454912i
\(757\) 42.2943i 1.53721i −0.639723 0.768605i \(-0.720951\pi\)
0.639723 0.768605i \(-0.279049\pi\)
\(758\) 2.42402i 0.0880444i
\(759\) 10.2721i 0.372852i
\(760\) 0 0
\(761\) 3.99787i 0.144923i −0.997371 0.0724613i \(-0.976915\pi\)
0.997371 0.0724613i \(-0.0230854\pi\)
\(762\) −12.6121 −0.456888
\(763\) 24.3761i 0.882475i
\(764\) −4.84804 −0.175396
\(765\) 0 0
\(766\) −7.46013 −0.269545
\(767\) 31.7501 + 2.54413i 1.14643 + 0.0918633i
\(768\) 2.88202i 0.103996i
\(769\) 39.9063i 1.43906i 0.694462 + 0.719530i \(0.255643\pi\)
−0.694462 + 0.719530i \(0.744357\pi\)
\(770\) 0 0
\(771\) 66.4885 2.39452
\(772\) −10.6822 −0.384460
\(773\) 15.1881 0.546277 0.273138 0.961975i \(-0.411938\pi\)
0.273138 + 0.961975i \(0.411938\pi\)
\(774\) 21.2242i 0.762887i
\(775\) 0 0
\(776\) 15.7640 0.565896
\(777\) 49.8363i 1.78787i
\(778\) −6.57598 −0.235760
\(779\) 26.6461 0.954694
\(780\) 0 0
\(781\) 0 0
\(782\) 1.72793 0.0617908
\(783\) 33.6961i 1.20420i
\(784\) −3.45800 −0.123500
\(785\) 0 0
\(786\) 63.8084i 2.27597i
\(787\) 7.68217 0.273840 0.136920 0.990582i \(-0.456280\pi\)
0.136920 + 0.990582i \(0.456280\pi\)
\(788\) −15.5642 −0.554451
\(789\) 27.5642 0.981311
\(790\) 0 0
\(791\) 17.3561i 0.617111i
\(792\) 32.8341i 1.16671i
\(793\) 1.05003 13.1041i 0.0372875 0.465339i
\(794\) 6.95210 0.246721
\(795\) 0 0
\(796\) 0.272066 0.00964311
\(797\) 33.0784i 1.17170i −0.810421 0.585848i \(-0.800762\pi\)
0.810421 0.585848i \(-0.199238\pi\)
\(798\) −26.4802 −0.937388
\(799\) 7.37400i 0.260873i
\(800\) 0 0
\(801\) 60.7966i 2.14814i
\(802\) 6.91813i 0.244288i
\(803\) 73.2303i 2.58424i
\(804\) 10.3060i 0.363466i
\(805\) 0 0
\(806\) −26.2581 2.10406i −0.924904 0.0741124i
\(807\) 14.6121i 0.514370i
\(808\) 10.4941 0.369181
\(809\) −23.2921 −0.818907 −0.409454 0.912331i \(-0.634281\pi\)
−0.409454 + 0.912331i \(0.634281\pi\)
\(810\) 0 0
\(811\) 2.14983i 0.0754906i −0.999287 0.0377453i \(-0.987982\pi\)
0.999287 0.0377453i \(-0.0120176\pi\)
\(812\) −9.54200 −0.334859
\(813\) 2.10406 0.0737926
\(814\) 56.8563i 1.99281i
\(815\) 0 0
\(816\) 8.64606 0.302673
\(817\) −19.5281 −0.683201
\(818\) 15.9299i 0.556976i
\(819\) −2.87588 + 35.8903i −0.100491 + 1.25411i
\(820\) 0 0
\(821\) 26.8563i 0.937292i −0.883386 0.468646i \(-0.844742\pi\)
0.883386 0.468646i \(-0.155258\pi\)
\(822\) 16.8141i 0.586458i
\(823\) 4.00000i 0.139431i 0.997567 + 0.0697156i \(0.0222092\pi\)
−0.997567 + 0.0697156i \(0.977791\pi\)
\(824\) 17.1881i 0.598775i
\(825\) 0 0
\(826\) 16.6260i 0.578493i
\(827\) −32.0243 −1.11359 −0.556797 0.830648i \(-0.687970\pi\)
−0.556797 + 0.830648i \(0.687970\pi\)
\(828\) 3.05616i 0.106209i
\(829\) 19.2699 0.669273 0.334636 0.942347i \(-0.391387\pi\)
0.334636 + 0.942347i \(0.391387\pi\)
\(830\) 0 0
\(831\) −16.0361 −0.556286
\(832\) 0.287989 3.59403i 0.00998422 0.124601i
\(833\) 10.3740i 0.359438i
\(834\) 12.3060i 0.426123i
\(835\) 0 0
\(836\) −30.2103 −1.04484
\(837\) −48.5564 −1.67835
\(838\) 22.9500 0.792794
\(839\) 14.8119i 0.511365i 0.966761 + 0.255682i \(0.0823001\pi\)
−0.966761 + 0.255682i \(0.917700\pi\)
\(840\) 0 0
\(841\) −3.29425 −0.113595
\(842\) 24.7523i 0.853019i
\(843\) −67.1284 −2.31202
\(844\) −17.0222 −0.585928
\(845\) 0 0
\(846\) 13.0422 0.448402
\(847\) −51.3643 −1.76490
\(848\) 11.0701i 0.380148i
\(849\) 40.6543 1.39525
\(850\) 0 0
\(851\) 5.29212i 0.181412i
\(852\) 0 0
\(853\) −36.5524 −1.25153 −0.625765 0.780012i \(-0.715213\pi\)
−0.625765 + 0.780012i \(0.715213\pi\)
\(854\) 6.86196 0.234812
\(855\) 0 0
\(856\) 1.49411i 0.0510675i
\(857\) 27.9299i 0.954068i −0.878885 0.477034i \(-0.841712\pi\)
0.878885 0.477034i \(-0.158288\pi\)
\(858\) −5.13603 + 64.0964i −0.175341 + 2.18822i
\(859\) 46.6461 1.59154 0.795772 0.605597i \(-0.207066\pi\)
0.795772 + 0.605597i \(0.207066\pi\)
\(860\) 0 0
\(861\) 29.6043 1.00891
\(862\) 32.1041i 1.09347i
\(863\) 37.1062 1.26311 0.631555 0.775331i \(-0.282417\pi\)
0.631555 + 0.775331i \(0.282417\pi\)
\(864\) 6.64606i 0.226104i
\(865\) 0 0
\(866\) 16.2103i 0.550847i
\(867\) 23.0562i 0.783028i
\(868\) 13.7501i 0.466710i
\(869\) 69.2324i 2.34855i
\(870\) 0 0
\(871\) −1.02984 + 12.8522i −0.0348949 + 0.435479i
\(872\) 12.9521i 0.438614i
\(873\) −83.6447 −2.83094
\(874\) −2.81194 −0.0951152
\(875\) 0 0
\(876\) 34.1062i 1.15234i
\(877\) −46.8924 −1.58344 −0.791722 0.610881i \(-0.790815\pi\)
−0.791722 + 0.610881i \(0.790815\pi\)
\(878\) −22.1041 −0.745976
\(879\) 17.2921i 0.583249i
\(880\) 0 0
\(881\) 30.2220 1.01821 0.509103 0.860705i \(-0.329977\pi\)
0.509103 + 0.860705i \(0.329977\pi\)
\(882\) 18.3483 0.617819
\(883\) 3.93818i 0.132530i 0.997802 + 0.0662652i \(0.0211083\pi\)
−0.997802 + 0.0662652i \(0.978892\pi\)
\(884\) −10.7821 0.863967i −0.362641 0.0290584i
\(885\) 0 0
\(886\) 2.64606i 0.0888962i
\(887\) 4.16375i 0.139805i −0.997554 0.0699024i \(-0.977731\pi\)
0.997554 0.0699024i \(-0.0222688\pi\)
\(888\) 26.4802i 0.888617i
\(889\) 8.23596i 0.276225i
\(890\) 0 0
\(891\) 20.0243i 0.670840i
\(892\) −1.65998 −0.0555803
\(893\) 12.0000i 0.401565i
\(894\) −48.7523 −1.63052
\(895\) 0 0
\(896\) 1.88202 0.0628739
\(897\) −0.478056 + 5.96602i −0.0159618 + 0.199200i
\(898\) 35.1262i 1.17218i
\(899\) 37.0422i 1.23543i
\(900\) 0 0
\(901\) −33.2103 −1.10639
\(902\) 33.7744 1.12457
\(903\) −21.6961 −0.722001
\(904\) 9.22204i 0.306720i
\(905\) 0 0
\(906\) 50.2803 1.67045
\(907\) 27.6682i 0.918709i 0.888253 + 0.459355i \(0.151919\pi\)
−0.888253 + 0.459355i \(0.848081\pi\)
\(908\) 8.45800 0.280689
\(909\) −55.6822 −1.84686
\(910\) 0 0
\(911\) −48.5524 −1.60861 −0.804306 0.594215i \(-0.797463\pi\)
−0.804306 + 0.594215i \(0.797463\pi\)
\(912\) −14.0701 −0.465907
\(913\) 1.16375i 0.0385144i
\(914\) −18.9181 −0.625756
\(915\) 0 0
\(916\) 9.38792i 0.310185i
\(917\) 41.6682 1.37601
\(918\) −19.9382 −0.658058
\(919\) 8.26781 0.272730 0.136365 0.990659i \(-0.456458\pi\)
0.136365 + 0.990659i \(0.456458\pi\)
\(920\) 0 0
\(921\) 27.1541i 0.894758i
\(922\) 8.81194i 0.290206i
\(923\) 0 0
\(924\) −33.5642 −1.10418
\(925\) 0 0
\(926\) −28.5621 −0.938607
\(927\) 91.2006i 2.99542i
\(928\) −5.07008 −0.166434
\(929\) 24.0000i 0.787414i −0.919236 0.393707i \(-0.871192\pi\)
0.919236 0.393707i \(-0.128808\pi\)
\(930\) 0 0
\(931\) 16.8820i 0.553286i
\(932\) 20.9882i 0.687492i
\(933\) 91.3726i 2.99140i
\(934\) 22.1402i 0.724448i
\(935\) 0 0
\(936\) −1.52808 + 19.0701i −0.0499469 + 0.623325i
\(937\) 46.8764i 1.53138i 0.643207 + 0.765692i \(0.277603\pi\)
−0.643207 + 0.765692i \(0.722397\pi\)
\(938\) −6.73006 −0.219744
\(939\) −44.3082 −1.44594
\(940\) 0 0
\(941\) 10.2721i 0.334860i 0.985884 + 0.167430i \(0.0535468\pi\)
−0.985884 + 0.167430i \(0.946453\pi\)
\(942\) −7.86810 −0.256357
\(943\) 3.14369 0.102373
\(944\) 8.83412i 0.287526i
\(945\) 0 0
\(946\) −24.7523 −0.804765
\(947\) −38.1262 −1.23894 −0.619468 0.785022i \(-0.712652\pi\)
−0.619468 + 0.785022i \(0.712652\pi\)
\(948\) 32.2442i 1.04724i
\(949\) 3.40810 42.5322i 0.110632 1.38065i
\(950\) 0 0
\(951\) 9.18806i 0.297943i
\(952\) 5.64606i 0.182990i
\(953\) 44.2921i 1.43476i −0.696681 0.717381i \(-0.745341\pi\)
0.696681 0.717381i \(-0.254659\pi\)
\(954\) 58.7383i 1.90172i
\(955\) 0 0
\(956\) 14.4580i 0.467605i
\(957\) 90.4205 2.92288
\(958\) 19.7501i 0.638097i
\(959\) 10.9799 0.354561
\(960\) 0 0
\(961\) −22.3783 −0.721879
\(962\) 2.64606 33.0222i 0.0853125 1.06468i
\(963\) 7.92779i 0.255469i
\(964\) 9.92992i 0.319821i
\(965\) 0 0
\(966\) −3.12412 −0.100517
\(967\) 44.1262 1.41900 0.709502 0.704703i \(-0.248920\pi\)
0.709502 + 0.704703i \(0.248920\pi\)
\(968\) −27.2921 −0.877202
\(969\) 42.2103i 1.35599i
\(970\) 0 0
\(971\) −0.809807 −0.0259879 −0.0129940 0.999916i \(-0.504136\pi\)
−0.0129940 + 0.999916i \(0.504136\pi\)
\(972\) 10.6121i 0.340383i
\(973\) −8.03611 −0.257626
\(974\) −3.78623 −0.121319
\(975\) 0 0
\(976\) 3.64606 0.116708
\(977\) 62.0465 1.98504 0.992522 0.122068i \(-0.0389525\pi\)
0.992522 + 0.122068i \(0.0389525\pi\)
\(978\) 45.5302i 1.45590i
\(979\) −70.9028 −2.26606
\(980\) 0 0
\(981\) 68.7244i 2.19420i
\(982\) 18.4441 0.588574
\(983\) 2.72580 0.0869397 0.0434698 0.999055i \(-0.486159\pi\)
0.0434698 + 0.999055i \(0.486159\pi\)
\(984\) 15.7301 0.501456
\(985\) 0 0
\(986\) 15.2103i 0.484393i
\(987\) 13.3322i 0.424370i
\(988\) 17.5461 + 1.40597i 0.558217 + 0.0447298i
\(989\) −2.30391 −0.0732602
\(990\) 0 0
\(991\) 25.2921 0.803431 0.401715 0.915765i \(-0.368414\pi\)
0.401715 + 0.915765i \(0.368414\pi\)
\(992\) 7.30604i 0.231967i
\(993\) −26.0021 −0.825153
\(994\) 0 0
\(995\) 0 0
\(996\) 0.542001i 0.0171740i
\(997\) 2.29425i 0.0726597i −0.999340 0.0363299i \(-0.988433\pi\)
0.999340 0.0363299i \(-0.0115667\pi\)
\(998\) 9.98608i 0.316104i
\(999\) 61.0644i 1.93199i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.c.f.649.5 6
5.2 odd 4 650.2.d.c.51.6 yes 6
5.3 odd 4 650.2.d.d.51.1 yes 6
5.4 even 2 650.2.c.e.649.2 6
13.12 even 2 650.2.c.e.649.5 6
65.8 even 4 8450.2.a.ce.1.1 3
65.12 odd 4 650.2.d.c.51.3 6
65.18 even 4 8450.2.a.bq.1.1 3
65.38 odd 4 650.2.d.d.51.4 yes 6
65.47 even 4 8450.2.a.br.1.3 3
65.57 even 4 8450.2.a.cd.1.3 3
65.64 even 2 inner 650.2.c.f.649.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.c.e.649.2 6 5.4 even 2
650.2.c.e.649.5 6 13.12 even 2
650.2.c.f.649.2 6 65.64 even 2 inner
650.2.c.f.649.5 6 1.1 even 1 trivial
650.2.d.c.51.3 6 65.12 odd 4
650.2.d.c.51.6 yes 6 5.2 odd 4
650.2.d.d.51.1 yes 6 5.3 odd 4
650.2.d.d.51.4 yes 6 65.38 odd 4
8450.2.a.bq.1.1 3 65.18 even 4
8450.2.a.br.1.3 3 65.47 even 4
8450.2.a.cd.1.3 3 65.57 even 4
8450.2.a.ce.1.1 3 65.8 even 4