Properties

Label 648.2.t.a.253.32
Level $648$
Weight $2$
Character 648.253
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 253.32
Character \(\chi\) \(=\) 648.253
Dual form 648.2.t.a.397.32

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36295 + 0.377313i) q^{2} +(1.71527 + 1.02852i) q^{4} +(2.15975 - 2.57389i) q^{5} +(-1.78453 - 0.649515i) q^{7} +(1.94976 + 2.04901i) q^{8} +(3.91480 - 2.69319i) q^{10} +(3.21944 + 3.83678i) q^{11} +(-3.61424 - 0.637289i) q^{13} +(-2.18715 - 1.55858i) q^{14} +(1.88430 + 3.52837i) q^{16} +(1.74380 - 3.02034i) q^{17} +(2.73085 - 1.57666i) q^{19} +(6.35185 - 2.19358i) q^{20} +(2.94027 + 6.44408i) q^{22} +(2.93428 - 1.06799i) q^{23} +(-1.09215 - 6.19390i) q^{25} +(-4.68558 - 2.23229i) q^{26} +(-2.39291 - 2.94951i) q^{28} +(-6.61611 + 1.16660i) q^{29} +(0.842639 - 0.306695i) q^{31} +(1.23691 + 5.51997i) q^{32} +(3.51632 - 3.45862i) q^{34} +(-5.52592 + 3.19039i) q^{35} +(-6.21485 - 3.58815i) q^{37} +(4.31691 - 1.11852i) q^{38} +(9.48493 - 0.593099i) q^{40} +(0.341649 - 1.93759i) q^{41} +(5.36405 + 6.39263i) q^{43} +(1.57601 + 9.89237i) q^{44} +(4.40224 - 0.348476i) q^{46} +(-2.63733 - 0.959909i) q^{47} +(-2.59964 - 2.18135i) q^{49} +(0.848490 - 8.85407i) q^{50} +(-5.54394 - 4.81044i) q^{52} +9.52536i q^{53} +16.8287 q^{55} +(-2.14853 - 4.92292i) q^{56} +(-9.45760 - 0.906327i) q^{58} +(-6.13695 + 7.31373i) q^{59} +(-2.92540 + 8.03747i) q^{61} +(1.26420 - 0.100072i) q^{62} +(-0.396910 + 7.99015i) q^{64} +(-9.44618 + 7.92629i) q^{65} +(-13.7512 - 2.42470i) q^{67} +(6.09756 - 3.38718i) q^{68} +(-8.73534 + 2.26335i) q^{70} +(-1.50109 + 2.59997i) q^{71} +(0.472663 + 0.818676i) q^{73} +(-7.11668 - 7.23541i) q^{74} +(6.30577 + 0.104337i) q^{76} +(-3.25314 - 8.93793i) q^{77} +(-0.803209 - 4.55523i) q^{79} +(13.1513 + 2.77042i) q^{80} +(1.19673 - 2.51193i) q^{82} +(2.12803 - 0.375229i) q^{83} +(-4.00787 - 11.0115i) q^{85} +(4.89892 + 10.7368i) q^{86} +(-1.58449 + 14.0775i) q^{88} +(7.83712 + 13.5743i) q^{89} +(6.03579 + 3.48477i) q^{91} +(6.13153 + 1.18607i) q^{92} +(-3.23236 - 2.30341i) q^{94} +(1.83982 - 10.4341i) q^{95} +(1.68619 - 1.41488i) q^{97} +(-2.72012 - 3.95396i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36295 + 0.377313i 0.963752 + 0.266801i
\(3\) 0 0
\(4\) 1.71527 + 1.02852i 0.857635 + 0.514259i
\(5\) 2.15975 2.57389i 0.965871 1.15108i −0.0226118 0.999744i \(-0.507198\pi\)
0.988482 0.151335i \(-0.0483574\pi\)
\(6\) 0 0
\(7\) −1.78453 0.649515i −0.674489 0.245494i −0.0180093 0.999838i \(-0.505733\pi\)
−0.656479 + 0.754344i \(0.727955\pi\)
\(8\) 1.94976 + 2.04901i 0.689343 + 0.724436i
\(9\) 0 0
\(10\) 3.91480 2.69319i 1.23797 0.851660i
\(11\) 3.21944 + 3.83678i 0.970699 + 1.15683i 0.987602 + 0.156977i \(0.0501747\pi\)
−0.0169036 + 0.999857i \(0.505381\pi\)
\(12\) 0 0
\(13\) −3.61424 0.637289i −1.00241 0.176752i −0.351728 0.936102i \(-0.614406\pi\)
−0.650682 + 0.759350i \(0.725517\pi\)
\(14\) −2.18715 1.55858i −0.584542 0.416549i
\(15\) 0 0
\(16\) 1.88430 + 3.52837i 0.471075 + 0.882093i
\(17\) 1.74380 3.02034i 0.422932 0.732541i −0.573292 0.819351i \(-0.694334\pi\)
0.996225 + 0.0868103i \(0.0276674\pi\)
\(18\) 0 0
\(19\) 2.73085 1.57666i 0.626501 0.361710i −0.152895 0.988242i \(-0.548860\pi\)
0.779396 + 0.626532i \(0.215526\pi\)
\(20\) 6.35185 2.19358i 1.42032 0.490498i
\(21\) 0 0
\(22\) 2.94027 + 6.44408i 0.626869 + 1.37388i
\(23\) 2.93428 1.06799i 0.611839 0.222691i −0.0174685 0.999847i \(-0.505561\pi\)
0.629308 + 0.777156i \(0.283338\pi\)
\(24\) 0 0
\(25\) −1.09215 6.19390i −0.218430 1.23878i
\(26\) −4.68558 2.23229i −0.918918 0.437789i
\(27\) 0 0
\(28\) −2.39291 2.94951i −0.452218 0.557406i
\(29\) −6.61611 + 1.16660i −1.22858 + 0.216632i −0.750015 0.661420i \(-0.769954\pi\)
−0.478565 + 0.878052i \(0.658843\pi\)
\(30\) 0 0
\(31\) 0.842639 0.306695i 0.151342 0.0550841i −0.265238 0.964183i \(-0.585451\pi\)
0.416581 + 0.909099i \(0.363228\pi\)
\(32\) 1.23691 + 5.51997i 0.218657 + 0.975802i
\(33\) 0 0
\(34\) 3.51632 3.45862i 0.603044 0.593149i
\(35\) −5.52592 + 3.19039i −0.934052 + 0.539275i
\(36\) 0 0
\(37\) −6.21485 3.58815i −1.02172 0.589887i −0.107115 0.994247i \(-0.534161\pi\)
−0.914600 + 0.404359i \(0.867495\pi\)
\(38\) 4.31691 1.11852i 0.700296 0.181448i
\(39\) 0 0
\(40\) 9.48493 0.593099i 1.49970 0.0937772i
\(41\) 0.341649 1.93759i 0.0533567 0.302601i −0.946438 0.322887i \(-0.895347\pi\)
0.999794 + 0.0202862i \(0.00645776\pi\)
\(42\) 0 0
\(43\) 5.36405 + 6.39263i 0.818010 + 0.974867i 0.999964 0.00844018i \(-0.00268662\pi\)
−0.181954 + 0.983307i \(0.558242\pi\)
\(44\) 1.57601 + 9.89237i 0.237593 + 1.49133i
\(45\) 0 0
\(46\) 4.40224 0.348476i 0.649075 0.0513800i
\(47\) −2.63733 0.959909i −0.384694 0.140017i 0.142432 0.989805i \(-0.454508\pi\)
−0.527125 + 0.849788i \(0.676730\pi\)
\(48\) 0 0
\(49\) −2.59964 2.18135i −0.371377 0.311622i
\(50\) 0.848490 8.85407i 0.119995 1.25215i
\(51\) 0 0
\(52\) −5.54394 4.81044i −0.768806 0.667088i
\(53\) 9.52536i 1.30841i 0.756318 + 0.654205i \(0.226996\pi\)
−0.756318 + 0.654205i \(0.773004\pi\)
\(54\) 0 0
\(55\) 16.8287 2.26918
\(56\) −2.14853 4.92292i −0.287109 0.657853i
\(57\) 0 0
\(58\) −9.45760 0.906327i −1.24184 0.119007i
\(59\) −6.13695 + 7.31373i −0.798963 + 0.952167i −0.999622 0.0274946i \(-0.991247\pi\)
0.200659 + 0.979661i \(0.435692\pi\)
\(60\) 0 0
\(61\) −2.92540 + 8.03747i −0.374559 + 1.02909i 0.599018 + 0.800735i \(0.295558\pi\)
−0.973577 + 0.228358i \(0.926664\pi\)
\(62\) 1.26420 0.100072i 0.160553 0.0127092i
\(63\) 0 0
\(64\) −0.396910 + 7.99015i −0.0496138 + 0.998768i
\(65\) −9.44618 + 7.92629i −1.17165 + 0.983135i
\(66\) 0 0
\(67\) −13.7512 2.42470i −1.67997 0.296224i −0.749341 0.662184i \(-0.769630\pi\)
−0.930631 + 0.365960i \(0.880741\pi\)
\(68\) 6.09756 3.38718i 0.739437 0.410755i
\(69\) 0 0
\(70\) −8.73534 + 2.26335i −1.04407 + 0.270522i
\(71\) −1.50109 + 2.59997i −0.178147 + 0.308560i −0.941246 0.337722i \(-0.890344\pi\)
0.763099 + 0.646282i \(0.223677\pi\)
\(72\) 0 0
\(73\) 0.472663 + 0.818676i 0.0553210 + 0.0958187i 0.892360 0.451325i \(-0.149048\pi\)
−0.837039 + 0.547144i \(0.815715\pi\)
\(74\) −7.11668 7.23541i −0.827297 0.841099i
\(75\) 0 0
\(76\) 6.30577 + 0.104337i 0.723322 + 0.0119682i
\(77\) −3.25314 8.93793i −0.370730 1.01857i
\(78\) 0 0
\(79\) −0.803209 4.55523i −0.0903681 0.512503i −0.996069 0.0885849i \(-0.971766\pi\)
0.905701 0.423918i \(-0.139346\pi\)
\(80\) 13.1513 + 2.77042i 1.47036 + 0.309743i
\(81\) 0 0
\(82\) 1.19673 2.51193i 0.132157 0.277396i
\(83\) 2.12803 0.375229i 0.233582 0.0411868i −0.0556319 0.998451i \(-0.517717\pi\)
0.289214 + 0.957265i \(0.406606\pi\)
\(84\) 0 0
\(85\) −4.00787 11.0115i −0.434715 1.19437i
\(86\) 4.89892 + 10.7368i 0.528264 + 1.15778i
\(87\) 0 0
\(88\) −1.58449 + 14.0775i −0.168908 + 1.50066i
\(89\) 7.83712 + 13.5743i 0.830733 + 1.43887i 0.897458 + 0.441101i \(0.145412\pi\)
−0.0667245 + 0.997771i \(0.521255\pi\)
\(90\) 0 0
\(91\) 6.03579 + 3.48477i 0.632723 + 0.365303i
\(92\) 6.13153 + 1.18607i 0.639256 + 0.123656i
\(93\) 0 0
\(94\) −3.23236 2.30341i −0.333393 0.237578i
\(95\) 1.83982 10.4341i 0.188761 1.07052i
\(96\) 0 0
\(97\) 1.68619 1.41488i 0.171207 0.143659i −0.553158 0.833076i \(-0.686578\pi\)
0.724365 + 0.689417i \(0.242133\pi\)
\(98\) −2.72012 3.95396i −0.274774 0.399410i
\(99\) 0 0
\(100\) 4.49721 11.7475i 0.449721 1.17475i
\(101\) 6.12830 16.8374i 0.609789 1.67538i −0.120895 0.992665i \(-0.538576\pi\)
0.730684 0.682716i \(-0.239201\pi\)
\(102\) 0 0
\(103\) −10.6973 8.97613i −1.05404 0.884444i −0.0605268 0.998167i \(-0.519278\pi\)
−0.993513 + 0.113723i \(0.963723\pi\)
\(104\) −5.74108 8.64819i −0.562959 0.848025i
\(105\) 0 0
\(106\) −3.59404 + 12.9826i −0.349084 + 1.26098i
\(107\) 12.3518i 1.19409i 0.802207 + 0.597046i \(0.203659\pi\)
−0.802207 + 0.597046i \(0.796341\pi\)
\(108\) 0 0
\(109\) 2.18468i 0.209255i 0.994511 + 0.104627i \(0.0333650\pi\)
−0.994511 + 0.104627i \(0.966635\pi\)
\(110\) 22.9366 + 6.34968i 2.18692 + 0.605418i
\(111\) 0 0
\(112\) −1.07086 7.52037i −0.101187 0.710608i
\(113\) −12.1210 10.1708i −1.14025 0.956785i −0.140805 0.990037i \(-0.544969\pi\)
−0.999447 + 0.0332523i \(0.989413\pi\)
\(114\) 0 0
\(115\) 3.58842 9.85911i 0.334622 0.919367i
\(116\) −12.5483 4.80376i −1.16508 0.446018i
\(117\) 0 0
\(118\) −11.1239 + 7.65270i −1.02404 + 0.704488i
\(119\) −5.07361 + 4.25727i −0.465097 + 0.390263i
\(120\) 0 0
\(121\) −2.44596 + 13.8717i −0.222360 + 1.26107i
\(122\) −7.01982 + 9.85089i −0.635545 + 0.891858i
\(123\) 0 0
\(124\) 1.76079 + 0.340604i 0.158124 + 0.0305871i
\(125\) −3.75209 2.16627i −0.335597 0.193757i
\(126\) 0 0
\(127\) −5.17381 8.96131i −0.459102 0.795187i 0.539812 0.841786i \(-0.318495\pi\)
−0.998914 + 0.0465982i \(0.985162\pi\)
\(128\) −3.55576 + 10.7404i −0.314287 + 0.949328i
\(129\) 0 0
\(130\) −15.8654 + 7.23897i −1.39149 + 0.634900i
\(131\) −3.07414 8.44614i −0.268589 0.737942i −0.998518 0.0544195i \(-0.982669\pi\)
0.729929 0.683523i \(-0.239553\pi\)
\(132\) 0 0
\(133\) −5.89735 + 1.03986i −0.511365 + 0.0901675i
\(134\) −17.8273 8.49324i −1.54004 0.733704i
\(135\) 0 0
\(136\) 9.58869 2.31587i 0.822224 0.198584i
\(137\) −2.92683 16.5989i −0.250056 1.41814i −0.808451 0.588563i \(-0.799694\pi\)
0.558395 0.829575i \(-0.311417\pi\)
\(138\) 0 0
\(139\) 3.76833 + 10.3534i 0.319626 + 0.878164i 0.990613 + 0.136695i \(0.0436482\pi\)
−0.670988 + 0.741469i \(0.734130\pi\)
\(140\) −12.7598 0.211127i −1.07840 0.0178435i
\(141\) 0 0
\(142\) −3.02692 + 2.97725i −0.254013 + 0.249845i
\(143\) −9.19071 15.9188i −0.768566 1.33120i
\(144\) 0 0
\(145\) −11.2865 + 19.5487i −0.937289 + 1.62343i
\(146\) 0.335319 + 1.29416i 0.0277512 + 0.107105i
\(147\) 0 0
\(148\) −6.96967 12.5467i −0.572903 1.03133i
\(149\) 10.6491 + 1.87772i 0.872406 + 0.153829i 0.591888 0.806020i \(-0.298383\pi\)
0.280518 + 0.959849i \(0.409494\pi\)
\(150\) 0 0
\(151\) −0.489785 + 0.410979i −0.0398582 + 0.0334450i −0.662499 0.749063i \(-0.730504\pi\)
0.622641 + 0.782508i \(0.286060\pi\)
\(152\) 8.55509 + 2.52146i 0.693909 + 0.204517i
\(153\) 0 0
\(154\) −1.06147 13.4094i −0.0855359 1.08056i
\(155\) 1.03049 2.83125i 0.0827709 0.227411i
\(156\) 0 0
\(157\) 5.93021 7.06735i 0.473282 0.564036i −0.475602 0.879661i \(-0.657770\pi\)
0.948884 + 0.315625i \(0.102214\pi\)
\(158\) 0.624011 6.51161i 0.0496437 0.518036i
\(159\) 0 0
\(160\) 16.8792 + 8.73810i 1.33442 + 0.690807i
\(161\) −5.92998 −0.467348
\(162\) 0 0
\(163\) 8.36032i 0.654831i 0.944881 + 0.327415i \(0.106178\pi\)
−0.944881 + 0.327415i \(0.893822\pi\)
\(164\) 2.57887 2.97210i 0.201376 0.232082i
\(165\) 0 0
\(166\) 3.04198 + 0.291515i 0.236103 + 0.0226259i
\(167\) 4.77570 + 4.00729i 0.369555 + 0.310094i 0.808586 0.588379i \(-0.200234\pi\)
−0.439030 + 0.898472i \(0.644678\pi\)
\(168\) 0 0
\(169\) 0.440614 + 0.160370i 0.0338934 + 0.0123362i
\(170\) −1.30774 16.5204i −0.100299 1.26706i
\(171\) 0 0
\(172\) 2.62586 + 16.4821i 0.200220 + 1.25675i
\(173\) −5.72780 6.82613i −0.435477 0.518981i 0.503017 0.864276i \(-0.332223\pi\)
−0.938494 + 0.345295i \(0.887779\pi\)
\(174\) 0 0
\(175\) −2.07406 + 11.7626i −0.156784 + 0.889167i
\(176\) −7.47120 + 18.5890i −0.563163 + 1.40120i
\(177\) 0 0
\(178\) 5.55985 + 21.4581i 0.416729 + 1.60836i
\(179\) 12.5035 + 7.21893i 0.934559 + 0.539568i 0.888251 0.459359i \(-0.151921\pi\)
0.0463085 + 0.998927i \(0.485254\pi\)
\(180\) 0 0
\(181\) −4.19806 + 2.42375i −0.312039 + 0.180156i −0.647839 0.761778i \(-0.724327\pi\)
0.335799 + 0.941934i \(0.390994\pi\)
\(182\) 6.91164 + 7.02695i 0.512325 + 0.520872i
\(183\) 0 0
\(184\) 7.90945 + 3.93006i 0.583092 + 0.289728i
\(185\) −22.6580 + 8.24685i −1.66585 + 0.606321i
\(186\) 0 0
\(187\) 17.2024 3.03326i 1.25797 0.221814i
\(188\) −3.53644 4.35904i −0.257922 0.317916i
\(189\) 0 0
\(190\) 6.44451 13.5270i 0.467534 0.981352i
\(191\) 4.56335 + 25.8800i 0.330192 + 1.87261i 0.470345 + 0.882483i \(0.344129\pi\)
−0.140153 + 0.990130i \(0.544759\pi\)
\(192\) 0 0
\(193\) 3.82953 1.39383i 0.275655 0.100330i −0.200494 0.979695i \(-0.564255\pi\)
0.476149 + 0.879365i \(0.342032\pi\)
\(194\) 2.83205 1.29219i 0.203329 0.0927740i
\(195\) 0 0
\(196\) −2.21552 6.41539i −0.158251 0.458242i
\(197\) 8.91014 5.14427i 0.634821 0.366514i −0.147796 0.989018i \(-0.547218\pi\)
0.782617 + 0.622504i \(0.213884\pi\)
\(198\) 0 0
\(199\) 0.690545 1.19606i 0.0489514 0.0847864i −0.840511 0.541794i \(-0.817745\pi\)
0.889463 + 0.457007i \(0.151079\pi\)
\(200\) 10.5620 14.3144i 0.746843 1.01218i
\(201\) 0 0
\(202\) 14.7055 20.6362i 1.03468 1.45196i
\(203\) 12.5644 + 2.21544i 0.881845 + 0.155493i
\(204\) 0 0
\(205\) −4.24927 5.06408i −0.296782 0.353691i
\(206\) −11.1931 16.2703i −0.779862 1.13360i
\(207\) 0 0
\(208\) −4.56173 13.9532i −0.316299 0.967483i
\(209\) 14.8411 + 5.40173i 1.02658 + 0.373645i
\(210\) 0 0
\(211\) 7.42731 8.85152i 0.511317 0.609364i −0.447188 0.894440i \(-0.647574\pi\)
0.958505 + 0.285076i \(0.0920189\pi\)
\(212\) −9.79701 + 16.3386i −0.672861 + 1.12214i
\(213\) 0 0
\(214\) −4.66049 + 16.8349i −0.318584 + 1.15081i
\(215\) 28.0390 1.91224
\(216\) 0 0
\(217\) −1.70292 −0.115602
\(218\) −0.824310 + 2.97762i −0.0558293 + 0.201670i
\(219\) 0 0
\(220\) 28.8657 + 17.3086i 1.94613 + 1.16694i
\(221\) −8.22733 + 9.80495i −0.553430 + 0.659552i
\(222\) 0 0
\(223\) 2.85912 + 1.04063i 0.191461 + 0.0696860i 0.435971 0.899961i \(-0.356405\pi\)
−0.244510 + 0.969647i \(0.578627\pi\)
\(224\) 1.37801 10.6539i 0.0920719 0.711846i
\(225\) 0 0
\(226\) −12.6828 18.4357i −0.843649 1.22632i
\(227\) 0.641654 + 0.764693i 0.0425881 + 0.0507545i 0.786918 0.617058i \(-0.211675\pi\)
−0.744330 + 0.667812i \(0.767231\pi\)
\(228\) 0 0
\(229\) −0.846018 0.149176i −0.0559064 0.00985781i 0.145625 0.989340i \(-0.453481\pi\)
−0.201531 + 0.979482i \(0.564592\pi\)
\(230\) 8.61082 12.0835i 0.567780 0.796764i
\(231\) 0 0
\(232\) −15.2902 11.2819i −1.00385 0.740694i
\(233\) 5.17379 8.96127i 0.338946 0.587072i −0.645288 0.763939i \(-0.723263\pi\)
0.984235 + 0.176867i \(0.0565961\pi\)
\(234\) 0 0
\(235\) −8.16668 + 4.71503i −0.532735 + 0.307575i
\(236\) −18.0488 + 6.23306i −1.17488 + 0.405737i
\(237\) 0 0
\(238\) −8.52141 + 3.88810i −0.552361 + 0.252028i
\(239\) 11.5092 4.18901i 0.744469 0.270965i 0.0581928 0.998305i \(-0.481466\pi\)
0.686277 + 0.727341i \(0.259244\pi\)
\(240\) 0 0
\(241\) −2.60278 14.7611i −0.167660 0.950846i −0.946279 0.323350i \(-0.895191\pi\)
0.778620 0.627496i \(-0.215920\pi\)
\(242\) −8.56771 + 17.9836i −0.550753 + 1.15603i
\(243\) 0 0
\(244\) −13.2845 + 10.7776i −0.850455 + 0.689966i
\(245\) −11.2291 + 1.98000i −0.717404 + 0.126498i
\(246\) 0 0
\(247\) −10.8748 + 3.95809i −0.691944 + 0.251847i
\(248\) 2.27136 + 1.12860i 0.144232 + 0.0716660i
\(249\) 0 0
\(250\) −4.29655 4.36823i −0.271738 0.276271i
\(251\) −13.8356 + 7.98801i −0.873298 + 0.504199i −0.868443 0.495789i \(-0.834879\pi\)
−0.00485525 + 0.999988i \(0.501545\pi\)
\(252\) 0 0
\(253\) 13.5444 + 7.81986i 0.851528 + 0.491630i
\(254\) −3.67043 14.1660i −0.230304 0.888852i
\(255\) 0 0
\(256\) −8.89882 + 13.2970i −0.556176 + 0.831064i
\(257\) 1.36142 7.72098i 0.0849229 0.481622i −0.912450 0.409187i \(-0.865812\pi\)
0.997373 0.0724341i \(-0.0230767\pi\)
\(258\) 0 0
\(259\) 8.76002 + 10.4398i 0.544321 + 0.648697i
\(260\) −24.3551 + 3.88015i −1.51044 + 0.240637i
\(261\) 0 0
\(262\) −1.00307 12.6716i −0.0619697 0.782853i
\(263\) 19.3707 + 7.05037i 1.19445 + 0.434744i 0.861284 0.508124i \(-0.169661\pi\)
0.333166 + 0.942868i \(0.391883\pi\)
\(264\) 0 0
\(265\) 24.5173 + 20.5724i 1.50608 + 1.26375i
\(266\) −8.43015 0.807866i −0.516886 0.0495335i
\(267\) 0 0
\(268\) −21.0931 18.3023i −1.28847 1.11799i
\(269\) 15.9724i 0.973852i −0.873443 0.486926i \(-0.838118\pi\)
0.873443 0.486926i \(-0.161882\pi\)
\(270\) 0 0
\(271\) 7.19443 0.437031 0.218515 0.975834i \(-0.429879\pi\)
0.218515 + 0.975834i \(0.429879\pi\)
\(272\) 13.9427 + 0.461526i 0.845402 + 0.0279841i
\(273\) 0 0
\(274\) 2.27385 23.7278i 0.137368 1.43345i
\(275\) 20.2485 24.1313i 1.22103 1.45517i
\(276\) 0 0
\(277\) 6.45750 17.7418i 0.387993 1.06600i −0.579910 0.814680i \(-0.696912\pi\)
0.967903 0.251322i \(-0.0808654\pi\)
\(278\) 1.22958 + 15.5330i 0.0737450 + 0.931608i
\(279\) 0 0
\(280\) −17.3114 5.10221i −1.03455 0.304915i
\(281\) 14.1133 11.8425i 0.841932 0.706465i −0.116066 0.993242i \(-0.537028\pi\)
0.957997 + 0.286777i \(0.0925839\pi\)
\(282\) 0 0
\(283\) 8.62324 + 1.52051i 0.512599 + 0.0903850i 0.423964 0.905679i \(-0.360638\pi\)
0.0886349 + 0.996064i \(0.471750\pi\)
\(284\) −5.24890 + 2.91575i −0.311465 + 0.173018i
\(285\) 0 0
\(286\) −6.52013 25.1643i −0.385543 1.48800i
\(287\) −1.86818 + 3.23578i −0.110275 + 0.191002i
\(288\) 0 0
\(289\) 2.41836 + 4.18872i 0.142256 + 0.246395i
\(290\) −22.7589 + 22.3854i −1.33645 + 1.31452i
\(291\) 0 0
\(292\) −0.0312789 + 1.89039i −0.00183046 + 0.110627i
\(293\) 4.67724 + 12.8506i 0.273247 + 0.750741i 0.998087 + 0.0618236i \(0.0196916\pi\)
−0.724840 + 0.688918i \(0.758086\pi\)
\(294\) 0 0
\(295\) 5.57047 + 31.5917i 0.324325 + 1.83934i
\(296\) −4.76528 19.7303i −0.276976 1.14680i
\(297\) 0 0
\(298\) 13.8057 + 6.57727i 0.799742 + 0.381011i
\(299\) −11.2858 + 1.98999i −0.652675 + 0.115084i
\(300\) 0 0
\(301\) −5.42020 14.8919i −0.312415 0.858353i
\(302\) −0.822621 + 0.375341i −0.0473365 + 0.0215985i
\(303\) 0 0
\(304\) 10.7088 + 6.66457i 0.614191 + 0.382239i
\(305\) 14.3695 + 24.8886i 0.822792 + 1.42512i
\(306\) 0 0
\(307\) −21.3532 12.3283i −1.21869 0.703612i −0.254053 0.967190i \(-0.581764\pi\)
−0.964638 + 0.263578i \(0.915097\pi\)
\(308\) 3.61281 18.6769i 0.205859 1.06421i
\(309\) 0 0
\(310\) 2.47277 3.47003i 0.140444 0.197085i
\(311\) −0.221479 + 1.25607i −0.0125589 + 0.0712250i −0.990443 0.137922i \(-0.955958\pi\)
0.977884 + 0.209147i \(0.0670688\pi\)
\(312\) 0 0
\(313\) 15.3438 12.8749i 0.867280 0.727735i −0.0962433 0.995358i \(-0.530683\pi\)
0.963524 + 0.267623i \(0.0862382\pi\)
\(314\) 10.7492 7.39491i 0.606612 0.417319i
\(315\) 0 0
\(316\) 3.30741 8.63956i 0.186056 0.486013i
\(317\) −2.05364 + 5.64232i −0.115344 + 0.316904i −0.983909 0.178671i \(-0.942820\pi\)
0.868565 + 0.495575i \(0.165043\pi\)
\(318\) 0 0
\(319\) −25.7762 21.6288i −1.44319 1.21098i
\(320\) 19.7086 + 18.2783i 1.10174 + 1.02179i
\(321\) 0 0
\(322\) −8.08227 2.23746i −0.450407 0.124689i
\(323\) 10.9975i 0.611916i
\(324\) 0 0
\(325\) 23.0823i 1.28038i
\(326\) −3.15446 + 11.3947i −0.174709 + 0.631094i
\(327\) 0 0
\(328\) 4.63628 3.07778i 0.255996 0.169942i
\(329\) 4.08291 + 3.42597i 0.225098 + 0.188880i
\(330\) 0 0
\(331\) −6.69009 + 18.3809i −0.367721 + 1.01030i 0.608505 + 0.793550i \(0.291769\pi\)
−0.976226 + 0.216755i \(0.930453\pi\)
\(332\) 4.03608 + 1.54510i 0.221509 + 0.0847983i
\(333\) 0 0
\(334\) 4.99705 + 7.26368i 0.273426 + 0.397451i
\(335\) −35.9400 + 30.1573i −1.96361 + 1.64767i
\(336\) 0 0
\(337\) 3.82769 21.7079i 0.208508 1.18251i −0.683316 0.730123i \(-0.739463\pi\)
0.891824 0.452383i \(-0.149426\pi\)
\(338\) 0.540026 + 0.384827i 0.0293735 + 0.0209318i
\(339\) 0 0
\(340\) 4.45098 23.0099i 0.241388 1.24789i
\(341\) 3.88955 + 2.24563i 0.210631 + 0.121608i
\(342\) 0 0
\(343\) 9.86900 + 17.0936i 0.532876 + 0.922968i
\(344\) −2.63999 + 23.4551i −0.142339 + 1.26461i
\(345\) 0 0
\(346\) −5.23112 11.4648i −0.281227 0.616354i
\(347\) 0.0110975 + 0.0304900i 0.000595743 + 0.00163679i 0.939990 0.341202i \(-0.110834\pi\)
−0.939394 + 0.342838i \(0.888612\pi\)
\(348\) 0 0
\(349\) 32.0493 5.65116i 1.71556 0.302500i 0.772474 0.635046i \(-0.219019\pi\)
0.943087 + 0.332546i \(0.107908\pi\)
\(350\) −7.26501 + 15.2492i −0.388331 + 0.815106i
\(351\) 0 0
\(352\) −17.1968 + 22.5170i −0.916591 + 1.20016i
\(353\) 0.185474 + 1.05188i 0.00987180 + 0.0559857i 0.989346 0.145585i \(-0.0465065\pi\)
−0.979474 + 0.201571i \(0.935395\pi\)
\(354\) 0 0
\(355\) 3.45005 + 9.47895i 0.183110 + 0.503090i
\(356\) −0.518628 + 31.3442i −0.0274872 + 1.66124i
\(357\) 0 0
\(358\) 14.3179 + 14.5568i 0.756726 + 0.769350i
\(359\) −5.68242 9.84224i −0.299907 0.519453i 0.676208 0.736711i \(-0.263622\pi\)
−0.976114 + 0.217258i \(0.930289\pi\)
\(360\) 0 0
\(361\) −4.52830 + 7.84324i −0.238331 + 0.412802i
\(362\) −6.63626 + 1.71947i −0.348794 + 0.0903733i
\(363\) 0 0
\(364\) 6.76887 + 12.1852i 0.354785 + 0.638680i
\(365\) 3.12802 + 0.551554i 0.163728 + 0.0288697i
\(366\) 0 0
\(367\) 6.59453 5.53346i 0.344231 0.288844i −0.454237 0.890881i \(-0.650088\pi\)
0.798469 + 0.602036i \(0.205644\pi\)
\(368\) 9.29733 + 8.34081i 0.484657 + 0.434795i
\(369\) 0 0
\(370\) −33.9934 + 2.69088i −1.76723 + 0.139892i
\(371\) 6.18687 16.9983i 0.321206 0.882507i
\(372\) 0 0
\(373\) −24.5912 + 29.3067i −1.27328 + 1.51744i −0.530966 + 0.847393i \(0.678171\pi\)
−0.742318 + 0.670048i \(0.766274\pi\)
\(374\) 24.5906 + 2.35653i 1.27155 + 0.121853i
\(375\) 0 0
\(376\) −3.17528 7.27551i −0.163752 0.375206i
\(377\) 24.6557 1.26983
\(378\) 0 0
\(379\) 22.1132i 1.13588i −0.823071 0.567939i \(-0.807741\pi\)
0.823071 0.567939i \(-0.192259\pi\)
\(380\) 13.8875 16.0050i 0.712411 0.821041i
\(381\) 0 0
\(382\) −3.54525 + 36.9950i −0.181391 + 1.89283i
\(383\) 1.25391 + 1.05215i 0.0640717 + 0.0537626i 0.674261 0.738493i \(-0.264462\pi\)
−0.610189 + 0.792256i \(0.708907\pi\)
\(384\) 0 0
\(385\) −30.0312 10.9305i −1.53053 0.557069i
\(386\) 5.74537 0.454797i 0.292432 0.0231485i
\(387\) 0 0
\(388\) 4.34750 0.692626i 0.220711 0.0351628i
\(389\) 7.37158 + 8.78511i 0.373754 + 0.445423i 0.919832 0.392311i \(-0.128324\pi\)
−0.546079 + 0.837734i \(0.683880\pi\)
\(390\) 0 0
\(391\) 1.89109 10.7249i 0.0956363 0.542380i
\(392\) −0.599031 9.57980i −0.0302557 0.483853i
\(393\) 0 0
\(394\) 14.0851 3.64948i 0.709596 0.183858i
\(395\) −13.4594 7.77079i −0.677216 0.390991i
\(396\) 0 0
\(397\) 2.58188 1.49065i 0.129581 0.0748137i −0.433808 0.901005i \(-0.642830\pi\)
0.563389 + 0.826192i \(0.309497\pi\)
\(398\) 1.39247 1.36962i 0.0697981 0.0686528i
\(399\) 0 0
\(400\) 19.7965 15.5247i 0.989823 0.776235i
\(401\) 8.85877 3.22433i 0.442386 0.161015i −0.111217 0.993796i \(-0.535475\pi\)
0.553603 + 0.832781i \(0.313253\pi\)
\(402\) 0 0
\(403\) −3.24096 + 0.571468i −0.161443 + 0.0284668i
\(404\) 27.8292 22.5776i 1.38456 1.12328i
\(405\) 0 0
\(406\) 16.2887 + 7.76023i 0.808394 + 0.385134i
\(407\) −6.24142 35.3969i −0.309376 1.75456i
\(408\) 0 0
\(409\) −24.0695 + 8.76058i −1.19016 + 0.433183i −0.859779 0.510665i \(-0.829399\pi\)
−0.330380 + 0.943848i \(0.607177\pi\)
\(410\) −3.88080 8.50540i −0.191659 0.420052i
\(411\) 0 0
\(412\) −9.11670 26.3989i −0.449148 1.30058i
\(413\) 15.7019 9.06552i 0.772642 0.446085i
\(414\) 0 0
\(415\) 3.63022 6.28773i 0.178201 0.308652i
\(416\) −0.952676 20.7388i −0.0467088 1.01680i
\(417\) 0 0
\(418\) 18.1896 + 12.9620i 0.889681 + 0.633994i
\(419\) −2.41298 0.425474i −0.117882 0.0207858i 0.114396 0.993435i \(-0.463507\pi\)
−0.232278 + 0.972649i \(0.574618\pi\)
\(420\) 0 0
\(421\) −8.35420 9.95615i −0.407159 0.485233i 0.523030 0.852314i \(-0.324802\pi\)
−0.930189 + 0.367081i \(0.880357\pi\)
\(422\) 13.4629 9.26177i 0.655361 0.450856i
\(423\) 0 0
\(424\) −19.5176 + 18.5721i −0.947858 + 0.901942i
\(425\) −20.6122 7.50223i −0.999838 0.363911i
\(426\) 0 0
\(427\) 10.4409 12.4430i 0.505272 0.602160i
\(428\) −12.7040 + 21.1866i −0.614073 + 1.02409i
\(429\) 0 0
\(430\) 38.2157 + 10.5795i 1.84293 + 0.510187i
\(431\) −26.6357 −1.28300 −0.641499 0.767124i \(-0.721687\pi\)
−0.641499 + 0.767124i \(0.721687\pi\)
\(432\) 0 0
\(433\) 27.8356 1.33769 0.668846 0.743401i \(-0.266788\pi\)
0.668846 + 0.743401i \(0.266788\pi\)
\(434\) −2.32099 0.642533i −0.111411 0.0308426i
\(435\) 0 0
\(436\) −2.24699 + 3.74732i −0.107611 + 0.179464i
\(437\) 6.32923 7.54288i 0.302768 0.360825i
\(438\) 0 0
\(439\) 15.2198 + 5.53956i 0.726402 + 0.264389i 0.678641 0.734470i \(-0.262569\pi\)
0.0477612 + 0.998859i \(0.484791\pi\)
\(440\) 32.8118 + 34.4822i 1.56424 + 1.64387i
\(441\) 0 0
\(442\) −14.9130 + 10.2594i −0.709338 + 0.487989i
\(443\) 11.8910 + 14.1711i 0.564957 + 0.673290i 0.970588 0.240747i \(-0.0773925\pi\)
−0.405631 + 0.914037i \(0.632948\pi\)
\(444\) 0 0
\(445\) 51.8650 + 9.14520i 2.45864 + 0.433524i
\(446\) 3.50419 + 2.49711i 0.165928 + 0.118242i
\(447\) 0 0
\(448\) 5.89802 14.0009i 0.278655 0.661478i
\(449\) −3.76662 + 6.52398i −0.177758 + 0.307886i −0.941112 0.338094i \(-0.890218\pi\)
0.763354 + 0.645980i \(0.223551\pi\)
\(450\) 0 0
\(451\) 8.53403 4.92713i 0.401852 0.232009i
\(452\) −10.3300 29.9123i −0.485885 1.40696i
\(453\) 0 0
\(454\) 0.586014 + 1.28434i 0.0275030 + 0.0602772i
\(455\) 22.0052 8.00925i 1.03162 0.375479i
\(456\) 0 0
\(457\) −2.46966 14.0062i −0.115526 0.655180i −0.986488 0.163831i \(-0.947615\pi\)
0.870962 0.491350i \(-0.163496\pi\)
\(458\) −1.09679 0.522533i −0.0512499 0.0244164i
\(459\) 0 0
\(460\) 16.2954 13.2203i 0.759776 0.616399i
\(461\) −12.3225 + 2.17278i −0.573914 + 0.101197i −0.453070 0.891475i \(-0.649671\pi\)
−0.120844 + 0.992672i \(0.538560\pi\)
\(462\) 0 0
\(463\) −5.11858 + 1.86301i −0.237881 + 0.0865815i −0.458210 0.888844i \(-0.651509\pi\)
0.220329 + 0.975426i \(0.429287\pi\)
\(464\) −16.5829 21.1459i −0.769843 0.981672i
\(465\) 0 0
\(466\) 10.4328 10.2616i 0.483291 0.475361i
\(467\) −6.32947 + 3.65432i −0.292893 + 0.169102i −0.639246 0.769003i \(-0.720753\pi\)
0.346353 + 0.938104i \(0.387420\pi\)
\(468\) 0 0
\(469\) 22.9645 + 13.2585i 1.06040 + 0.612222i
\(470\) −12.9098 + 3.34496i −0.595486 + 0.154292i
\(471\) 0 0
\(472\) −26.9515 + 1.68529i −1.24054 + 0.0775720i
\(473\) −7.25787 + 41.1614i −0.333717 + 1.89260i
\(474\) 0 0
\(475\) −12.7482 15.1927i −0.584926 0.697088i
\(476\) −13.0813 + 2.08406i −0.599580 + 0.0955226i
\(477\) 0 0
\(478\) 17.2671 1.36684i 0.789777 0.0625178i
\(479\) −6.51285 2.37048i −0.297580 0.108310i 0.188916 0.981993i \(-0.439503\pi\)
−0.486495 + 0.873683i \(0.661725\pi\)
\(480\) 0 0
\(481\) 20.1753 + 16.9291i 0.919914 + 0.771900i
\(482\) 2.02209 21.1007i 0.0921038 0.961111i
\(483\) 0 0
\(484\) −18.4628 + 21.2780i −0.839218 + 0.967184i
\(485\) 7.39586i 0.335829i
\(486\) 0 0
\(487\) 29.6823 1.34503 0.672517 0.740081i \(-0.265213\pi\)
0.672517 + 0.740081i \(0.265213\pi\)
\(488\) −22.1727 + 9.67692i −1.00371 + 0.438054i
\(489\) 0 0
\(490\) −16.0519 1.53826i −0.725149 0.0694914i
\(491\) 5.65695 6.74169i 0.255295 0.304248i −0.623140 0.782110i \(-0.714144\pi\)
0.878435 + 0.477862i \(0.158588\pi\)
\(492\) 0 0
\(493\) −8.01361 + 22.0172i −0.360915 + 0.991606i
\(494\) −16.3152 + 1.29149i −0.734055 + 0.0581069i
\(495\) 0 0
\(496\) 2.66992 + 2.39524i 0.119883 + 0.107549i
\(497\) 4.36747 3.66474i 0.195908 0.164386i
\(498\) 0 0
\(499\) −14.6580 2.58460i −0.656181 0.115702i −0.164362 0.986400i \(-0.552557\pi\)
−0.491819 + 0.870698i \(0.663668\pi\)
\(500\) −4.20780 7.57483i −0.188178 0.338757i
\(501\) 0 0
\(502\) −21.8713 + 5.66690i −0.976163 + 0.252926i
\(503\) 5.25851 9.10801i 0.234465 0.406106i −0.724652 0.689115i \(-0.757999\pi\)
0.959117 + 0.283009i \(0.0913327\pi\)
\(504\) 0 0
\(505\) −30.1020 52.1381i −1.33952 2.32012i
\(506\) 15.5098 + 15.7686i 0.689495 + 0.700998i
\(507\) 0 0
\(508\) 0.342382 20.6924i 0.0151907 0.918078i
\(509\) 8.68462 + 23.8608i 0.384939 + 1.05761i 0.969249 + 0.246081i \(0.0791430\pi\)
−0.584310 + 0.811531i \(0.698635\pi\)
\(510\) 0 0
\(511\) −0.311738 1.76795i −0.0137905 0.0782096i
\(512\) −17.1458 + 14.7656i −0.757744 + 0.652552i
\(513\) 0 0
\(514\) 4.76877 10.0096i 0.210341 0.441506i
\(515\) −46.2072 + 8.14757i −2.03613 + 0.359025i
\(516\) 0 0
\(517\) −4.80776 13.2092i −0.211445 0.580941i
\(518\) 8.00041 + 17.5342i 0.351518 + 0.770408i
\(519\) 0 0
\(520\) −34.6588 3.90103i −1.51989 0.171072i
\(521\) 5.54892 + 9.61101i 0.243103 + 0.421066i 0.961596 0.274467i \(-0.0885015\pi\)
−0.718494 + 0.695533i \(0.755168\pi\)
\(522\) 0 0
\(523\) −21.2339 12.2594i −0.928493 0.536066i −0.0421586 0.999111i \(-0.513423\pi\)
−0.886335 + 0.463045i \(0.846757\pi\)
\(524\) 3.41402 17.6492i 0.149142 0.771009i
\(525\) 0 0
\(526\) 23.7412 + 16.9181i 1.03516 + 0.737666i
\(527\) 0.543064 3.07987i 0.0236563 0.134161i
\(528\) 0 0
\(529\) −10.1496 + 8.51656i −0.441289 + 0.370285i
\(530\) 25.6536 + 37.2899i 1.11432 + 1.61977i
\(531\) 0 0
\(532\) −11.1851 4.28189i −0.484934 0.185643i
\(533\) −2.46961 + 6.78519i −0.106971 + 0.293899i
\(534\) 0 0
\(535\) 31.7922 + 26.6768i 1.37450 + 1.15334i
\(536\) −21.8431 32.9039i −0.943480 1.42123i
\(537\) 0 0
\(538\) 6.02658 21.7695i 0.259824 0.938551i
\(539\) 16.9970i 0.732112i
\(540\) 0 0
\(541\) 10.1117i 0.434737i 0.976090 + 0.217369i \(0.0697474\pi\)
−0.976090 + 0.217369i \(0.930253\pi\)
\(542\) 9.80566 + 2.71455i 0.421189 + 0.116600i
\(543\) 0 0
\(544\) 18.8291 + 5.88981i 0.807291 + 0.252523i
\(545\) 5.62314 + 4.71838i 0.240869 + 0.202113i
\(546\) 0 0
\(547\) 9.82775 27.0015i 0.420204 1.15450i −0.531386 0.847130i \(-0.678328\pi\)
0.951590 0.307371i \(-0.0994493\pi\)
\(548\) 12.0519 31.4819i 0.514834 1.34484i
\(549\) 0 0
\(550\) 36.7028 25.2497i 1.56501 1.07665i
\(551\) −16.2283 + 13.6172i −0.691348 + 0.580110i
\(552\) 0 0
\(553\) −1.52534 + 8.65063i −0.0648640 + 0.367862i
\(554\) 15.4955 21.7447i 0.658339 0.923845i
\(555\) 0 0
\(556\) −4.18496 + 21.6347i −0.177482 + 0.917514i
\(557\) −10.4290 6.02119i −0.441891 0.255126i 0.262508 0.964930i \(-0.415450\pi\)
−0.704400 + 0.709804i \(0.748784\pi\)
\(558\) 0 0
\(559\) −15.3130 26.5230i −0.647673 1.12180i
\(560\) −21.6694 13.4859i −0.915699 0.569881i
\(561\) 0 0
\(562\) 23.7041 10.8156i 0.999898 0.456229i
\(563\) 1.52700 + 4.19539i 0.0643553 + 0.176815i 0.967702 0.252096i \(-0.0811198\pi\)
−0.903347 + 0.428910i \(0.858898\pi\)
\(564\) 0 0
\(565\) −52.3569 + 9.23194i −2.20267 + 0.388390i
\(566\) 11.1793 + 5.32604i 0.469903 + 0.223870i
\(567\) 0 0
\(568\) −8.25414 + 1.99354i −0.346336 + 0.0836473i
\(569\) −5.31792 30.1594i −0.222939 1.26435i −0.866586 0.499027i \(-0.833691\pi\)
0.643648 0.765322i \(-0.277420\pi\)
\(570\) 0 0
\(571\) 4.43557 + 12.1866i 0.185623 + 0.509994i 0.997244 0.0741895i \(-0.0236370\pi\)
−0.811621 + 0.584184i \(0.801415\pi\)
\(572\) 0.608204 36.7578i 0.0254303 1.53692i
\(573\) 0 0
\(574\) −3.76714 + 3.70532i −0.157237 + 0.154657i
\(575\) −9.81971 17.0082i −0.409510 0.709292i
\(576\) 0 0
\(577\) −9.34815 + 16.1915i −0.389169 + 0.674060i −0.992338 0.123553i \(-0.960571\pi\)
0.603169 + 0.797613i \(0.293904\pi\)
\(578\) 1.71564 + 6.62149i 0.0713614 + 0.275418i
\(579\) 0 0
\(580\) −39.4655 + 21.9230i −1.63872 + 0.910303i
\(581\) −4.04125 0.712582i −0.167659 0.0295629i
\(582\) 0 0
\(583\) −36.5468 + 30.6664i −1.51361 + 1.27007i
\(584\) −0.755901 + 2.56471i −0.0312794 + 0.106128i
\(585\) 0 0
\(586\) 1.52615 + 19.2795i 0.0630445 + 0.796431i
\(587\) 9.91990 27.2547i 0.409438 1.12492i −0.548049 0.836446i \(-0.684629\pi\)
0.957487 0.288475i \(-0.0931484\pi\)
\(588\) 0 0
\(589\) 1.81757 2.16609i 0.0748916 0.0892523i
\(590\) −4.32768 + 45.1597i −0.178168 + 1.85920i
\(591\) 0 0
\(592\) 0.949665 28.6894i 0.0390310 1.17913i
\(593\) −12.4895 −0.512883 −0.256441 0.966560i \(-0.582550\pi\)
−0.256441 + 0.966560i \(0.582550\pi\)
\(594\) 0 0
\(595\) 22.2536i 0.912308i
\(596\) 16.3348 + 14.1736i 0.669098 + 0.580572i
\(597\) 0 0
\(598\) −16.1329 1.54602i −0.659722 0.0632215i
\(599\) −7.49705 6.29078i −0.306321 0.257034i 0.476648 0.879094i \(-0.341852\pi\)
−0.782970 + 0.622060i \(0.786296\pi\)
\(600\) 0 0
\(601\) 27.8247 + 10.1274i 1.13499 + 0.413103i 0.840102 0.542428i \(-0.182495\pi\)
0.294890 + 0.955531i \(0.404717\pi\)
\(602\) −1.76857 22.3420i −0.0720814 0.910592i
\(603\) 0 0
\(604\) −1.26281 + 0.201186i −0.0513831 + 0.00818615i
\(605\) 30.4217 + 36.2551i 1.23682 + 1.47398i
\(606\) 0 0
\(607\) 1.41051 7.99939i 0.0572507 0.324685i −0.942709 0.333615i \(-0.891731\pi\)
0.999960 + 0.00892998i \(0.00284254\pi\)
\(608\) 12.0809 + 13.1240i 0.489946 + 0.532250i
\(609\) 0 0
\(610\) 10.1941 + 39.3437i 0.412745 + 1.59298i
\(611\) 8.92020 + 5.15008i 0.360873 + 0.208350i
\(612\) 0 0
\(613\) 10.1533 5.86202i 0.410088 0.236765i −0.280739 0.959784i \(-0.590580\pi\)
0.690828 + 0.723019i \(0.257246\pi\)
\(614\) −24.4517 24.8597i −0.986792 1.00325i
\(615\) 0 0
\(616\) 11.9711 24.0925i 0.482330 0.970715i
\(617\) 1.24227 0.452149i 0.0500118 0.0182028i −0.316893 0.948461i \(-0.602640\pi\)
0.366905 + 0.930258i \(0.380417\pi\)
\(618\) 0 0
\(619\) −25.4782 + 4.49249i −1.02405 + 0.180568i −0.660359 0.750950i \(-0.729596\pi\)
−0.363695 + 0.931518i \(0.618485\pi\)
\(620\) 4.67956 3.79648i 0.187936 0.152470i
\(621\) 0 0
\(622\) −0.775795 + 1.62839i −0.0311065 + 0.0652925i
\(623\) −5.16886 29.3141i −0.207086 1.17444i
\(624\) 0 0
\(625\) 15.8714 5.77673i 0.634858 0.231069i
\(626\) 25.7707 11.7585i 1.03000 0.469965i
\(627\) 0 0
\(628\) 17.4408 6.02308i 0.695964 0.240347i
\(629\) −21.6749 + 12.5140i −0.864233 + 0.498965i
\(630\) 0 0
\(631\) −6.70635 + 11.6157i −0.266976 + 0.462415i −0.968079 0.250644i \(-0.919358\pi\)
0.701104 + 0.713059i \(0.252691\pi\)
\(632\) 7.76766 10.5274i 0.308981 0.418756i
\(633\) 0 0
\(634\) −4.92793 + 6.91534i −0.195713 + 0.274643i
\(635\) −34.2396 6.03736i −1.35876 0.239585i
\(636\) 0 0
\(637\) 8.00557 + 9.54067i 0.317192 + 0.378015i
\(638\) −26.9708 39.2046i −1.06779 1.55213i
\(639\) 0 0
\(640\) 19.9651 + 32.3488i 0.789191 + 1.27870i
\(641\) 30.4904 + 11.0976i 1.20430 + 0.438328i 0.864722 0.502251i \(-0.167495\pi\)
0.339575 + 0.940579i \(0.389717\pi\)
\(642\) 0 0
\(643\) −17.3052 + 20.6235i −0.682449 + 0.813312i −0.990420 0.138084i \(-0.955906\pi\)
0.307971 + 0.951396i \(0.400350\pi\)
\(644\) −10.1715 6.09909i −0.400814 0.240338i
\(645\) 0 0
\(646\) 4.14949 14.9890i 0.163260 0.589735i
\(647\) −25.1491 −0.988713 −0.494356 0.869259i \(-0.664596\pi\)
−0.494356 + 0.869259i \(0.664596\pi\)
\(648\) 0 0
\(649\) −47.8188 −1.87705
\(650\) −8.70925 + 31.4600i −0.341605 + 1.23396i
\(651\) 0 0
\(652\) −8.59874 + 14.3402i −0.336753 + 0.561606i
\(653\) −13.3995 + 15.9689i −0.524363 + 0.624912i −0.961607 0.274431i \(-0.911510\pi\)
0.437243 + 0.899343i \(0.355955\pi\)
\(654\) 0 0
\(655\) −28.3788 10.3291i −1.10885 0.403589i
\(656\) 7.48031 2.44554i 0.292057 0.0954821i
\(657\) 0 0
\(658\) 4.27214 + 6.20996i 0.166546 + 0.242090i
\(659\) 18.1622 + 21.6448i 0.707497 + 0.843162i 0.993353 0.115110i \(-0.0367222\pi\)
−0.285856 + 0.958273i \(0.592278\pi\)
\(660\) 0 0
\(661\) 37.0880 + 6.53962i 1.44256 + 0.254362i 0.839510 0.543344i \(-0.182842\pi\)
0.603046 + 0.797706i \(0.293953\pi\)
\(662\) −16.0536 + 22.5280i −0.623941 + 0.875575i
\(663\) 0 0
\(664\) 4.91799 + 3.62876i 0.190855 + 0.140823i
\(665\) −10.0603 + 17.4250i −0.390123 + 0.675712i
\(666\) 0 0
\(667\) −18.1676 + 10.4891i −0.703452 + 0.406138i
\(668\) 4.07005 + 11.7855i 0.157475 + 0.455994i
\(669\) 0 0
\(670\) −60.3632 + 27.5422i −2.33203 + 1.06405i
\(671\) −40.2562 + 14.6521i −1.55407 + 0.565636i
\(672\) 0 0
\(673\) 0.887037 + 5.03064i 0.0341928 + 0.193917i 0.997120 0.0758462i \(-0.0241658\pi\)
−0.962927 + 0.269763i \(0.913055\pi\)
\(674\) 13.4076 28.1426i 0.516443 1.08401i
\(675\) 0 0
\(676\) 0.590828 + 0.728258i 0.0227242 + 0.0280099i
\(677\) −29.3482 + 5.17487i −1.12794 + 0.198887i −0.706325 0.707888i \(-0.749648\pi\)
−0.421617 + 0.906774i \(0.638537\pi\)
\(678\) 0 0
\(679\) −3.92804 + 1.42969i −0.150744 + 0.0548665i
\(680\) 14.7484 29.6820i 0.565576 1.13825i
\(681\) 0 0
\(682\) 4.45396 + 4.52827i 0.170551 + 0.173396i
\(683\) 41.0964 23.7270i 1.57251 0.907889i 0.576650 0.816991i \(-0.304360\pi\)
0.995860 0.0908981i \(-0.0289738\pi\)
\(684\) 0 0
\(685\) −49.0450 28.3161i −1.87391 1.08190i
\(686\) 7.00132 + 27.0215i 0.267312 + 1.03168i
\(687\) 0 0
\(688\) −12.4481 + 30.9720i −0.474579 + 1.18080i
\(689\) 6.07041 34.4270i 0.231264 1.31156i
\(690\) 0 0
\(691\) −19.5742 23.3276i −0.744637 0.887424i 0.252136 0.967692i \(-0.418867\pi\)
−0.996773 + 0.0802677i \(0.974422\pi\)
\(692\) −2.80393 17.5998i −0.106589 0.669044i
\(693\) 0 0
\(694\) 0.00362101 + 0.0457436i 0.000137452 + 0.00173640i
\(695\) 34.7872 + 12.6615i 1.31955 + 0.480278i
\(696\) 0 0
\(697\) −5.25642 4.41066i −0.199101 0.167066i
\(698\) 45.8139 + 4.39037i 1.73408 + 0.166178i
\(699\) 0 0
\(700\) −15.6556 + 18.0428i −0.591726 + 0.681953i
\(701\) 22.9653i 0.867386i 0.901061 + 0.433693i \(0.142790\pi\)
−0.901061 + 0.433693i \(0.857210\pi\)
\(702\) 0 0
\(703\) −22.6291 −0.853473
\(704\) −31.9343 + 24.2010i −1.20357 + 0.912108i
\(705\) 0 0
\(706\) −0.144094 + 1.50364i −0.00542307 + 0.0565901i
\(707\) −21.8723 + 26.0664i −0.822591 + 0.980326i
\(708\) 0 0
\(709\) 12.4178 34.1176i 0.466361 1.28132i −0.454264 0.890867i \(-0.650098\pi\)
0.920625 0.390448i \(-0.127680\pi\)
\(710\) 1.12572 + 14.2211i 0.0422477 + 0.533708i
\(711\) 0 0
\(712\) −12.5334 + 42.5249i −0.469710 + 1.59369i
\(713\) 2.14499 1.79986i 0.0803305 0.0674053i
\(714\) 0 0
\(715\) −60.8229 10.7247i −2.27465 0.401082i
\(716\) 14.0222 + 25.2425i 0.524033 + 0.943358i
\(717\) 0 0
\(718\) −4.03125 15.5585i −0.150445 0.580639i
\(719\) −13.7419 + 23.8016i −0.512485 + 0.887651i 0.487410 + 0.873173i \(0.337942\pi\)
−0.999895 + 0.0144775i \(0.995392\pi\)
\(720\) 0 0
\(721\) 13.2596 + 22.9662i 0.493812 + 0.855308i
\(722\) −9.13120 + 8.98136i −0.339828 + 0.334252i
\(723\) 0 0
\(724\) −9.69367 0.160394i −0.360263 0.00596099i
\(725\) 14.4516 + 39.7054i 0.536719 + 1.47462i
\(726\) 0 0
\(727\) −0.612001 3.47083i −0.0226979 0.128726i 0.971353 0.237640i \(-0.0763738\pi\)
−0.994051 + 0.108914i \(0.965263\pi\)
\(728\) 4.62799 + 19.1619i 0.171525 + 0.710186i
\(729\) 0 0
\(730\) 4.05523 + 1.93198i 0.150091 + 0.0715059i
\(731\) 28.6617 5.05384i 1.06009 0.186923i
\(732\) 0 0
\(733\) −4.83027 13.2711i −0.178410 0.490178i 0.817963 0.575271i \(-0.195103\pi\)
−0.996373 + 0.0850933i \(0.972881\pi\)
\(734\) 11.0759 5.05364i 0.408818 0.186533i
\(735\) 0 0
\(736\) 9.52471 + 14.8761i 0.351085 + 0.548341i
\(737\) −34.9680 60.5664i −1.28806 2.23099i
\(738\) 0 0
\(739\) 2.52352 + 1.45695i 0.0928291 + 0.0535949i 0.545696 0.837983i \(-0.316265\pi\)
−0.452867 + 0.891578i \(0.649599\pi\)
\(740\) −47.3467 9.15863i −1.74050 0.336678i
\(741\) 0 0
\(742\) 14.8461 20.8334i 0.545017 0.764820i
\(743\) −0.918280 + 5.20783i −0.0336884 + 0.191057i −0.997008 0.0773010i \(-0.975370\pi\)
0.963319 + 0.268358i \(0.0864809\pi\)
\(744\) 0 0
\(745\) 27.8324 23.3542i 1.01970 0.855631i
\(746\) −44.5744 + 30.6649i −1.63198 + 1.12272i
\(747\) 0 0
\(748\) 32.6266 + 12.4902i 1.19295 + 0.456686i
\(749\) 8.02267 22.0421i 0.293142 0.805401i
\(750\) 0 0
\(751\) −27.0071 22.6616i −0.985502 0.826935i −0.000591865 1.00000i \(-0.500188\pi\)
−0.984910 + 0.173065i \(0.944633\pi\)
\(752\) −1.58260 11.1142i −0.0577116 0.405294i
\(753\) 0 0
\(754\) 33.6045 + 9.30291i 1.22380 + 0.338792i
\(755\) 2.14827i 0.0781834i
\(756\) 0 0
\(757\) 38.9874i 1.41702i −0.705700 0.708511i \(-0.749367\pi\)
0.705700 0.708511i \(-0.250633\pi\)
\(758\) 8.34359 30.1392i 0.303053 1.09470i
\(759\) 0 0
\(760\) 24.9668 16.5742i 0.905642 0.601208i
\(761\) −31.7399 26.6329i −1.15057 0.965443i −0.150837 0.988559i \(-0.548197\pi\)
−0.999733 + 0.0231155i \(0.992641\pi\)
\(762\) 0 0
\(763\) 1.41899 3.89863i 0.0513708 0.141140i
\(764\) −18.7907 + 49.0847i −0.679824 + 1.77582i
\(765\) 0 0
\(766\) 1.31202 + 1.90715i 0.0474054 + 0.0689081i
\(767\) 26.8414 22.5226i 0.969186 0.813244i
\(768\) 0 0
\(769\) 8.75977 49.6791i 0.315886 1.79148i −0.251325 0.967903i \(-0.580866\pi\)
0.567210 0.823573i \(-0.308023\pi\)
\(770\) −36.8069 26.2289i −1.32643 0.945224i
\(771\) 0 0
\(772\) 8.00225 + 1.54794i 0.288007 + 0.0557115i
\(773\) 26.2565 + 15.1592i 0.944379 + 0.545238i 0.891330 0.453354i \(-0.149773\pi\)
0.0530488 + 0.998592i \(0.483106\pi\)
\(774\) 0 0
\(775\) −2.81993 4.88427i −0.101295 0.175448i
\(776\) 6.18677 + 0.696353i 0.222092 + 0.0249976i
\(777\) 0 0
\(778\) 6.73237 + 14.7551i 0.241367 + 0.528995i
\(779\) −2.12192 5.82994i −0.0760258 0.208879i
\(780\) 0 0
\(781\) −14.8082 + 2.61109i −0.529879 + 0.0934320i
\(782\) 6.62409 13.9040i 0.236877 0.497204i
\(783\) 0 0
\(784\) 2.79813 13.2828i 0.0999333 0.474386i
\(785\) −5.38281 30.5275i −0.192121 1.08957i
\(786\) 0 0
\(787\) 9.23473 + 25.3722i 0.329182 + 0.904421i 0.988319 + 0.152398i \(0.0486996\pi\)
−0.659137 + 0.752023i \(0.729078\pi\)
\(788\) 20.5743 + 0.340427i 0.732928 + 0.0121272i
\(789\) 0 0
\(790\) −15.4125 15.6696i −0.548351 0.557500i
\(791\) 15.0243 + 26.0228i 0.534202 + 0.925265i
\(792\) 0 0
\(793\) 15.6953 27.1851i 0.557356 0.965370i
\(794\) 4.08142 1.05751i 0.144844 0.0375295i
\(795\) 0 0
\(796\) 2.41464 1.34133i 0.0855846 0.0475420i
\(797\) −52.0759 9.18239i −1.84462 0.325257i −0.861437 0.507864i \(-0.830435\pi\)
−0.983186 + 0.182608i \(0.941546\pi\)
\(798\) 0 0
\(799\) −7.49821 + 6.29175i −0.265268 + 0.222586i
\(800\) 32.8393 13.6899i 1.16104 0.484012i
\(801\) 0 0
\(802\) 13.2906 1.05207i 0.469309 0.0371499i
\(803\) −1.61937 + 4.44918i −0.0571463 + 0.157008i
\(804\) 0 0
\(805\) −12.8073 + 15.2631i −0.451398 + 0.537955i
\(806\) −4.63288 0.443972i −0.163186 0.0156382i
\(807\) 0 0
\(808\) 46.4487 20.2718i 1.63406 0.713159i
\(809\) 18.3017 0.643453 0.321727 0.946833i \(-0.395737\pi\)
0.321727 + 0.946833i \(0.395737\pi\)
\(810\) 0 0
\(811\) 34.2759i 1.20359i −0.798650 0.601795i \(-0.794452\pi\)
0.798650 0.601795i \(-0.205548\pi\)
\(812\) 19.2727 + 16.7227i 0.676338 + 0.586853i
\(813\) 0 0
\(814\) 4.84895 50.5992i 0.169955 1.77350i
\(815\) 21.5186 + 18.0562i 0.753762 + 0.632482i
\(816\) 0 0
\(817\) 24.7274 + 9.00005i 0.865103 + 0.314872i
\(818\) −36.1110 + 2.85850i −1.26259 + 0.0999453i
\(819\) 0 0
\(820\) −2.08014 13.0567i −0.0726418 0.455960i
\(821\) −16.1380 19.2325i −0.563221 0.671220i 0.407004 0.913426i \(-0.366573\pi\)
−0.970225 + 0.242206i \(0.922129\pi\)
\(822\) 0 0
\(823\) −5.65012 + 32.0434i −0.196951 + 1.11696i 0.712662 + 0.701507i \(0.247489\pi\)
−0.909613 + 0.415456i \(0.863622\pi\)
\(824\) −2.46497 39.4202i −0.0858714 1.37327i
\(825\) 0 0
\(826\) 24.8215 6.43131i 0.863651 0.223774i
\(827\) −39.6695 22.9032i −1.37944 0.796423i −0.387352 0.921932i \(-0.626610\pi\)
−0.992092 + 0.125509i \(0.959944\pi\)
\(828\) 0 0
\(829\) −17.0001 + 9.81500i −0.590437 + 0.340889i −0.765270 0.643709i \(-0.777395\pi\)
0.174833 + 0.984598i \(0.444061\pi\)
\(830\) 7.32025 7.20013i 0.254090 0.249920i
\(831\) 0 0
\(832\) 6.52656 28.6254i 0.226268 0.992407i
\(833\) −11.1217 + 4.04796i −0.385343 + 0.140253i
\(834\) 0 0
\(835\) 20.6287 3.63739i 0.713885 0.125877i
\(836\) 19.9008 + 24.5298i 0.688282 + 0.848380i
\(837\) 0 0
\(838\) −3.12824 1.49035i −0.108063 0.0514833i
\(839\) 8.40287 + 47.6550i 0.290099 + 1.64523i 0.686480 + 0.727149i \(0.259155\pi\)
−0.396381 + 0.918086i \(0.629734\pi\)
\(840\) 0 0
\(841\) 15.1609 5.51810i 0.522788 0.190279i
\(842\) −7.62978 16.7219i −0.262940 0.576275i
\(843\) 0 0
\(844\) 21.8438 7.54363i 0.751894 0.259662i
\(845\) 1.36439 0.787733i 0.0469366 0.0270989i
\(846\) 0 0
\(847\) 13.3748 23.1658i 0.459563 0.795987i
\(848\) −33.6090 + 17.9486i −1.15414 + 0.616359i
\(849\) 0 0
\(850\) −25.2627 18.0024i −0.866504 0.617478i
\(851\) −22.0682 3.89122i −0.756488 0.133389i
\(852\) 0 0
\(853\) 30.1220 + 35.8980i 1.03136 + 1.22912i 0.972995 + 0.230828i \(0.0741434\pi\)
0.0583624 + 0.998295i \(0.481412\pi\)
\(854\) 18.9254 13.0197i 0.647613 0.445525i
\(855\) 0 0
\(856\) −25.3090 + 24.0830i −0.865043 + 0.823138i
\(857\) 5.93538 + 2.16030i 0.202749 + 0.0737946i 0.441399 0.897311i \(-0.354483\pi\)
−0.238650 + 0.971106i \(0.576705\pi\)
\(858\) 0 0
\(859\) 19.3877 23.1054i 0.661501 0.788346i −0.326100 0.945335i \(-0.605734\pi\)
0.987600 + 0.156990i \(0.0501789\pi\)
\(860\) 48.0944 + 28.8386i 1.64001 + 0.983388i
\(861\) 0 0
\(862\) −36.3032 10.0500i −1.23649 0.342304i
\(863\) −48.6885 −1.65737 −0.828687 0.559712i \(-0.810912\pi\)
−0.828687 + 0.559712i \(0.810912\pi\)
\(864\) 0 0
\(865\) −29.9404 −1.01800
\(866\) 37.9385 + 10.5027i 1.28920 + 0.356897i
\(867\) 0 0
\(868\) −2.92096 1.75148i −0.0991439 0.0594491i
\(869\) 14.8915 17.7470i 0.505161 0.602027i
\(870\) 0 0
\(871\) 48.1548 + 17.5269i 1.63166 + 0.593877i
\(872\) −4.47645 + 4.25960i −0.151592 + 0.144248i
\(873\) 0 0
\(874\) 11.4724 7.89247i 0.388061 0.266967i
\(875\) 5.28869 + 6.30281i 0.178790 + 0.213074i
\(876\) 0 0
\(877\) 34.7601 + 6.12915i 1.17377 + 0.206967i 0.726328 0.687348i \(-0.241225\pi\)
0.447438 + 0.894315i \(0.352336\pi\)
\(878\) 18.6537 + 13.2928i 0.629533 + 0.448610i
\(879\) 0 0
\(880\) 31.7103 + 59.3778i 1.06895 + 2.00163i
\(881\) −7.22906 + 12.5211i −0.243553 + 0.421847i −0.961724 0.274020i \(-0.911646\pi\)
0.718171 + 0.695867i \(0.244980\pi\)
\(882\) 0 0
\(883\) 30.6193 17.6781i 1.03042 0.594915i 0.113317 0.993559i \(-0.463852\pi\)
0.917106 + 0.398644i \(0.130519\pi\)
\(884\) −24.1967 + 8.35618i −0.813822 + 0.281049i
\(885\) 0 0
\(886\) 10.8599 + 23.8011i 0.364844 + 0.799615i
\(887\) 33.6657 12.2533i 1.13038 0.411426i 0.291952 0.956433i \(-0.405695\pi\)
0.838432 + 0.545007i \(0.183473\pi\)
\(888\) 0 0
\(889\) 3.41231 + 19.3522i 0.114445 + 0.649051i
\(890\) 67.2389 + 32.0338i 2.25385 + 1.07378i
\(891\) 0 0
\(892\) 3.83385 + 4.72562i 0.128367 + 0.158225i
\(893\) −8.71560 + 1.53680i −0.291656 + 0.0514269i
\(894\) 0 0
\(895\) 45.5853 16.5917i 1.52375 0.554599i
\(896\) 13.3214 16.8571i 0.445037 0.563155i
\(897\) 0 0
\(898\) −7.59530 + 7.47067i −0.253458 + 0.249299i
\(899\) −5.21720 + 3.01215i −0.174003 + 0.100461i
\(900\) 0 0
\(901\) 28.7699 + 16.6103i 0.958463 + 0.553369i
\(902\) 13.4905 3.49543i 0.449186 0.116385i
\(903\) 0 0
\(904\) −2.79304 44.6667i −0.0928951 1.48559i
\(905\) −2.82829 + 16.0401i −0.0940157 + 0.533189i
\(906\) 0 0
\(907\) −5.65021 6.73365i −0.187612 0.223587i 0.664037 0.747700i \(-0.268842\pi\)
−0.851649 + 0.524112i \(0.824397\pi\)
\(908\) 0.314109 + 1.97161i 0.0104241 + 0.0654301i
\(909\) 0 0
\(910\) 33.0140 2.61335i 1.09441 0.0866318i
\(911\) −13.4129 4.88190i −0.444389 0.161744i 0.110127 0.993918i \(-0.464874\pi\)
−0.554516 + 0.832173i \(0.687097\pi\)
\(912\) 0 0
\(913\) 8.29075 + 6.95676i 0.274384 + 0.230235i
\(914\) 1.91868 20.0215i 0.0634642 0.662254i
\(915\) 0 0
\(916\) −1.29772 1.12602i −0.0428778 0.0372048i
\(917\) 17.0691i 0.563671i
\(918\) 0 0
\(919\) −54.9336 −1.81209 −0.906046 0.423179i \(-0.860914\pi\)
−0.906046 + 0.423179i \(0.860914\pi\)
\(920\) 27.1980 11.8701i 0.896691 0.391346i
\(921\) 0 0
\(922\) −17.6147 1.68803i −0.580110 0.0555923i
\(923\) 7.08225 8.44030i 0.233115 0.277816i
\(924\) 0 0
\(925\) −15.4371 + 42.4130i −0.507567 + 1.39453i
\(926\) −7.67931 + 0.607885i −0.252358 + 0.0199764i
\(927\) 0 0
\(928\) −14.6231 35.0777i −0.480027 1.15148i
\(929\) −20.0336 + 16.8102i −0.657282 + 0.551525i −0.909271 0.416205i \(-0.863360\pi\)
0.251989 + 0.967730i \(0.418915\pi\)
\(930\) 0 0
\(931\) −10.5385 1.85822i −0.345385 0.0609006i
\(932\) 18.0913 10.0497i 0.592599 0.329187i
\(933\) 0 0
\(934\) −10.0056 + 2.59247i −0.327392 + 0.0848281i
\(935\) 29.3458 50.8283i 0.959709 1.66226i
\(936\) 0 0
\(937\) 30.0604 + 52.0662i 0.982031 + 1.70093i 0.654451 + 0.756105i \(0.272900\pi\)
0.327580 + 0.944823i \(0.393767\pi\)
\(938\) 26.2968 + 26.7355i 0.858621 + 0.872946i
\(939\) 0 0
\(940\) −18.8575 0.312021i −0.615065 0.0101770i
\(941\) −19.3533 53.1728i −0.630900 1.73338i −0.678585 0.734522i \(-0.737406\pi\)
0.0476846 0.998862i \(-0.484816\pi\)
\(942\) 0 0
\(943\) −1.06683 6.05031i −0.0347408 0.197025i
\(944\) −37.3694 7.87217i −1.21627 0.256217i
\(945\) 0 0
\(946\) −25.4229 + 53.3625i −0.826568 + 1.73496i
\(947\) 45.6408 8.04770i 1.48313 0.261515i 0.627299 0.778778i \(-0.284160\pi\)
0.855826 + 0.517263i \(0.173049\pi\)
\(948\) 0 0
\(949\) −1.18659 3.26012i −0.0385182 0.105828i
\(950\) −11.6427 25.5169i −0.377740 0.827879i
\(951\) 0 0
\(952\) −18.6155 2.09527i −0.603332 0.0679082i
\(953\) 2.93376 + 5.08142i 0.0950338 + 0.164603i 0.909623 0.415435i \(-0.136371\pi\)
−0.814589 + 0.580039i \(0.803037\pi\)
\(954\) 0 0
\(955\) 76.4681 + 44.1489i 2.47445 + 1.42862i
\(956\) 24.0499 + 4.65215i 0.777829 + 0.150461i
\(957\) 0 0
\(958\) −7.98228 5.68824i −0.257896 0.183779i
\(959\) −5.55822 + 31.5222i −0.179484 + 1.01791i
\(960\) 0 0
\(961\) −23.1314 + 19.4095i −0.746174 + 0.626114i
\(962\) 21.1104 + 30.6859i 0.680626 + 0.989353i
\(963\) 0 0
\(964\) 10.7176 27.9963i 0.345190 0.901699i
\(965\) 4.68325 12.8671i 0.150759 0.414207i
\(966\) 0 0
\(967\) −17.2553 14.4789i −0.554893 0.465610i 0.321701 0.946841i \(-0.395745\pi\)
−0.876594 + 0.481231i \(0.840190\pi\)
\(968\) −33.1924 + 22.0347i −1.06684 + 0.708221i
\(969\) 0 0
\(970\) 2.79056 10.0802i 0.0895994 0.323656i
\(971\) 21.9521i 0.704475i 0.935911 + 0.352238i \(0.114579\pi\)
−0.935911 + 0.352238i \(0.885421\pi\)
\(972\) 0 0
\(973\) 20.9235i 0.670778i
\(974\) 40.4556 + 11.1995i 1.29628 + 0.358856i
\(975\) 0 0
\(976\) −33.8715 + 4.82311i −1.08420 + 0.154384i
\(977\) 36.9729 + 31.0239i 1.18287 + 0.992543i 0.999956 + 0.00941403i \(0.00299662\pi\)
0.182911 + 0.983129i \(0.441448\pi\)
\(978\) 0 0
\(979\) −26.8504 + 73.7710i −0.858144 + 2.35773i
\(980\) −21.2975 8.15314i −0.680323 0.260443i
\(981\) 0 0
\(982\) 10.2539 7.05415i 0.327214 0.225107i
\(983\) 35.0417 29.4034i 1.11766 0.937824i 0.119172 0.992874i \(-0.461976\pi\)
0.998484 + 0.0550493i \(0.0175316\pi\)
\(984\) 0 0
\(985\) 6.00289 34.0441i 0.191268 1.08474i
\(986\) −19.2295 + 26.9847i −0.612393 + 0.859369i
\(987\) 0 0
\(988\) −22.7241 4.39569i −0.722950 0.139846i
\(989\) 22.5669 + 13.0290i 0.717585 + 0.414298i
\(990\) 0 0
\(991\) 6.44420 + 11.1617i 0.204707 + 0.354562i 0.950039 0.312130i \(-0.101043\pi\)
−0.745333 + 0.666693i \(0.767709\pi\)
\(992\) 2.73522 + 4.27199i 0.0868432 + 0.135636i
\(993\) 0 0
\(994\) 7.33540 3.34696i 0.232665 0.106159i
\(995\) −1.58712 4.36058i −0.0503151 0.138240i
\(996\) 0 0
\(997\) 4.83400 0.852365i 0.153094 0.0269947i −0.0965756 0.995326i \(-0.530789\pi\)
0.249670 + 0.968331i \(0.419678\pi\)
\(998\) −19.0029 9.05332i −0.601526 0.286578i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.253.32 204
3.2 odd 2 216.2.t.a.13.3 204
8.5 even 2 inner 648.2.t.a.253.6 204
12.11 even 2 864.2.bf.a.337.15 204
24.5 odd 2 216.2.t.a.13.29 yes 204
24.11 even 2 864.2.bf.a.337.20 204
27.2 odd 18 216.2.t.a.133.29 yes 204
27.25 even 9 inner 648.2.t.a.397.6 204
108.83 even 18 864.2.bf.a.241.20 204
216.29 odd 18 216.2.t.a.133.3 yes 204
216.83 even 18 864.2.bf.a.241.15 204
216.133 even 18 inner 648.2.t.a.397.32 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.3 204 3.2 odd 2
216.2.t.a.13.29 yes 204 24.5 odd 2
216.2.t.a.133.3 yes 204 216.29 odd 18
216.2.t.a.133.29 yes 204 27.2 odd 18
648.2.t.a.253.6 204 8.5 even 2 inner
648.2.t.a.253.32 204 1.1 even 1 trivial
648.2.t.a.397.6 204 27.25 even 9 inner
648.2.t.a.397.32 204 216.133 even 18 inner
864.2.bf.a.241.15 204 216.83 even 18
864.2.bf.a.241.20 204 108.83 even 18
864.2.bf.a.337.15 204 12.11 even 2
864.2.bf.a.337.20 204 24.11 even 2