L(s) = 1 | + (1.36 + 0.377i)2-s + (1.71 + 1.02i)4-s + (2.15 − 2.57i)5-s + (−1.78 − 0.649i)7-s + (1.94 + 2.04i)8-s + (3.91 − 2.69i)10-s + (3.21 + 3.83i)11-s + (−3.61 − 0.637i)13-s + (−2.18 − 1.55i)14-s + (1.88 + 3.52i)16-s + (1.74 − 3.02i)17-s + (2.73 − 1.57i)19-s + (6.35 − 2.19i)20-s + (2.94 + 6.44i)22-s + (2.93 − 1.06i)23-s + ⋯ |
L(s) = 1 | + (0.963 + 0.266i)2-s + (0.857 + 0.514i)4-s + (0.965 − 1.15i)5-s + (−0.674 − 0.245i)7-s + (0.689 + 0.724i)8-s + (1.23 − 0.851i)10-s + (0.970 + 1.15i)11-s + (−1.00 − 0.176i)13-s + (−0.584 − 0.416i)14-s + (0.471 + 0.882i)16-s + (0.422 − 0.732i)17-s + (0.626 − 0.361i)19-s + (1.42 − 0.490i)20-s + (0.626 + 1.37i)22-s + (0.611 − 0.222i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00981i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.00981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.03015 - 0.0148698i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.03015 - 0.0148698i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.36 - 0.377i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-2.15 + 2.57i)T + (-0.868 - 4.92i)T^{2} \) |
| 7 | \( 1 + (1.78 + 0.649i)T + (5.36 + 4.49i)T^{2} \) |
| 11 | \( 1 + (-3.21 - 3.83i)T + (-1.91 + 10.8i)T^{2} \) |
| 13 | \( 1 + (3.61 + 0.637i)T + (12.2 + 4.44i)T^{2} \) |
| 17 | \( 1 + (-1.74 + 3.02i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.73 + 1.57i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.93 + 1.06i)T + (17.6 - 14.7i)T^{2} \) |
| 29 | \( 1 + (6.61 - 1.16i)T + (27.2 - 9.91i)T^{2} \) |
| 31 | \( 1 + (-0.842 + 0.306i)T + (23.7 - 19.9i)T^{2} \) |
| 37 | \( 1 + (6.21 + 3.58i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.341 + 1.93i)T + (-38.5 - 14.0i)T^{2} \) |
| 43 | \( 1 + (-5.36 - 6.39i)T + (-7.46 + 42.3i)T^{2} \) |
| 47 | \( 1 + (2.63 + 0.959i)T + (36.0 + 30.2i)T^{2} \) |
| 53 | \( 1 - 9.52iT - 53T^{2} \) |
| 59 | \( 1 + (6.13 - 7.31i)T + (-10.2 - 58.1i)T^{2} \) |
| 61 | \( 1 + (2.92 - 8.03i)T + (-46.7 - 39.2i)T^{2} \) |
| 67 | \( 1 + (13.7 + 2.42i)T + (62.9 + 22.9i)T^{2} \) |
| 71 | \( 1 + (1.50 - 2.59i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.472 - 0.818i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.803 + 4.55i)T + (-74.2 + 27.0i)T^{2} \) |
| 83 | \( 1 + (-2.12 + 0.375i)T + (77.9 - 28.3i)T^{2} \) |
| 89 | \( 1 + (-7.83 - 13.5i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.68 + 1.41i)T + (16.8 - 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.50394523184878665936572475079, −9.479004838979899307714560885755, −9.144596055073827658544179316923, −7.52700084381442232742610775550, −6.95856539246314313281354232255, −5.82781042921969773933422240002, −5.04398796144976952145661631493, −4.28916522070866665893931188711, −2.87045067369387005692364679306, −1.55771129734672821395027285280,
1.78082639589017203786972828412, 3.02713056770934395256001585847, 3.61436610242098076622264170262, 5.24800412381192930906471095307, 6.10730081201166686508212563778, 6.57938873285844340756609110313, 7.55910867063462620583360691247, 9.197032132026975858640321937073, 9.884262682030239722639760112625, 10.64116700036075356772293942433