L(s) = 1 | + 2-s + 2.88i·3-s + 4-s + 2.88i·6-s + 1.88·7-s + 8-s − 5.30·9-s + 6.18i·11-s + 2.88i·12-s + (0.287 − 3.59i)13-s + 1.88·14-s + 16-s − 3i·17-s − 5.30·18-s + 4.88i·19-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.66i·3-s + 0.5·4-s + 1.17i·6-s + 0.711·7-s + 0.353·8-s − 1.76·9-s + 1.86i·11-s + 0.831i·12-s + (0.0798 − 0.996i)13-s + 0.502·14-s + 0.250·16-s − 0.727i·17-s − 1.25·18-s + 1.12i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.374 - 0.927i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.374 - 0.927i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.30553 + 1.93494i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.30553 + 1.93494i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-0.287 + 3.59i)T \) |
good | 3 | \( 1 - 2.88iT - 3T^{2} \) |
| 7 | \( 1 - 1.88T + 7T^{2} \) |
| 11 | \( 1 - 6.18iT - 11T^{2} \) |
| 17 | \( 1 + 3iT - 17T^{2} \) |
| 19 | \( 1 - 4.88iT - 19T^{2} \) |
| 23 | \( 1 - 0.575iT - 23T^{2} \) |
| 29 | \( 1 + 5.07T + 29T^{2} \) |
| 31 | \( 1 + 7.30iT - 31T^{2} \) |
| 37 | \( 1 - 9.18T + 37T^{2} \) |
| 41 | \( 1 + 5.45iT - 41T^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 + 2.45T + 47T^{2} \) |
| 53 | \( 1 + 11.0iT - 53T^{2} \) |
| 59 | \( 1 - 8.83iT - 59T^{2} \) |
| 61 | \( 1 - 3.64T + 61T^{2} \) |
| 67 | \( 1 + 3.57T + 67T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 - 11.8T + 73T^{2} \) |
| 79 | \( 1 - 11.1T + 79T^{2} \) |
| 83 | \( 1 - 0.188T + 83T^{2} \) |
| 89 | \( 1 - 11.4iT - 89T^{2} \) |
| 97 | \( 1 - 15.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.82744272643945737009328048524, −9.848842161129824002621944342134, −9.602593367238641476891934660335, −8.150422798565484300700408138983, −7.38300104009298371360766398724, −5.86883678597599177283897669319, −5.05381445290381661694248254872, −4.42252743870259468925208382517, −3.57226023354212662559612392132, −2.21530932399543599259716231944,
1.08971189062211291265923442626, 2.24360739064776733950865404564, 3.43736259913484992816152324403, 4.89612468778068957276601977755, 6.04918693283893376104635808067, 6.51900765395906712510590491937, 7.54758723593737531638824684363, 8.296391429197830717537820266200, 9.046539157734652401898433161593, 10.91025963500120372148951680189