Properties

Label 864.2.bf.a.241.15
Level $864$
Weight $2$
Character 864.241
Analytic conductor $6.899$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(49,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bf (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 241.15
Character \(\chi\) \(=\) 864.241
Dual form 864.2.bf.a.337.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.411299 - 1.68251i) q^{3} +(-2.15975 - 2.57389i) q^{5} +(1.78453 - 0.649515i) q^{7} +(-2.66167 + 1.38403i) q^{9} +(3.21944 - 3.83678i) q^{11} +(-3.61424 + 0.637289i) q^{13} +(-3.44229 + 4.69244i) q^{15} +(-1.74380 - 3.02034i) q^{17} +(-2.73085 - 1.57666i) q^{19} +(-1.82679 - 2.73534i) q^{21} +(2.93428 + 1.06799i) q^{23} +(-1.09215 + 6.19390i) q^{25} +(3.42338 + 3.90903i) q^{27} +(6.61611 + 1.16660i) q^{29} +(-0.842639 - 0.306695i) q^{31} +(-7.77957 - 3.83868i) q^{33} +(-5.52592 - 3.19039i) q^{35} +(-6.21485 + 3.58815i) q^{37} +(2.55878 + 5.81888i) q^{39} +(-0.341649 - 1.93759i) q^{41} +(-5.36405 + 6.39263i) q^{43} +(9.31088 + 3.86169i) q^{45} +(-2.63733 + 0.959909i) q^{47} +(-2.59964 + 2.18135i) q^{49} +(-4.36453 + 4.17621i) q^{51} +9.52536i q^{53} -16.8287 q^{55} +(-1.52954 + 5.24316i) q^{57} +(-6.13695 - 7.31373i) q^{59} +(-2.92540 - 8.03747i) q^{61} +(-3.85088 + 4.19863i) q^{63} +(9.44618 + 7.92629i) q^{65} +(13.7512 - 2.42470i) q^{67} +(0.590037 - 5.37621i) q^{69} +(-1.50109 - 2.59997i) q^{71} +(0.472663 - 0.818676i) q^{73} +(10.8705 - 0.709989i) q^{75} +(3.25314 - 8.93793i) q^{77} +(0.803209 - 4.55523i) q^{79} +(5.16894 - 7.36764i) q^{81} +(2.12803 + 0.375229i) q^{83} +(-4.00787 + 11.0115i) q^{85} +(-0.758385 - 11.6115i) q^{87} +(-7.83712 + 13.5743i) q^{89} +(-6.03579 + 3.48477i) q^{91} +(-0.169441 + 1.54389i) q^{93} +(1.83982 + 10.4341i) q^{95} +(1.68619 + 1.41488i) q^{97} +(-3.25888 + 14.6680i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 12 q^{7} - 12 q^{9} + 12 q^{15} - 6 q^{17} + 12 q^{23} - 12 q^{25} + 12 q^{31} + 12 q^{39} - 24 q^{41} + 12 q^{47} - 12 q^{49} + 24 q^{55} - 30 q^{57} + 72 q^{63} - 12 q^{65} + 90 q^{71} - 6 q^{73}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.411299 1.68251i −0.237463 0.971396i
\(4\) 0 0
\(5\) −2.15975 2.57389i −0.965871 1.15108i −0.988482 0.151335i \(-0.951643\pi\)
0.0226118 0.999744i \(-0.492802\pi\)
\(6\) 0 0
\(7\) 1.78453 0.649515i 0.674489 0.245494i 0.0180093 0.999838i \(-0.494267\pi\)
0.656479 + 0.754344i \(0.272045\pi\)
\(8\) 0 0
\(9\) −2.66167 + 1.38403i −0.887222 + 0.461342i
\(10\) 0 0
\(11\) 3.21944 3.83678i 0.970699 1.15683i −0.0169036 0.999857i \(-0.505381\pi\)
0.987602 0.156977i \(-0.0501747\pi\)
\(12\) 0 0
\(13\) −3.61424 + 0.637289i −1.00241 + 0.176752i −0.650682 0.759350i \(-0.725517\pi\)
−0.351728 + 0.936102i \(0.614406\pi\)
\(14\) 0 0
\(15\) −3.44229 + 4.69244i −0.888796 + 1.21158i
\(16\) 0 0
\(17\) −1.74380 3.02034i −0.422932 0.732541i 0.573292 0.819351i \(-0.305666\pi\)
−0.996225 + 0.0868103i \(0.972333\pi\)
\(18\) 0 0
\(19\) −2.73085 1.57666i −0.626501 0.361710i 0.152895 0.988242i \(-0.451140\pi\)
−0.779396 + 0.626532i \(0.784474\pi\)
\(20\) 0 0
\(21\) −1.82679 2.73534i −0.398638 0.596900i
\(22\) 0 0
\(23\) 2.93428 + 1.06799i 0.611839 + 0.222691i 0.629308 0.777156i \(-0.283338\pi\)
−0.0174685 + 0.999847i \(0.505561\pi\)
\(24\) 0 0
\(25\) −1.09215 + 6.19390i −0.218430 + 1.23878i
\(26\) 0 0
\(27\) 3.42338 + 3.90903i 0.658829 + 0.752293i
\(28\) 0 0
\(29\) 6.61611 + 1.16660i 1.22858 + 0.216632i 0.750015 0.661420i \(-0.230046\pi\)
0.478565 + 0.878052i \(0.341157\pi\)
\(30\) 0 0
\(31\) −0.842639 0.306695i −0.151342 0.0550841i 0.265238 0.964183i \(-0.414549\pi\)
−0.416581 + 0.909099i \(0.636772\pi\)
\(32\) 0 0
\(33\) −7.77957 3.83868i −1.35425 0.668228i
\(34\) 0 0
\(35\) −5.52592 3.19039i −0.934052 0.539275i
\(36\) 0 0
\(37\) −6.21485 + 3.58815i −1.02172 + 0.589887i −0.914600 0.404359i \(-0.867495\pi\)
−0.107115 + 0.994247i \(0.534161\pi\)
\(38\) 0 0
\(39\) 2.55878 + 5.81888i 0.409732 + 0.931766i
\(40\) 0 0
\(41\) −0.341649 1.93759i −0.0533567 0.302601i 0.946438 0.322887i \(-0.104653\pi\)
−0.999794 + 0.0202862i \(0.993542\pi\)
\(42\) 0 0
\(43\) −5.36405 + 6.39263i −0.818010 + 0.974867i −0.999964 0.00844018i \(-0.997313\pi\)
0.181954 + 0.983307i \(0.441758\pi\)
\(44\) 0 0
\(45\) 9.31088 + 3.86169i 1.38798 + 0.575667i
\(46\) 0 0
\(47\) −2.63733 + 0.959909i −0.384694 + 0.140017i −0.527125 0.849788i \(-0.676730\pi\)
0.142432 + 0.989805i \(0.454508\pi\)
\(48\) 0 0
\(49\) −2.59964 + 2.18135i −0.371377 + 0.311622i
\(50\) 0 0
\(51\) −4.36453 + 4.17621i −0.611156 + 0.584787i
\(52\) 0 0
\(53\) 9.52536i 1.30841i 0.756318 + 0.654205i \(0.226996\pi\)
−0.756318 + 0.654205i \(0.773004\pi\)
\(54\) 0 0
\(55\) −16.8287 −2.26918
\(56\) 0 0
\(57\) −1.52954 + 5.24316i −0.202593 + 0.694473i
\(58\) 0 0
\(59\) −6.13695 7.31373i −0.798963 0.952167i 0.200659 0.979661i \(-0.435692\pi\)
−0.999622 + 0.0274946i \(0.991247\pi\)
\(60\) 0 0
\(61\) −2.92540 8.03747i −0.374559 1.02909i −0.973577 0.228358i \(-0.926664\pi\)
0.599018 0.800735i \(-0.295558\pi\)
\(62\) 0 0
\(63\) −3.85088 + 4.19863i −0.485165 + 0.528978i
\(64\) 0 0
\(65\) 9.44618 + 7.92629i 1.17165 + 0.983135i
\(66\) 0 0
\(67\) 13.7512 2.42470i 1.67997 0.296224i 0.749341 0.662184i \(-0.230370\pi\)
0.930631 + 0.365960i \(0.119259\pi\)
\(68\) 0 0
\(69\) 0.590037 5.37621i 0.0710321 0.647220i
\(70\) 0 0
\(71\) −1.50109 2.59997i −0.178147 0.308560i 0.763099 0.646282i \(-0.223677\pi\)
−0.941246 + 0.337722i \(0.890344\pi\)
\(72\) 0 0
\(73\) 0.472663 0.818676i 0.0553210 0.0958187i −0.837039 0.547144i \(-0.815715\pi\)
0.892360 + 0.451325i \(0.149048\pi\)
\(74\) 0 0
\(75\) 10.8705 0.709989i 1.25522 0.0819825i
\(76\) 0 0
\(77\) 3.25314 8.93793i 0.370730 1.01857i
\(78\) 0 0
\(79\) 0.803209 4.55523i 0.0903681 0.512503i −0.905701 0.423918i \(-0.860654\pi\)
0.996069 0.0885849i \(-0.0282345\pi\)
\(80\) 0 0
\(81\) 5.16894 7.36764i 0.574327 0.818626i
\(82\) 0 0
\(83\) 2.12803 + 0.375229i 0.233582 + 0.0411868i 0.289214 0.957265i \(-0.406606\pi\)
−0.0556319 + 0.998451i \(0.517717\pi\)
\(84\) 0 0
\(85\) −4.00787 + 11.0115i −0.434715 + 1.19437i
\(86\) 0 0
\(87\) −0.758385 11.6115i −0.0813074 1.24488i
\(88\) 0 0
\(89\) −7.83712 + 13.5743i −0.830733 + 1.43887i 0.0667245 + 0.997771i \(0.478745\pi\)
−0.897458 + 0.441101i \(0.854588\pi\)
\(90\) 0 0
\(91\) −6.03579 + 3.48477i −0.632723 + 0.365303i
\(92\) 0 0
\(93\) −0.169441 + 1.54389i −0.0175703 + 0.160094i
\(94\) 0 0
\(95\) 1.83982 + 10.4341i 0.188761 + 1.07052i
\(96\) 0 0
\(97\) 1.68619 + 1.41488i 0.171207 + 0.143659i 0.724365 0.689417i \(-0.242133\pi\)
−0.553158 + 0.833076i \(0.686578\pi\)
\(98\) 0 0
\(99\) −3.25888 + 14.6680i −0.327529 + 1.47419i
\(100\) 0 0
\(101\) −6.12830 16.8374i −0.609789 1.67538i −0.730684 0.682716i \(-0.760799\pi\)
0.120895 0.992665i \(-0.461424\pi\)
\(102\) 0 0
\(103\) 10.6973 8.97613i 1.05404 0.884444i 0.0605268 0.998167i \(-0.480722\pi\)
0.993513 + 0.113723i \(0.0362775\pi\)
\(104\) 0 0
\(105\) −3.09506 + 10.6096i −0.302047 + 1.03539i
\(106\) 0 0
\(107\) 12.3518i 1.19409i −0.802207 0.597046i \(-0.796341\pi\)
0.802207 0.597046i \(-0.203659\pi\)
\(108\) 0 0
\(109\) 2.18468i 0.209255i −0.994511 0.104627i \(-0.966635\pi\)
0.994511 0.104627i \(-0.0333650\pi\)
\(110\) 0 0
\(111\) 8.59324 + 8.98074i 0.815634 + 0.852414i
\(112\) 0 0
\(113\) 12.1210 10.1708i 1.14025 0.956785i 0.140805 0.990037i \(-0.455031\pi\)
0.999447 + 0.0332523i \(0.0105865\pi\)
\(114\) 0 0
\(115\) −3.58842 9.85911i −0.334622 0.919367i
\(116\) 0 0
\(117\) 8.73789 6.69846i 0.807818 0.619273i
\(118\) 0 0
\(119\) −5.07361 4.25727i −0.465097 0.390263i
\(120\) 0 0
\(121\) −2.44596 13.8717i −0.222360 1.26107i
\(122\) 0 0
\(123\) −3.11949 + 1.37176i −0.281275 + 0.123687i
\(124\) 0 0
\(125\) 3.75209 2.16627i 0.335597 0.193757i
\(126\) 0 0
\(127\) 5.17381 8.96131i 0.459102 0.795187i −0.539812 0.841786i \(-0.681505\pi\)
0.998914 + 0.0465982i \(0.0148381\pi\)
\(128\) 0 0
\(129\) 12.9619 + 6.39578i 1.14123 + 0.563117i
\(130\) 0 0
\(131\) −3.07414 + 8.44614i −0.268589 + 0.737942i 0.729929 + 0.683523i \(0.239553\pi\)
−0.998518 + 0.0544195i \(0.982669\pi\)
\(132\) 0 0
\(133\) −5.89735 1.03986i −0.511365 0.0901675i
\(134\) 0 0
\(135\) 2.66777 17.2539i 0.229605 1.48498i
\(136\) 0 0
\(137\) 2.92683 16.5989i 0.250056 1.41814i −0.558395 0.829575i \(-0.688583\pi\)
0.808451 0.588563i \(-0.200306\pi\)
\(138\) 0 0
\(139\) −3.76833 + 10.3534i −0.319626 + 0.878164i 0.670988 + 0.741469i \(0.265870\pi\)
−0.990613 + 0.136695i \(0.956352\pi\)
\(140\) 0 0
\(141\) 2.69978 + 4.04252i 0.227363 + 0.340441i
\(142\) 0 0
\(143\) −9.19071 + 15.9188i −0.768566 + 1.33120i
\(144\) 0 0
\(145\) −11.2865 19.5487i −0.937289 1.62343i
\(146\) 0 0
\(147\) 4.73937 + 3.47672i 0.390897 + 0.286755i
\(148\) 0 0
\(149\) −10.6491 + 1.87772i −0.872406 + 0.153829i −0.591888 0.806020i \(-0.701617\pi\)
−0.280518 + 0.959849i \(0.590506\pi\)
\(150\) 0 0
\(151\) 0.489785 + 0.410979i 0.0398582 + 0.0334450i 0.662499 0.749063i \(-0.269496\pi\)
−0.622641 + 0.782508i \(0.713940\pi\)
\(152\) 0 0
\(153\) 8.82164 + 5.62569i 0.713187 + 0.454810i
\(154\) 0 0
\(155\) 1.03049 + 2.83125i 0.0827709 + 0.227411i
\(156\) 0 0
\(157\) 5.93021 + 7.06735i 0.473282 + 0.564036i 0.948884 0.315625i \(-0.102214\pi\)
−0.475602 + 0.879661i \(0.657770\pi\)
\(158\) 0 0
\(159\) 16.0265 3.91777i 1.27098 0.310699i
\(160\) 0 0
\(161\) 5.92998 0.467348
\(162\) 0 0
\(163\) 8.36032i 0.654831i 0.944881 + 0.327415i \(0.106178\pi\)
−0.944881 + 0.327415i \(0.893822\pi\)
\(164\) 0 0
\(165\) 6.92161 + 28.3144i 0.538847 + 2.20427i
\(166\) 0 0
\(167\) 4.77570 4.00729i 0.369555 0.310094i −0.439030 0.898472i \(-0.644678\pi\)
0.808586 + 0.588379i \(0.200234\pi\)
\(168\) 0 0
\(169\) 0.440614 0.160370i 0.0338934 0.0123362i
\(170\) 0 0
\(171\) 9.45076 + 0.416967i 0.722717 + 0.0318863i
\(172\) 0 0
\(173\) 5.72780 6.82613i 0.435477 0.518981i −0.503017 0.864276i \(-0.667777\pi\)
0.938494 + 0.345295i \(0.112221\pi\)
\(174\) 0 0
\(175\) 2.07406 + 11.7626i 0.156784 + 0.889167i
\(176\) 0 0
\(177\) −9.78129 + 13.3336i −0.735207 + 1.00221i
\(178\) 0 0
\(179\) 12.5035 7.21893i 0.934559 0.539568i 0.0463085 0.998927i \(-0.485254\pi\)
0.888251 + 0.459359i \(0.151921\pi\)
\(180\) 0 0
\(181\) −4.19806 2.42375i −0.312039 0.180156i 0.335799 0.941934i \(-0.390994\pi\)
−0.647839 + 0.761778i \(0.724327\pi\)
\(182\) 0 0
\(183\) −12.3199 + 8.22781i −0.910713 + 0.608217i
\(184\) 0 0
\(185\) 22.6580 + 8.24685i 1.66585 + 0.606321i
\(186\) 0 0
\(187\) −17.2024 3.03326i −1.25797 0.221814i
\(188\) 0 0
\(189\) 8.64809 + 4.75224i 0.629056 + 0.345674i
\(190\) 0 0
\(191\) 4.56335 25.8800i 0.330192 1.87261i −0.140153 0.990130i \(-0.544759\pi\)
0.470345 0.882483i \(-0.344129\pi\)
\(192\) 0 0
\(193\) 3.82953 + 1.39383i 0.275655 + 0.100330i 0.476149 0.879365i \(-0.342032\pi\)
−0.200494 + 0.979695i \(0.564255\pi\)
\(194\) 0 0
\(195\) 9.45084 19.1534i 0.676789 1.37160i
\(196\) 0 0
\(197\) −8.91014 5.14427i −0.634821 0.366514i 0.147796 0.989018i \(-0.452782\pi\)
−0.782617 + 0.622504i \(0.786116\pi\)
\(198\) 0 0
\(199\) −0.690545 1.19606i −0.0489514 0.0847864i 0.840511 0.541794i \(-0.182255\pi\)
−0.889463 + 0.457007i \(0.848921\pi\)
\(200\) 0 0
\(201\) −9.73541 22.1392i −0.686683 1.56158i
\(202\) 0 0
\(203\) 12.5644 2.21544i 0.881845 0.155493i
\(204\) 0 0
\(205\) −4.24927 + 5.06408i −0.296782 + 0.353691i
\(206\) 0 0
\(207\) −9.28820 + 1.21849i −0.645574 + 0.0846906i
\(208\) 0 0
\(209\) −14.8411 + 5.40173i −1.02658 + 0.373645i
\(210\) 0 0
\(211\) −7.42731 8.85152i −0.511317 0.609364i 0.447188 0.894440i \(-0.352426\pi\)
−0.958505 + 0.285076i \(0.907981\pi\)
\(212\) 0 0
\(213\) −3.75707 + 3.59497i −0.257430 + 0.246323i
\(214\) 0 0
\(215\) 28.0390 1.91224
\(216\) 0 0
\(217\) −1.70292 −0.115602
\(218\) 0 0
\(219\) −1.57183 0.458539i −0.106215 0.0309852i
\(220\) 0 0
\(221\) 8.22733 + 9.80495i 0.553430 + 0.659552i
\(222\) 0 0
\(223\) −2.85912 + 1.04063i −0.191461 + 0.0696860i −0.435971 0.899961i \(-0.643595\pi\)
0.244510 + 0.969647i \(0.421373\pi\)
\(224\) 0 0
\(225\) −5.66558 17.9977i −0.377705 1.19984i
\(226\) 0 0
\(227\) 0.641654 0.764693i 0.0425881 0.0507545i −0.744330 0.667812i \(-0.767231\pi\)
0.786918 + 0.617058i \(0.211675\pi\)
\(228\) 0 0
\(229\) −0.846018 + 0.149176i −0.0559064 + 0.00985781i −0.201531 0.979482i \(-0.564592\pi\)
0.145625 + 0.989340i \(0.453481\pi\)
\(230\) 0 0
\(231\) −16.3762 1.79728i −1.07747 0.118252i
\(232\) 0 0
\(233\) −5.17379 8.96127i −0.338946 0.587072i 0.645288 0.763939i \(-0.276737\pi\)
−0.984235 + 0.176867i \(0.943404\pi\)
\(234\) 0 0
\(235\) 8.16668 + 4.71503i 0.532735 + 0.307575i
\(236\) 0 0
\(237\) −7.99456 + 0.522152i −0.519303 + 0.0339174i
\(238\) 0 0
\(239\) 11.5092 + 4.18901i 0.744469 + 0.270965i 0.686277 0.727341i \(-0.259244\pi\)
0.0581928 + 0.998305i \(0.481466\pi\)
\(240\) 0 0
\(241\) −2.60278 + 14.7611i −0.167660 + 0.950846i 0.778620 + 0.627496i \(0.215920\pi\)
−0.946279 + 0.323350i \(0.895191\pi\)
\(242\) 0 0
\(243\) −14.5221 5.66649i −0.931592 0.363505i
\(244\) 0 0
\(245\) 11.2291 + 1.98000i 0.717404 + 0.126498i
\(246\) 0 0
\(247\) 10.8748 + 3.95809i 0.691944 + 0.251847i
\(248\) 0 0
\(249\) −0.243930 3.73476i −0.0154584 0.236681i
\(250\) 0 0
\(251\) −13.8356 7.98801i −0.873298 0.504199i −0.00485525 0.999988i \(-0.501545\pi\)
−0.868443 + 0.495789i \(0.834879\pi\)
\(252\) 0 0
\(253\) 13.5444 7.81986i 0.851528 0.491630i
\(254\) 0 0
\(255\) 20.1754 + 2.21425i 1.26343 + 0.138661i
\(256\) 0 0
\(257\) −1.36142 7.72098i −0.0849229 0.481622i −0.997373 0.0724341i \(-0.976923\pi\)
0.912450 0.409187i \(-0.134188\pi\)
\(258\) 0 0
\(259\) −8.76002 + 10.4398i −0.544321 + 0.648697i
\(260\) 0 0
\(261\) −19.2245 + 6.05177i −1.18997 + 0.374595i
\(262\) 0 0
\(263\) 19.3707 7.05037i 1.19445 0.434744i 0.333166 0.942868i \(-0.391883\pi\)
0.861284 + 0.508124i \(0.169661\pi\)
\(264\) 0 0
\(265\) 24.5173 20.5724i 1.50608 1.26375i
\(266\) 0 0
\(267\) 26.0623 + 7.60293i 1.59498 + 0.465292i
\(268\) 0 0
\(269\) 15.9724i 0.973852i −0.873443 0.486926i \(-0.838118\pi\)
0.873443 0.486926i \(-0.161882\pi\)
\(270\) 0 0
\(271\) −7.19443 −0.437031 −0.218515 0.975834i \(-0.570121\pi\)
−0.218515 + 0.975834i \(0.570121\pi\)
\(272\) 0 0
\(273\) 8.34566 + 8.72199i 0.505102 + 0.527879i
\(274\) 0 0
\(275\) 20.2485 + 24.1313i 1.22103 + 1.45517i
\(276\) 0 0
\(277\) 6.45750 + 17.7418i 0.387993 + 1.06600i 0.967903 + 0.251322i \(0.0808654\pi\)
−0.579910 + 0.814680i \(0.696912\pi\)
\(278\) 0 0
\(279\) 2.66730 0.349913i 0.159687 0.0209488i
\(280\) 0 0
\(281\) −14.1133 11.8425i −0.841932 0.706465i 0.116066 0.993242i \(-0.462972\pi\)
−0.957997 + 0.286777i \(0.907416\pi\)
\(282\) 0 0
\(283\) −8.62324 + 1.52051i −0.512599 + 0.0903850i −0.423964 0.905679i \(-0.639362\pi\)
−0.0886349 + 0.996064i \(0.528250\pi\)
\(284\) 0 0
\(285\) 16.7988 7.38704i 0.995073 0.437571i
\(286\) 0 0
\(287\) −1.86818 3.23578i −0.110275 0.191002i
\(288\) 0 0
\(289\) 2.41836 4.18872i 0.142256 0.246395i
\(290\) 0 0
\(291\) 1.68702 3.41897i 0.0988950 0.200423i
\(292\) 0 0
\(293\) −4.67724 + 12.8506i −0.273247 + 0.750741i 0.724840 + 0.688918i \(0.241914\pi\)
−0.998087 + 0.0618236i \(0.980308\pi\)
\(294\) 0 0
\(295\) −5.57047 + 31.5917i −0.324325 + 1.83934i
\(296\) 0 0
\(297\) 26.0195 0.549857i 1.50980 0.0319060i
\(298\) 0 0
\(299\) −11.2858 1.98999i −0.652675 0.115084i
\(300\) 0 0
\(301\) −5.42020 + 14.8919i −0.312415 + 0.858353i
\(302\) 0 0
\(303\) −25.8085 + 17.2361i −1.48266 + 0.990188i
\(304\) 0 0
\(305\) −14.3695 + 24.8886i −0.822792 + 1.42512i
\(306\) 0 0
\(307\) 21.3532 12.3283i 1.21869 0.703612i 0.254053 0.967190i \(-0.418236\pi\)
0.964638 + 0.263578i \(0.0849028\pi\)
\(308\) 0 0
\(309\) −19.5022 14.3065i −1.10944 0.813867i
\(310\) 0 0
\(311\) −0.221479 1.25607i −0.0125589 0.0712250i 0.977884 0.209147i \(-0.0670688\pi\)
−0.990443 + 0.137922i \(0.955958\pi\)
\(312\) 0 0
\(313\) 15.3438 + 12.8749i 0.867280 + 0.727735i 0.963524 0.267623i \(-0.0862382\pi\)
−0.0962433 + 0.995358i \(0.530683\pi\)
\(314\) 0 0
\(315\) 19.1238 + 0.843740i 1.07750 + 0.0475393i
\(316\) 0 0
\(317\) 2.05364 + 5.64232i 0.115344 + 0.316904i 0.983909 0.178671i \(-0.0571796\pi\)
−0.868565 + 0.495575i \(0.834957\pi\)
\(318\) 0 0
\(319\) 25.7762 21.6288i 1.44319 1.21098i
\(320\) 0 0
\(321\) −20.7820 + 5.08027i −1.15994 + 0.283553i
\(322\) 0 0
\(323\) 10.9975i 0.611916i
\(324\) 0 0
\(325\) 23.0823i 1.28038i
\(326\) 0 0
\(327\) −3.67575 + 0.898558i −0.203269 + 0.0496904i
\(328\) 0 0
\(329\) −4.08291 + 3.42597i −0.225098 + 0.188880i
\(330\) 0 0
\(331\) 6.69009 + 18.3809i 0.367721 + 1.01030i 0.976226 + 0.216755i \(0.0695472\pi\)
−0.608505 + 0.793550i \(0.708231\pi\)
\(332\) 0 0
\(333\) 11.5758 18.1520i 0.634348 0.994722i
\(334\) 0 0
\(335\) −35.9400 30.1573i −1.96361 1.64767i
\(336\) 0 0
\(337\) 3.82769 + 21.7079i 0.208508 + 1.18251i 0.891824 + 0.452383i \(0.149426\pi\)
−0.683316 + 0.730123i \(0.739463\pi\)
\(338\) 0 0
\(339\) −22.0978 16.2105i −1.20019 0.880435i
\(340\) 0 0
\(341\) −3.88955 + 2.24563i −0.210631 + 0.121608i
\(342\) 0 0
\(343\) −9.86900 + 17.0936i −0.532876 + 0.922968i
\(344\) 0 0
\(345\) −15.1121 + 10.0926i −0.813609 + 0.543367i
\(346\) 0 0
\(347\) 0.0110975 0.0304900i 0.000595743 0.00163679i −0.939394 0.342838i \(-0.888612\pi\)
0.939990 + 0.341202i \(0.110834\pi\)
\(348\) 0 0
\(349\) 32.0493 + 5.65116i 1.71556 + 0.302500i 0.943087 0.332546i \(-0.107908\pi\)
0.772474 + 0.635046i \(0.219019\pi\)
\(350\) 0 0
\(351\) −14.8641 11.9465i −0.793387 0.637657i
\(352\) 0 0
\(353\) −0.185474 + 1.05188i −0.00987180 + 0.0559857i −0.989346 0.145585i \(-0.953494\pi\)
0.979474 + 0.201571i \(0.0646046\pi\)
\(354\) 0 0
\(355\) −3.45005 + 9.47895i −0.183110 + 0.503090i
\(356\) 0 0
\(357\) −5.07612 + 10.2874i −0.268656 + 0.544467i
\(358\) 0 0
\(359\) −5.68242 + 9.84224i −0.299907 + 0.519453i −0.976114 0.217258i \(-0.930289\pi\)
0.676208 + 0.736711i \(0.263622\pi\)
\(360\) 0 0
\(361\) −4.52830 7.84324i −0.238331 0.412802i
\(362\) 0 0
\(363\) −22.3333 + 9.82077i −1.17219 + 0.515457i
\(364\) 0 0
\(365\) −3.12802 + 0.551554i −0.163728 + 0.0288697i
\(366\) 0 0
\(367\) −6.59453 5.53346i −0.344231 0.288844i 0.454237 0.890881i \(-0.349912\pi\)
−0.798469 + 0.602036i \(0.794356\pi\)
\(368\) 0 0
\(369\) 3.59103 + 4.68437i 0.186942 + 0.243858i
\(370\) 0 0
\(371\) 6.18687 + 16.9983i 0.321206 + 0.882507i
\(372\) 0 0
\(373\) −24.5912 29.3067i −1.27328 1.51744i −0.742318 0.670048i \(-0.766274\pi\)
−0.530966 0.847393i \(-0.678171\pi\)
\(374\) 0 0
\(375\) −5.18799 5.42193i −0.267907 0.279988i
\(376\) 0 0
\(377\) −24.6557 −1.26983
\(378\) 0 0
\(379\) 22.1132i 1.13588i −0.823071 0.567939i \(-0.807741\pi\)
0.823071 0.567939i \(-0.192259\pi\)
\(380\) 0 0
\(381\) −17.2055 5.01921i −0.881462 0.257142i
\(382\) 0 0
\(383\) 1.25391 1.05215i 0.0640717 0.0537626i −0.610189 0.792256i \(-0.708907\pi\)
0.674261 + 0.738493i \(0.264462\pi\)
\(384\) 0 0
\(385\) −30.0312 + 10.9305i −1.53053 + 0.557069i
\(386\) 0 0
\(387\) 5.42975 24.4390i 0.276010 1.24231i
\(388\) 0 0
\(389\) −7.37158 + 8.78511i −0.373754 + 0.445423i −0.919832 0.392311i \(-0.871676\pi\)
0.546079 + 0.837734i \(0.316120\pi\)
\(390\) 0 0
\(391\) −1.89109 10.7249i −0.0956363 0.542380i
\(392\) 0 0
\(393\) 15.4751 + 1.69838i 0.780615 + 0.0856722i
\(394\) 0 0
\(395\) −13.4594 + 7.77079i −0.677216 + 0.390991i
\(396\) 0 0
\(397\) 2.58188 + 1.49065i 0.129581 + 0.0748137i 0.563389 0.826192i \(-0.309497\pi\)
−0.433808 + 0.901005i \(0.642830\pi\)
\(398\) 0 0
\(399\) 0.675996 + 10.3500i 0.0338421 + 0.518150i
\(400\) 0 0
\(401\) −8.85877 3.22433i −0.442386 0.161015i 0.111217 0.993796i \(-0.464525\pi\)
−0.553603 + 0.832781i \(0.686747\pi\)
\(402\) 0 0
\(403\) 3.24096 + 0.571468i 0.161443 + 0.0284668i
\(404\) 0 0
\(405\) −30.1271 + 2.60797i −1.49703 + 0.129591i
\(406\) 0 0
\(407\) −6.24142 + 35.3969i −0.309376 + 1.75456i
\(408\) 0 0
\(409\) −24.0695 8.76058i −1.19016 0.433183i −0.330380 0.943848i \(-0.607177\pi\)
−0.859779 + 0.510665i \(0.829399\pi\)
\(410\) 0 0
\(411\) −29.1316 + 1.90268i −1.43695 + 0.0938523i
\(412\) 0 0
\(413\) −15.7019 9.06552i −0.772642 0.446085i
\(414\) 0 0
\(415\) −3.63022 6.28773i −0.178201 0.308652i
\(416\) 0 0
\(417\) 18.9696 + 2.08191i 0.928945 + 0.101951i
\(418\) 0 0
\(419\) −2.41298 + 0.425474i −0.117882 + 0.0207858i −0.232278 0.972649i \(-0.574618\pi\)
0.114396 + 0.993435i \(0.463507\pi\)
\(420\) 0 0
\(421\) −8.35420 + 9.95615i −0.407159 + 0.485233i −0.930189 0.367081i \(-0.880357\pi\)
0.523030 + 0.852314i \(0.324802\pi\)
\(422\) 0 0
\(423\) 5.69115 6.20509i 0.276713 0.301702i
\(424\) 0 0
\(425\) 20.6122 7.50223i 0.999838 0.363911i
\(426\) 0 0
\(427\) −10.4409 12.4430i −0.505272 0.602160i
\(428\) 0 0
\(429\) 30.5636 + 8.91608i 1.47562 + 0.430472i
\(430\) 0 0
\(431\) −26.6357 −1.28300 −0.641499 0.767124i \(-0.721687\pi\)
−0.641499 + 0.767124i \(0.721687\pi\)
\(432\) 0 0
\(433\) 27.8356 1.33769 0.668846 0.743401i \(-0.266788\pi\)
0.668846 + 0.743401i \(0.266788\pi\)
\(434\) 0 0
\(435\) −28.2488 + 27.0299i −1.35442 + 1.29599i
\(436\) 0 0
\(437\) −6.32923 7.54288i −0.302768 0.360825i
\(438\) 0 0
\(439\) −15.2198 + 5.53956i −0.726402 + 0.264389i −0.678641 0.734470i \(-0.737431\pi\)
−0.0477612 + 0.998859i \(0.515209\pi\)
\(440\) 0 0
\(441\) 3.90032 9.40401i 0.185729 0.447810i
\(442\) 0 0
\(443\) 11.8910 14.1711i 0.564957 0.673290i −0.405631 0.914037i \(-0.632948\pi\)
0.970588 + 0.240747i \(0.0773925\pi\)
\(444\) 0 0
\(445\) 51.8650 9.14520i 2.45864 0.433524i
\(446\) 0 0
\(447\) 7.53923 + 17.1449i 0.356593 + 0.810924i
\(448\) 0 0
\(449\) 3.76662 + 6.52398i 0.177758 + 0.307886i 0.941112 0.338094i \(-0.109782\pi\)
−0.763354 + 0.645980i \(0.776449\pi\)
\(450\) 0 0
\(451\) −8.53403 4.92713i −0.401852 0.232009i
\(452\) 0 0
\(453\) 0.490027 0.993103i 0.0230235 0.0466600i
\(454\) 0 0
\(455\) 22.0052 + 8.00925i 1.03162 + 0.375479i
\(456\) 0 0
\(457\) −2.46966 + 14.0062i −0.115526 + 0.655180i 0.870962 + 0.491350i \(0.163496\pi\)
−0.986488 + 0.163831i \(0.947615\pi\)
\(458\) 0 0
\(459\) 5.83693 17.1563i 0.272445 0.800788i
\(460\) 0 0
\(461\) 12.3225 + 2.17278i 0.573914 + 0.101197i 0.453070 0.891475i \(-0.350329\pi\)
0.120844 + 0.992672i \(0.461440\pi\)
\(462\) 0 0
\(463\) 5.11858 + 1.86301i 0.237881 + 0.0865815i 0.458210 0.888844i \(-0.348491\pi\)
−0.220329 + 0.975426i \(0.570713\pi\)
\(464\) 0 0
\(465\) 4.33976 2.89830i 0.201251 0.134405i
\(466\) 0 0
\(467\) −6.32947 3.65432i −0.292893 0.169102i 0.346353 0.938104i \(-0.387420\pi\)
−0.639246 + 0.769003i \(0.720753\pi\)
\(468\) 0 0
\(469\) 22.9645 13.2585i 1.06040 0.612222i
\(470\) 0 0
\(471\) 9.45179 12.8844i 0.435515 0.593683i
\(472\) 0 0
\(473\) 7.25787 + 41.1614i 0.333717 + 1.89260i
\(474\) 0 0
\(475\) 12.7482 15.1927i 0.584926 0.697088i
\(476\) 0 0
\(477\) −13.1834 25.3533i −0.603624 1.16085i
\(478\) 0 0
\(479\) −6.51285 + 2.37048i −0.297580 + 0.108310i −0.486495 0.873683i \(-0.661725\pi\)
0.188916 + 0.981993i \(0.439503\pi\)
\(480\) 0 0
\(481\) 20.1753 16.9291i 0.919914 0.771900i
\(482\) 0 0
\(483\) −2.43899 9.97724i −0.110978 0.453980i
\(484\) 0 0
\(485\) 7.39586i 0.335829i
\(486\) 0 0
\(487\) −29.6823 −1.34503 −0.672517 0.740081i \(-0.734787\pi\)
−0.672517 + 0.740081i \(0.734787\pi\)
\(488\) 0 0
\(489\) 14.0663 3.43859i 0.636100 0.155498i
\(490\) 0 0
\(491\) 5.65695 + 6.74169i 0.255295 + 0.304248i 0.878435 0.477862i \(-0.158588\pi\)
−0.623140 + 0.782110i \(0.714144\pi\)
\(492\) 0 0
\(493\) −8.01361 22.0172i −0.360915 0.991606i
\(494\) 0 0
\(495\) 44.7923 23.2913i 2.01326 1.04687i
\(496\) 0 0
\(497\) −4.36747 3.66474i −0.195908 0.164386i
\(498\) 0 0
\(499\) 14.6580 2.58460i 0.656181 0.115702i 0.164362 0.986400i \(-0.447443\pi\)
0.491819 + 0.870698i \(0.336332\pi\)
\(500\) 0 0
\(501\) −8.70654 6.38697i −0.388980 0.285349i
\(502\) 0 0
\(503\) 5.25851 + 9.10801i 0.234465 + 0.406106i 0.959117 0.283009i \(-0.0913327\pi\)
−0.724652 + 0.689115i \(0.757999\pi\)
\(504\) 0 0
\(505\) −30.1020 + 52.1381i −1.33952 + 2.32012i
\(506\) 0 0
\(507\) −0.451049 0.675377i −0.0200318 0.0299945i
\(508\) 0 0
\(509\) −8.68462 + 23.8608i −0.384939 + 1.05761i 0.584310 + 0.811531i \(0.301365\pi\)
−0.969249 + 0.246081i \(0.920857\pi\)
\(510\) 0 0
\(511\) 0.311738 1.76795i 0.0137905 0.0782096i
\(512\) 0 0
\(513\) −3.18553 16.0725i −0.140645 0.709617i
\(514\) 0 0
\(515\) −46.2072 8.14757i −2.03613 0.359025i
\(516\) 0 0
\(517\) −4.80776 + 13.2092i −0.211445 + 0.580941i
\(518\) 0 0
\(519\) −13.8409 6.82949i −0.607546 0.299782i
\(520\) 0 0
\(521\) −5.54892 + 9.61101i −0.243103 + 0.421066i −0.961596 0.274467i \(-0.911498\pi\)
0.718494 + 0.695533i \(0.244832\pi\)
\(522\) 0 0
\(523\) 21.2339 12.2594i 0.928493 0.536066i 0.0421586 0.999111i \(-0.486577\pi\)
0.886335 + 0.463045i \(0.153243\pi\)
\(524\) 0 0
\(525\) 18.9376 8.32755i 0.826503 0.363444i
\(526\) 0 0
\(527\) 0.543064 + 3.07987i 0.0236563 + 0.134161i
\(528\) 0 0
\(529\) −10.1496 8.51656i −0.441289 0.370285i
\(530\) 0 0
\(531\) 26.4569 + 10.9730i 1.14813 + 0.476188i
\(532\) 0 0
\(533\) 2.46961 + 6.78519i 0.106971 + 0.293899i
\(534\) 0 0
\(535\) −31.7922 + 26.6768i −1.37450 + 1.15334i
\(536\) 0 0
\(537\) −17.2886 18.0682i −0.746058 0.779700i
\(538\) 0 0
\(539\) 16.9970i 0.732112i
\(540\) 0 0
\(541\) 10.1117i 0.434737i −0.976090 0.217369i \(-0.930253\pi\)
0.976090 0.217369i \(-0.0697474\pi\)
\(542\) 0 0
\(543\) −2.35132 + 8.06015i −0.100905 + 0.345894i
\(544\) 0 0
\(545\) −5.62314 + 4.71838i −0.240869 + 0.202113i
\(546\) 0 0
\(547\) −9.82775 27.0015i −0.420204 1.15450i −0.951590 0.307371i \(-0.900551\pi\)
0.531386 0.847130i \(-0.321672\pi\)
\(548\) 0 0
\(549\) 18.9105 + 17.3442i 0.807081 + 0.740234i
\(550\) 0 0
\(551\) −16.2283 13.6172i −0.691348 0.580110i
\(552\) 0 0
\(553\) −1.52534 8.65063i −0.0648640 0.367862i
\(554\) 0 0
\(555\) 4.55617 41.5143i 0.193399 1.76218i
\(556\) 0 0
\(557\) 10.4290 6.02119i 0.441891 0.255126i −0.262508 0.964930i \(-0.584550\pi\)
0.704400 + 0.709804i \(0.251216\pi\)
\(558\) 0 0
\(559\) 15.3130 26.5230i 0.647673 1.12180i
\(560\) 0 0
\(561\) 1.97187 + 30.1908i 0.0832523 + 1.27466i
\(562\) 0 0
\(563\) 1.52700 4.19539i 0.0643553 0.176815i −0.903347 0.428910i \(-0.858898\pi\)
0.967702 + 0.252096i \(0.0811198\pi\)
\(564\) 0 0
\(565\) −52.3569 9.23194i −2.20267 0.388390i
\(566\) 0 0
\(567\) 4.43873 16.5051i 0.186409 0.693148i
\(568\) 0 0
\(569\) 5.31792 30.1594i 0.222939 1.26435i −0.643648 0.765322i \(-0.722580\pi\)
0.866586 0.499027i \(-0.166309\pi\)
\(570\) 0 0
\(571\) −4.43557 + 12.1866i −0.185623 + 0.509994i −0.997244 0.0741895i \(-0.976363\pi\)
0.811621 + 0.584184i \(0.198585\pi\)
\(572\) 0 0
\(573\) −45.4202 + 2.96655i −1.89746 + 0.123929i
\(574\) 0 0
\(575\) −9.81971 + 17.0082i −0.409510 + 0.709292i
\(576\) 0 0
\(577\) −9.34815 16.1915i −0.389169 0.674060i 0.603169 0.797613i \(-0.293904\pi\)
−0.992338 + 0.123553i \(0.960571\pi\)
\(578\) 0 0
\(579\) 0.770057 7.01649i 0.0320025 0.291595i
\(580\) 0 0
\(581\) 4.04125 0.712582i 0.167659 0.0295629i
\(582\) 0 0
\(583\) 36.5468 + 30.6664i 1.51361 + 1.27007i
\(584\) 0 0
\(585\) −36.1128 8.02337i −1.49308 0.331726i
\(586\) 0 0
\(587\) 9.91990 + 27.2547i 0.409438 + 1.12492i 0.957487 + 0.288475i \(0.0931484\pi\)
−0.548049 + 0.836446i \(0.684629\pi\)
\(588\) 0 0
\(589\) 1.81757 + 2.16609i 0.0748916 + 0.0892523i
\(590\) 0 0
\(591\) −4.99055 + 17.1072i −0.205284 + 0.703697i
\(592\) 0 0
\(593\) 12.4895 0.512883 0.256441 0.966560i \(-0.417450\pi\)
0.256441 + 0.966560i \(0.417450\pi\)
\(594\) 0 0
\(595\) 22.2536i 0.912308i
\(596\) 0 0
\(597\) −1.72836 + 1.65379i −0.0707370 + 0.0676849i
\(598\) 0 0
\(599\) −7.49705 + 6.29078i −0.306321 + 0.257034i −0.782970 0.622060i \(-0.786296\pi\)
0.476648 + 0.879094i \(0.341852\pi\)
\(600\) 0 0
\(601\) 27.8247 10.1274i 1.13499 0.413103i 0.294890 0.955531i \(-0.404717\pi\)
0.840102 + 0.542428i \(0.182495\pi\)
\(602\) 0 0
\(603\) −33.2452 + 25.4857i −1.35385 + 1.03786i
\(604\) 0 0
\(605\) −30.4217 + 36.2551i −1.23682 + 1.47398i
\(606\) 0 0
\(607\) −1.41051 7.99939i −0.0572507 0.324685i 0.942709 0.333615i \(-0.108269\pi\)
−0.999960 + 0.00892998i \(0.997157\pi\)
\(608\) 0 0
\(609\) −8.89519 20.2284i −0.360451 0.819698i
\(610\) 0 0
\(611\) 8.92020 5.15008i 0.360873 0.208350i
\(612\) 0 0
\(613\) 10.1533 + 5.86202i 0.410088 + 0.236765i 0.690828 0.723019i \(-0.257246\pi\)
−0.280739 + 0.959784i \(0.590580\pi\)
\(614\) 0 0
\(615\) 10.2681 + 5.06658i 0.414049 + 0.204304i
\(616\) 0 0
\(617\) −1.24227 0.452149i −0.0500118 0.0182028i 0.316893 0.948461i \(-0.397360\pi\)
−0.366905 + 0.930258i \(0.619583\pi\)
\(618\) 0 0
\(619\) 25.4782 + 4.49249i 1.02405 + 0.180568i 0.660359 0.750950i \(-0.270404\pi\)
0.363695 + 0.931518i \(0.381515\pi\)
\(620\) 0 0
\(621\) 5.87033 + 15.1263i 0.235568 + 0.606998i
\(622\) 0 0
\(623\) −5.16886 + 29.3141i −0.207086 + 1.17444i
\(624\) 0 0
\(625\) 15.8714 + 5.77673i 0.634858 + 0.231069i
\(626\) 0 0
\(627\) 15.1926 + 22.7486i 0.606733 + 0.908491i
\(628\) 0 0
\(629\) 21.6749 + 12.5140i 0.864233 + 0.498965i
\(630\) 0 0
\(631\) 6.70635 + 11.6157i 0.266976 + 0.462415i 0.968079 0.250644i \(-0.0806424\pi\)
−0.701104 + 0.713059i \(0.747309\pi\)
\(632\) 0 0
\(633\) −11.8379 + 16.1371i −0.470515 + 0.641393i
\(634\) 0 0
\(635\) −34.2396 + 6.03736i −1.35876 + 0.239585i
\(636\) 0 0
\(637\) 8.00557 9.54067i 0.317192 0.378015i
\(638\) 0 0
\(639\) 7.59384 + 4.84270i 0.300408 + 0.191574i
\(640\) 0 0
\(641\) −30.4904 + 11.0976i −1.20430 + 0.438328i −0.864722 0.502251i \(-0.832505\pi\)
−0.339575 + 0.940579i \(0.610283\pi\)
\(642\) 0 0
\(643\) 17.3052 + 20.6235i 0.682449 + 0.813312i 0.990420 0.138084i \(-0.0440944\pi\)
−0.307971 + 0.951396i \(0.599650\pi\)
\(644\) 0 0
\(645\) −11.5324 47.1758i −0.454087 1.85755i
\(646\) 0 0
\(647\) −25.1491 −0.988713 −0.494356 0.869259i \(-0.664596\pi\)
−0.494356 + 0.869259i \(0.664596\pi\)
\(648\) 0 0
\(649\) −47.8188 −1.87705
\(650\) 0 0
\(651\) 0.700407 + 2.86517i 0.0274511 + 0.112295i
\(652\) 0 0
\(653\) 13.3995 + 15.9689i 0.524363 + 0.624912i 0.961607 0.274431i \(-0.0884896\pi\)
−0.437243 + 0.899343i \(0.644045\pi\)
\(654\) 0 0
\(655\) 28.3788 10.3291i 1.10885 0.403589i
\(656\) 0 0
\(657\) −0.125002 + 2.83322i −0.00487678 + 0.110534i
\(658\) 0 0
\(659\) 18.1622 21.6448i 0.707497 0.843162i −0.285856 0.958273i \(-0.592278\pi\)
0.993353 + 0.115110i \(0.0367222\pi\)
\(660\) 0 0
\(661\) 37.0880 6.53962i 1.44256 0.254362i 0.603046 0.797706i \(-0.293953\pi\)
0.839510 + 0.543344i \(0.182842\pi\)
\(662\) 0 0
\(663\) 13.1130 17.8753i 0.509267 0.694220i
\(664\) 0 0
\(665\) 10.0603 + 17.4250i 0.390123 + 0.675712i
\(666\) 0 0
\(667\) 18.1676 + 10.4891i 0.703452 + 0.406138i
\(668\) 0 0
\(669\) 2.92682 + 4.38248i 0.113158 + 0.169436i
\(670\) 0 0
\(671\) −40.2562 14.6521i −1.55407 0.565636i
\(672\) 0 0
\(673\) 0.887037 5.03064i 0.0341928 0.193917i −0.962927 0.269763i \(-0.913055\pi\)
0.997120 + 0.0758462i \(0.0241658\pi\)
\(674\) 0 0
\(675\) −27.9510 + 16.9348i −1.07583 + 0.651821i
\(676\) 0 0
\(677\) 29.3482 + 5.17487i 1.12794 + 0.198887i 0.706325 0.707888i \(-0.250352\pi\)
0.421617 + 0.906774i \(0.361463\pi\)
\(678\) 0 0
\(679\) 3.92804 + 1.42969i 0.150744 + 0.0548665i
\(680\) 0 0
\(681\) −1.55051 0.765070i −0.0594158 0.0293176i
\(682\) 0 0
\(683\) 41.0964 + 23.7270i 1.57251 + 0.907889i 0.995860 + 0.0908981i \(0.0289738\pi\)
0.576650 + 0.816991i \(0.304360\pi\)
\(684\) 0 0
\(685\) −49.0450 + 28.3161i −1.87391 + 1.08190i
\(686\) 0 0
\(687\) 0.598956 + 1.36208i 0.0228516 + 0.0519664i
\(688\) 0 0
\(689\) −6.07041 34.4270i −0.231264 1.31156i
\(690\) 0 0
\(691\) 19.5742 23.3276i 0.744637 0.887424i −0.252136 0.967692i \(-0.581133\pi\)
0.996773 + 0.0802677i \(0.0255775\pi\)
\(692\) 0 0
\(693\) 3.71156 + 28.2922i 0.140990 + 1.07473i
\(694\) 0 0
\(695\) 34.7872 12.6615i 1.31955 0.480278i
\(696\) 0 0
\(697\) −5.25642 + 4.41066i −0.199101 + 0.167066i
\(698\) 0 0
\(699\) −12.9494 + 12.3907i −0.489793 + 0.468659i
\(700\) 0 0
\(701\) 22.9653i 0.867386i 0.901061 + 0.433693i \(0.142790\pi\)
−0.901061 + 0.433693i \(0.857210\pi\)
\(702\) 0 0
\(703\) 22.6291 0.853473
\(704\) 0 0
\(705\) 4.57414 15.6798i 0.172272 0.590535i
\(706\) 0 0
\(707\) −21.8723 26.0664i −0.822591 0.980326i
\(708\) 0 0
\(709\) 12.4178 + 34.1176i 0.466361 + 1.28132i 0.920625 + 0.390448i \(0.127680\pi\)
−0.454264 + 0.890867i \(0.650098\pi\)
\(710\) 0 0
\(711\) 4.16668 + 13.2362i 0.156263 + 0.496395i
\(712\) 0 0
\(713\) −2.14499 1.79986i −0.0803305 0.0674053i
\(714\) 0 0
\(715\) 60.8229 10.7247i 2.27465 0.401082i
\(716\) 0 0
\(717\) 2.31432 21.0873i 0.0864299 0.787519i
\(718\) 0 0
\(719\) −13.7419 23.8016i −0.512485 0.887651i −0.999895 0.0144775i \(-0.995392\pi\)
0.487410 0.873173i \(-0.337942\pi\)
\(720\) 0 0
\(721\) 13.2596 22.9662i 0.493812 0.855308i
\(722\) 0 0
\(723\) 25.9062 1.69202i 0.963462 0.0629270i
\(724\) 0 0
\(725\) −14.4516 + 39.7054i −0.536719 + 1.47462i
\(726\) 0 0
\(727\) 0.612001 3.47083i 0.0226979 0.128726i −0.971353 0.237640i \(-0.923626\pi\)
0.994051 + 0.108914i \(0.0347373\pi\)
\(728\) 0 0
\(729\) −3.56100 + 26.7641i −0.131889 + 0.991265i
\(730\) 0 0
\(731\) 28.6617 + 5.05384i 1.06009 + 0.186923i
\(732\) 0 0
\(733\) −4.83027 + 13.2711i −0.178410 + 0.490178i −0.996373 0.0850933i \(-0.972881\pi\)
0.817963 + 0.575271i \(0.195103\pi\)
\(734\) 0 0
\(735\) −1.28716 19.7075i −0.0474778 0.726922i
\(736\) 0 0
\(737\) 34.9680 60.5664i 1.28806 2.23099i
\(738\) 0 0
\(739\) −2.52352 + 1.45695i −0.0928291 + 0.0535949i −0.545696 0.837983i \(-0.683735\pi\)
0.452867 + 0.891578i \(0.350401\pi\)
\(740\) 0 0
\(741\) 2.18674 19.9248i 0.0803319 0.731956i
\(742\) 0 0
\(743\) −0.918280 5.20783i −0.0336884 0.191057i 0.963319 0.268358i \(-0.0864809\pi\)
−0.997008 + 0.0773010i \(0.975370\pi\)
\(744\) 0 0
\(745\) 27.8324 + 23.3542i 1.01970 + 0.855631i
\(746\) 0 0
\(747\) −6.18344 + 1.94652i −0.226240 + 0.0712193i
\(748\) 0 0
\(749\) −8.02267 22.0421i −0.293142 0.805401i
\(750\) 0 0
\(751\) 27.0071 22.6616i 0.985502 0.826935i 0.000591865 1.00000i \(-0.499812\pi\)
0.984910 + 0.173065i \(0.0553672\pi\)
\(752\) 0 0
\(753\) −7.74931 + 26.5640i −0.282401 + 0.968047i
\(754\) 0 0
\(755\) 2.14827i 0.0781834i
\(756\) 0 0
\(757\) 38.9874i 1.41702i 0.705700 + 0.708511i \(0.250633\pi\)
−0.705700 + 0.708511i \(0.749367\pi\)
\(758\) 0 0
\(759\) −18.7278 19.5722i −0.679775 0.710428i
\(760\) 0 0
\(761\) 31.7399 26.6329i 1.15057 0.965443i 0.150837 0.988559i \(-0.451803\pi\)
0.999733 + 0.0231155i \(0.00735856\pi\)
\(762\) 0 0
\(763\) −1.41899 3.89863i −0.0513708 0.141140i
\(764\) 0 0
\(765\) −4.57264 34.8560i −0.165324 1.26022i
\(766\) 0 0
\(767\) 26.8414 + 22.5226i 0.969186 + 0.813244i
\(768\) 0 0
\(769\) 8.75977 + 49.6791i 0.315886 + 1.79148i 0.567210 + 0.823573i \(0.308023\pi\)
−0.251325 + 0.967903i \(0.580866\pi\)
\(770\) 0 0
\(771\) −12.4307 + 5.46622i −0.447679 + 0.196861i
\(772\) 0 0
\(773\) −26.2565 + 15.1592i −0.944379 + 0.545238i −0.891330 0.453354i \(-0.850227\pi\)
−0.0530488 + 0.998592i \(0.516894\pi\)
\(774\) 0 0
\(775\) 2.81993 4.88427i 0.101295 0.175448i
\(776\) 0 0
\(777\) 21.1680 + 10.4449i 0.759398 + 0.374710i
\(778\) 0 0
\(779\) −2.12192 + 5.82994i −0.0760258 + 0.208879i
\(780\) 0 0
\(781\) −14.8082 2.61109i −0.529879 0.0934320i
\(782\) 0 0
\(783\) 18.0892 + 29.8563i 0.646454 + 1.06698i
\(784\) 0 0
\(785\) 5.38281 30.5275i 0.192121 1.08957i
\(786\) 0 0
\(787\) −9.23473 + 25.3722i −0.329182 + 0.904421i 0.659137 + 0.752023i \(0.270922\pi\)
−0.988319 + 0.152398i \(0.951300\pi\)
\(788\) 0 0
\(789\) −19.8295 29.6916i −0.705947 1.05705i
\(790\) 0 0
\(791\) 15.0243 26.0228i 0.534202 0.925265i
\(792\) 0 0
\(793\) 15.6953 + 27.1851i 0.557356 + 0.965370i
\(794\) 0 0
\(795\) −44.6972 32.7891i −1.58525 1.16291i
\(796\) 0 0
\(797\) 52.0759 9.18239i 1.84462 0.325257i 0.861437 0.507864i \(-0.169565\pi\)
0.983186 + 0.182608i \(0.0584538\pi\)
\(798\) 0 0
\(799\) 7.49821 + 6.29175i 0.265268 + 0.222586i
\(800\) 0 0
\(801\) 2.07262 46.9770i 0.0732326 1.65985i
\(802\) 0 0
\(803\) −1.61937 4.44918i −0.0571463 0.157008i
\(804\) 0 0
\(805\) −12.8073 15.2631i −0.451398 0.537955i
\(806\) 0 0
\(807\) −26.8736 + 6.56941i −0.945996 + 0.231254i
\(808\) 0 0
\(809\) −18.3017 −0.643453 −0.321727 0.946833i \(-0.604263\pi\)
−0.321727 + 0.946833i \(0.604263\pi\)
\(810\) 0 0
\(811\) 34.2759i 1.20359i −0.798650 0.601795i \(-0.794452\pi\)
0.798650 0.601795i \(-0.205548\pi\)
\(812\) 0 0
\(813\) 2.95906 + 12.1047i 0.103779 + 0.424530i
\(814\) 0 0
\(815\) 21.5186 18.0562i 0.753762 0.632482i
\(816\) 0 0
\(817\) 24.7274 9.00005i 0.865103 0.314872i
\(818\) 0 0
\(819\) 11.2423 17.6290i 0.392836 0.616007i
\(820\) 0 0
\(821\) 16.1380 19.2325i 0.563221 0.671220i −0.407004 0.913426i \(-0.633427\pi\)
0.970225 + 0.242206i \(0.0778710\pi\)
\(822\) 0 0
\(823\) 5.65012 + 32.0434i 0.196951 + 1.11696i 0.909613 + 0.415456i \(0.136378\pi\)
−0.712662 + 0.701507i \(0.752511\pi\)
\(824\) 0 0
\(825\) 32.2729 43.9935i 1.12360 1.53166i
\(826\) 0 0
\(827\) −39.6695 + 22.9032i −1.37944 + 0.796423i −0.992092 0.125509i \(-0.959944\pi\)
−0.387352 + 0.921932i \(0.626610\pi\)
\(828\) 0 0
\(829\) −17.0001 9.81500i −0.590437 0.340889i 0.174833 0.984598i \(-0.444061\pi\)
−0.765270 + 0.643709i \(0.777395\pi\)
\(830\) 0 0
\(831\) 27.1948 18.1620i 0.943377 0.630032i
\(832\) 0 0
\(833\) 11.1217 + 4.04796i 0.385343 + 0.140253i
\(834\) 0 0
\(835\) −20.6287 3.63739i −0.713885 0.125877i
\(836\) 0 0
\(837\) −1.68579 4.34383i −0.0582694 0.150145i
\(838\) 0 0
\(839\) 8.40287 47.6550i 0.290099 1.64523i −0.396381 0.918086i \(-0.629734\pi\)
0.686480 0.727149i \(-0.259155\pi\)
\(840\) 0 0
\(841\) 15.1609 + 5.51810i 0.522788 + 0.190279i
\(842\) 0 0
\(843\) −14.1203 + 28.6166i −0.486329 + 0.985609i
\(844\) 0 0
\(845\) −1.36439 0.787733i −0.0469366 0.0270989i
\(846\) 0 0
\(847\) −13.3748 23.1658i −0.459563 0.795987i
\(848\) 0 0
\(849\) 6.10500 + 13.8833i 0.209523 + 0.476473i
\(850\) 0 0
\(851\) −22.0682 + 3.89122i −0.756488 + 0.133389i
\(852\) 0 0
\(853\) 30.1220 35.8980i 1.03136 1.22912i 0.0583624 0.998295i \(-0.481412\pi\)
0.972995 0.230828i \(-0.0741434\pi\)
\(854\) 0 0
\(855\) −19.3381 25.2258i −0.661348 0.862703i
\(856\) 0 0
\(857\) −5.93538 + 2.16030i −0.202749 + 0.0737946i −0.441399 0.897311i \(-0.645517\pi\)
0.238650 + 0.971106i \(0.423295\pi\)
\(858\) 0 0
\(859\) −19.3877 23.1054i −0.661501 0.788346i 0.326100 0.945335i \(-0.394266\pi\)
−0.987600 + 0.156990i \(0.949821\pi\)
\(860\) 0 0
\(861\) −4.67584 + 4.47410i −0.159352 + 0.152477i
\(862\) 0 0
\(863\) −48.6885 −1.65737 −0.828687 0.559712i \(-0.810912\pi\)
−0.828687 + 0.559712i \(0.810912\pi\)
\(864\) 0 0
\(865\) −29.9404 −1.01800
\(866\) 0 0
\(867\) −8.04221 2.34609i −0.273128 0.0796774i
\(868\) 0 0
\(869\) −14.8915 17.7470i −0.505161 0.602027i
\(870\) 0 0
\(871\) −48.1548 + 17.5269i −1.63166 + 0.593877i
\(872\) 0 0
\(873\) −6.44631 1.43221i −0.218174 0.0484730i
\(874\) 0 0
\(875\) 5.28869 6.30281i 0.178790 0.213074i
\(876\) 0 0
\(877\) 34.7601 6.12915i 1.17377 0.206967i 0.447438 0.894315i \(-0.352336\pi\)
0.726328 + 0.687348i \(0.241225\pi\)
\(878\) 0 0
\(879\) 23.5450 + 2.58406i 0.794154 + 0.0871581i
\(880\) 0 0
\(881\) 7.22906 + 12.5211i 0.243553 + 0.421847i 0.961724 0.274020i \(-0.0883536\pi\)
−0.718171 + 0.695867i \(0.755020\pi\)
\(882\) 0 0
\(883\) −30.6193 17.6781i −1.03042 0.594915i −0.113317 0.993559i \(-0.536148\pi\)
−0.917106 + 0.398644i \(0.869481\pi\)
\(884\) 0 0
\(885\) 55.4444 3.62126i 1.86374 0.121727i
\(886\) 0 0
\(887\) 33.6657 + 12.2533i 1.13038 + 0.411426i 0.838432 0.545007i \(-0.183473\pi\)
0.291952 + 0.956433i \(0.405695\pi\)
\(888\) 0 0
\(889\) 3.41231 19.3522i 0.114445 0.649051i
\(890\) 0 0
\(891\) −11.6269 43.5518i −0.389516 1.45904i
\(892\) 0 0
\(893\) 8.71560 + 1.53680i 0.291656 + 0.0514269i
\(894\) 0 0
\(895\) −45.5853 16.5917i −1.52375 0.554599i
\(896\) 0 0
\(897\) 1.29366 + 19.8070i 0.0431940 + 0.661335i
\(898\) 0 0
\(899\) −5.21720 3.01215i −0.174003 0.100461i
\(900\) 0 0
\(901\) 28.7699 16.6103i 0.958463 0.553369i
\(902\) 0 0
\(903\) 27.2850 + 2.99452i 0.907988 + 0.0996514i
\(904\) 0 0
\(905\) 2.82829 + 16.0401i 0.0940157 + 0.533189i
\(906\) 0 0
\(907\) 5.65021 6.73365i 0.187612 0.223587i −0.664037 0.747700i \(-0.731158\pi\)
0.851649 + 0.524112i \(0.175603\pi\)
\(908\) 0 0
\(909\) 39.6149 + 36.3337i 1.31394 + 1.20511i
\(910\) 0 0
\(911\) −13.4129 + 4.88190i −0.444389 + 0.161744i −0.554516 0.832173i \(-0.687097\pi\)
0.110127 + 0.993918i \(0.464874\pi\)
\(912\) 0 0
\(913\) 8.29075 6.95676i 0.274384 0.230235i
\(914\) 0 0
\(915\) 47.7854 + 13.9401i 1.57974 + 0.460844i
\(916\) 0 0
\(917\) 17.0691i 0.563671i
\(918\) 0 0
\(919\) 54.9336 1.81209 0.906046 0.423179i \(-0.139086\pi\)
0.906046 + 0.423179i \(0.139086\pi\)
\(920\) 0 0
\(921\) −29.5250 30.8563i −0.972881 1.01675i
\(922\) 0 0
\(923\) 7.08225 + 8.44030i 0.233115 + 0.277816i
\(924\) 0 0
\(925\) −15.4371 42.4130i −0.507567 1.39453i
\(926\) 0 0
\(927\) −16.0495 + 38.6968i −0.527136 + 1.27097i
\(928\) 0 0
\(929\) 20.0336 + 16.8102i 0.657282 + 0.551525i 0.909271 0.416205i \(-0.136640\pi\)
−0.251989 + 0.967730i \(0.581085\pi\)
\(930\) 0 0
\(931\) 10.5385 1.85822i 0.345385 0.0609006i
\(932\) 0 0
\(933\) −2.02225 + 0.889258i −0.0662055 + 0.0291130i
\(934\) 0 0
\(935\) 29.3458 + 50.8283i 0.959709 + 1.66226i
\(936\) 0 0
\(937\) 30.0604 52.0662i 0.982031 1.70093i 0.327580 0.944823i \(-0.393767\pi\)
0.654451 0.756105i \(-0.272900\pi\)
\(938\) 0 0
\(939\) 15.3513 31.1114i 0.500972 1.01528i
\(940\) 0 0
\(941\) 19.3533 53.1728i 0.630900 1.73338i −0.0476846 0.998862i \(-0.515184\pi\)
0.678585 0.734522i \(-0.262594\pi\)
\(942\) 0 0
\(943\) 1.06683 6.05031i 0.0347408 0.197025i
\(944\) 0 0
\(945\) −6.44598 32.5229i −0.209688 1.05797i
\(946\) 0 0
\(947\) 45.6408 + 8.04770i 1.48313 + 0.261515i 0.855826 0.517263i \(-0.173049\pi\)
0.627299 + 0.778778i \(0.284160\pi\)
\(948\) 0 0
\(949\) −1.18659 + 3.26012i −0.0385182 + 0.105828i
\(950\) 0 0
\(951\) 8.64859 5.77594i 0.280450 0.187298i
\(952\) 0 0
\(953\) −2.93376 + 5.08142i −0.0950338 + 0.164603i −0.909623 0.415435i \(-0.863629\pi\)
0.814589 + 0.580039i \(0.196963\pi\)
\(954\) 0 0
\(955\) −76.4681 + 44.1489i −2.47445 + 1.42862i
\(956\) 0 0
\(957\) −46.9923 34.4727i −1.51905 1.11435i
\(958\) 0 0
\(959\) −5.55822 31.5222i −0.179484 1.01791i
\(960\) 0 0
\(961\) −23.1314 19.4095i −0.746174 0.626114i
\(962\) 0 0
\(963\) 17.0952 + 32.8763i 0.550885 + 1.05943i
\(964\) 0 0
\(965\) −4.68325 12.8671i −0.150759 0.414207i
\(966\) 0 0
\(967\) 17.2553 14.4789i 0.554893 0.465610i −0.321701 0.946841i \(-0.604255\pi\)
0.876594 + 0.481231i \(0.159810\pi\)
\(968\) 0 0
\(969\) 18.5033 4.52325i 0.594413 0.145308i
\(970\) 0 0
\(971\) 21.9521i 0.704475i −0.935911 0.352238i \(-0.885421\pi\)
0.935911 0.352238i \(-0.114579\pi\)
\(972\) 0 0
\(973\) 20.9235i 0.670778i
\(974\) 0 0
\(975\) −38.8361 + 9.49371i −1.24375 + 0.304042i
\(976\) 0 0
\(977\) −36.9729 + 31.0239i −1.18287 + 0.992543i −0.182911 + 0.983129i \(0.558552\pi\)
−0.999956 + 0.00941403i \(0.997003\pi\)
\(978\) 0 0
\(979\) 26.8504 + 73.7710i 0.858144 + 2.35773i
\(980\) 0 0
\(981\) 3.02366 + 5.81490i 0.0965381 + 0.185656i
\(982\) 0 0
\(983\) 35.0417 + 29.4034i 1.11766 + 0.937824i 0.998484 0.0550493i \(-0.0175316\pi\)
0.119172 + 0.992874i \(0.461976\pi\)
\(984\) 0 0
\(985\) 6.00289 + 34.0441i 0.191268 + 1.08474i
\(986\) 0 0
\(987\) 7.44352 + 5.46044i 0.236930 + 0.173808i
\(988\) 0 0
\(989\) −22.5669 + 13.0290i −0.717585 + 0.414298i
\(990\) 0 0
\(991\) −6.44420 + 11.1617i −0.204707 + 0.354562i −0.950039 0.312130i \(-0.898957\pi\)
0.745333 + 0.666693i \(0.232291\pi\)
\(992\) 0 0
\(993\) 28.1744 18.8162i 0.894086 0.597113i
\(994\) 0 0
\(995\) −1.58712 + 4.36058i −0.0503151 + 0.138240i
\(996\) 0 0
\(997\) 4.83400 + 0.852365i 0.153094 + 0.0269947i 0.249670 0.968331i \(-0.419678\pi\)
−0.0965756 + 0.995326i \(0.530789\pi\)
\(998\) 0 0
\(999\) −35.3019 12.0105i −1.11690 0.379994i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bf.a.241.15 204
4.3 odd 2 216.2.t.a.133.3 yes 204
8.3 odd 2 216.2.t.a.133.29 yes 204
8.5 even 2 inner 864.2.bf.a.241.20 204
12.11 even 2 648.2.t.a.397.32 204
24.11 even 2 648.2.t.a.397.6 204
27.13 even 9 inner 864.2.bf.a.337.20 204
108.67 odd 18 216.2.t.a.13.29 yes 204
108.95 even 18 648.2.t.a.253.6 204
216.13 even 18 inner 864.2.bf.a.337.15 204
216.67 odd 18 216.2.t.a.13.3 204
216.203 even 18 648.2.t.a.253.32 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.3 204 216.67 odd 18
216.2.t.a.13.29 yes 204 108.67 odd 18
216.2.t.a.133.3 yes 204 4.3 odd 2
216.2.t.a.133.29 yes 204 8.3 odd 2
648.2.t.a.253.6 204 108.95 even 18
648.2.t.a.253.32 204 216.203 even 18
648.2.t.a.397.6 204 24.11 even 2
648.2.t.a.397.32 204 12.11 even 2
864.2.bf.a.241.15 204 1.1 even 1 trivial
864.2.bf.a.241.20 204 8.5 even 2 inner
864.2.bf.a.337.15 204 216.13 even 18 inner
864.2.bf.a.337.20 204 27.13 even 9 inner