Properties

Label 64.10.a.m.1.2
Level $64$
Weight $10$
Character 64.1
Self dual yes
Analytic conductor $32.962$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [64,10,Mod(1,64)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("64.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(64, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 64.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,176,0,-1404] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.9622935145\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{106}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 106 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 32)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(10.2956\) of defining polynomial
Character \(\chi\) \(=\) 64.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+252.730 q^{3} -2019.84 q^{5} -3039.30 q^{7} +44189.5 q^{9} -42489.0 q^{11} +74173.8 q^{13} -510474. q^{15} -607725. q^{17} -164849. q^{19} -768123. q^{21} -2.08911e6 q^{23} +2.12663e6 q^{25} +6.19353e6 q^{27} -1.87705e6 q^{29} +669635. q^{31} -1.07383e7 q^{33} +6.13890e6 q^{35} +5.06145e6 q^{37} +1.87459e7 q^{39} -1.46245e7 q^{41} -1.15906e7 q^{43} -8.92557e7 q^{45} -3.35490e7 q^{47} -3.11163e7 q^{49} -1.53590e8 q^{51} +2.03950e7 q^{53} +8.58211e7 q^{55} -4.16623e7 q^{57} +1.19399e8 q^{59} +9.81307e7 q^{61} -1.34305e8 q^{63} -1.49819e8 q^{65} +1.01247e8 q^{67} -5.27981e8 q^{69} +3.11299e8 q^{71} -6.82495e6 q^{73} +5.37464e8 q^{75} +1.29137e8 q^{77} -5.23080e8 q^{79} +6.95509e8 q^{81} -2.37668e8 q^{83} +1.22751e9 q^{85} -4.74388e8 q^{87} -6.21070e8 q^{89} -2.25436e8 q^{91} +1.69237e8 q^{93} +3.32969e8 q^{95} +1.11708e9 q^{97} -1.87757e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 176 q^{3} - 1404 q^{5} - 2784 q^{7} + 30394 q^{9} - 6896 q^{11} + 45556 q^{13} - 557728 q^{15} - 472188 q^{17} + 780912 q^{19} - 787712 q^{21} - 3883680 q^{23} + 552766 q^{25} + 8762336 q^{27} - 3909612 q^{29}+ \cdots - 2368592176 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 252.730 1.80140 0.900702 0.434437i \(-0.143053\pi\)
0.900702 + 0.434437i \(0.143053\pi\)
\(4\) 0 0
\(5\) −2019.84 −1.44528 −0.722640 0.691224i \(-0.757072\pi\)
−0.722640 + 0.691224i \(0.757072\pi\)
\(6\) 0 0
\(7\) −3039.30 −0.478446 −0.239223 0.970965i \(-0.576893\pi\)
−0.239223 + 0.970965i \(0.576893\pi\)
\(8\) 0 0
\(9\) 44189.5 2.24506
\(10\) 0 0
\(11\) −42489.0 −0.875003 −0.437502 0.899218i \(-0.644137\pi\)
−0.437502 + 0.899218i \(0.644137\pi\)
\(12\) 0 0
\(13\) 74173.8 0.720287 0.360143 0.932897i \(-0.382728\pi\)
0.360143 + 0.932897i \(0.382728\pi\)
\(14\) 0 0
\(15\) −510474. −2.60353
\(16\) 0 0
\(17\) −607725. −1.76477 −0.882383 0.470532i \(-0.844062\pi\)
−0.882383 + 0.470532i \(0.844062\pi\)
\(18\) 0 0
\(19\) −164849. −0.290199 −0.145099 0.989417i \(-0.546350\pi\)
−0.145099 + 0.989417i \(0.546350\pi\)
\(20\) 0 0
\(21\) −768123. −0.861874
\(22\) 0 0
\(23\) −2.08911e6 −1.55663 −0.778316 0.627873i \(-0.783926\pi\)
−0.778316 + 0.627873i \(0.783926\pi\)
\(24\) 0 0
\(25\) 2.12663e6 1.08884
\(26\) 0 0
\(27\) 6.19353e6 2.24285
\(28\) 0 0
\(29\) −1.87705e6 −0.492817 −0.246408 0.969166i \(-0.579250\pi\)
−0.246408 + 0.969166i \(0.579250\pi\)
\(30\) 0 0
\(31\) 669635. 0.130230 0.0651150 0.997878i \(-0.479259\pi\)
0.0651150 + 0.997878i \(0.479259\pi\)
\(32\) 0 0
\(33\) −1.07383e7 −1.57624
\(34\) 0 0
\(35\) 6.13890e6 0.691488
\(36\) 0 0
\(37\) 5.06145e6 0.443984 0.221992 0.975049i \(-0.428744\pi\)
0.221992 + 0.975049i \(0.428744\pi\)
\(38\) 0 0
\(39\) 1.87459e7 1.29753
\(40\) 0 0
\(41\) −1.46245e7 −0.808262 −0.404131 0.914701i \(-0.632426\pi\)
−0.404131 + 0.914701i \(0.632426\pi\)
\(42\) 0 0
\(43\) −1.15906e7 −0.517009 −0.258505 0.966010i \(-0.583230\pi\)
−0.258505 + 0.966010i \(0.583230\pi\)
\(44\) 0 0
\(45\) −8.92557e7 −3.24474
\(46\) 0 0
\(47\) −3.35490e7 −1.00286 −0.501428 0.865199i \(-0.667192\pi\)
−0.501428 + 0.865199i \(0.667192\pi\)
\(48\) 0 0
\(49\) −3.11163e7 −0.771090
\(50\) 0 0
\(51\) −1.53590e8 −3.17906
\(52\) 0 0
\(53\) 2.03950e7 0.355045 0.177522 0.984117i \(-0.443192\pi\)
0.177522 + 0.984117i \(0.443192\pi\)
\(54\) 0 0
\(55\) 8.58211e7 1.26463
\(56\) 0 0
\(57\) −4.16623e7 −0.522765
\(58\) 0 0
\(59\) 1.19399e8 1.28282 0.641412 0.767196i \(-0.278349\pi\)
0.641412 + 0.767196i \(0.278349\pi\)
\(60\) 0 0
\(61\) 9.81307e7 0.907446 0.453723 0.891143i \(-0.350096\pi\)
0.453723 + 0.891143i \(0.350096\pi\)
\(62\) 0 0
\(63\) −1.34305e8 −1.07414
\(64\) 0 0
\(65\) −1.49819e8 −1.04102
\(66\) 0 0
\(67\) 1.01247e8 0.613824 0.306912 0.951738i \(-0.400704\pi\)
0.306912 + 0.951738i \(0.400704\pi\)
\(68\) 0 0
\(69\) −5.27981e8 −2.80412
\(70\) 0 0
\(71\) 3.11299e8 1.45383 0.726917 0.686726i \(-0.240953\pi\)
0.726917 + 0.686726i \(0.240953\pi\)
\(72\) 0 0
\(73\) −6.82495e6 −0.0281285 −0.0140642 0.999901i \(-0.504477\pi\)
−0.0140642 + 0.999901i \(0.504477\pi\)
\(74\) 0 0
\(75\) 5.37464e8 1.96143
\(76\) 0 0
\(77\) 1.29137e8 0.418641
\(78\) 0 0
\(79\) −5.23080e8 −1.51094 −0.755469 0.655185i \(-0.772591\pi\)
−0.755469 + 0.655185i \(0.772591\pi\)
\(80\) 0 0
\(81\) 6.95509e8 1.79523
\(82\) 0 0
\(83\) −2.37668e8 −0.549691 −0.274845 0.961488i \(-0.588627\pi\)
−0.274845 + 0.961488i \(0.588627\pi\)
\(84\) 0 0
\(85\) 1.22751e9 2.55058
\(86\) 0 0
\(87\) −4.74388e8 −0.887763
\(88\) 0 0
\(89\) −6.21070e8 −1.04927 −0.524633 0.851328i \(-0.675798\pi\)
−0.524633 + 0.851328i \(0.675798\pi\)
\(90\) 0 0
\(91\) −2.25436e8 −0.344618
\(92\) 0 0
\(93\) 1.69237e8 0.234597
\(94\) 0 0
\(95\) 3.32969e8 0.419418
\(96\) 0 0
\(97\) 1.11708e9 1.28118 0.640591 0.767882i \(-0.278690\pi\)
0.640591 + 0.767882i \(0.278690\pi\)
\(98\) 0 0
\(99\) −1.87757e9 −1.96443
\(100\) 0 0
\(101\) −2.84480e8 −0.272023 −0.136011 0.990707i \(-0.543428\pi\)
−0.136011 + 0.990707i \(0.543428\pi\)
\(102\) 0 0
\(103\) 5.93311e8 0.519416 0.259708 0.965687i \(-0.416374\pi\)
0.259708 + 0.965687i \(0.416374\pi\)
\(104\) 0 0
\(105\) 1.55149e9 1.24565
\(106\) 0 0
\(107\) −6.44578e8 −0.475388 −0.237694 0.971340i \(-0.576392\pi\)
−0.237694 + 0.971340i \(0.576392\pi\)
\(108\) 0 0
\(109\) −5.64540e8 −0.383067 −0.191534 0.981486i \(-0.561346\pi\)
−0.191534 + 0.981486i \(0.561346\pi\)
\(110\) 0 0
\(111\) 1.27918e9 0.799794
\(112\) 0 0
\(113\) −3.95050e8 −0.227929 −0.113964 0.993485i \(-0.536355\pi\)
−0.113964 + 0.993485i \(0.536355\pi\)
\(114\) 0 0
\(115\) 4.21967e9 2.24977
\(116\) 0 0
\(117\) 3.27770e9 1.61709
\(118\) 0 0
\(119\) 1.84706e9 0.844344
\(120\) 0 0
\(121\) −5.52630e8 −0.234369
\(122\) 0 0
\(123\) −3.69604e9 −1.45601
\(124\) 0 0
\(125\) −3.50455e8 −0.128392
\(126\) 0 0
\(127\) 3.41306e9 1.16420 0.582099 0.813118i \(-0.302231\pi\)
0.582099 + 0.813118i \(0.302231\pi\)
\(128\) 0 0
\(129\) −2.92930e9 −0.931343
\(130\) 0 0
\(131\) 5.95732e9 1.76738 0.883691 0.468071i \(-0.155051\pi\)
0.883691 + 0.468071i \(0.155051\pi\)
\(132\) 0 0
\(133\) 5.01026e8 0.138844
\(134\) 0 0
\(135\) −1.25099e10 −3.24155
\(136\) 0 0
\(137\) 3.18592e9 0.772666 0.386333 0.922359i \(-0.373742\pi\)
0.386333 + 0.922359i \(0.373742\pi\)
\(138\) 0 0
\(139\) 1.31882e9 0.299652 0.149826 0.988712i \(-0.452129\pi\)
0.149826 + 0.988712i \(0.452129\pi\)
\(140\) 0 0
\(141\) −8.47883e9 −1.80655
\(142\) 0 0
\(143\) −3.15157e9 −0.630253
\(144\) 0 0
\(145\) 3.79135e9 0.712259
\(146\) 0 0
\(147\) −7.86401e9 −1.38904
\(148\) 0 0
\(149\) −6.79472e9 −1.12936 −0.564681 0.825309i \(-0.691001\pi\)
−0.564681 + 0.825309i \(0.691001\pi\)
\(150\) 0 0
\(151\) −4.19125e9 −0.656065 −0.328032 0.944666i \(-0.606386\pi\)
−0.328032 + 0.944666i \(0.606386\pi\)
\(152\) 0 0
\(153\) −2.68551e10 −3.96200
\(154\) 0 0
\(155\) −1.35256e9 −0.188219
\(156\) 0 0
\(157\) −8.30545e9 −1.09097 −0.545487 0.838119i \(-0.683655\pi\)
−0.545487 + 0.838119i \(0.683655\pi\)
\(158\) 0 0
\(159\) 5.15444e9 0.639579
\(160\) 0 0
\(161\) 6.34943e9 0.744763
\(162\) 0 0
\(163\) 1.02083e10 1.13269 0.566343 0.824170i \(-0.308358\pi\)
0.566343 + 0.824170i \(0.308358\pi\)
\(164\) 0 0
\(165\) 2.16896e10 2.27810
\(166\) 0 0
\(167\) 1.78819e10 1.77906 0.889529 0.456880i \(-0.151033\pi\)
0.889529 + 0.456880i \(0.151033\pi\)
\(168\) 0 0
\(169\) −5.10275e9 −0.481187
\(170\) 0 0
\(171\) −7.28460e9 −0.651513
\(172\) 0 0
\(173\) 4.35787e9 0.369885 0.184943 0.982749i \(-0.440790\pi\)
0.184943 + 0.982749i \(0.440790\pi\)
\(174\) 0 0
\(175\) −6.46347e9 −0.520948
\(176\) 0 0
\(177\) 3.01758e10 2.31089
\(178\) 0 0
\(179\) −1.08673e10 −0.791193 −0.395597 0.918424i \(-0.629462\pi\)
−0.395597 + 0.918424i \(0.629462\pi\)
\(180\) 0 0
\(181\) −2.14725e10 −1.48706 −0.743530 0.668703i \(-0.766850\pi\)
−0.743530 + 0.668703i \(0.766850\pi\)
\(182\) 0 0
\(183\) 2.48006e10 1.63468
\(184\) 0 0
\(185\) −1.02233e10 −0.641681
\(186\) 0 0
\(187\) 2.58216e10 1.54418
\(188\) 0 0
\(189\) −1.88240e10 −1.07308
\(190\) 0 0
\(191\) 2.77603e10 1.50930 0.754648 0.656130i \(-0.227808\pi\)
0.754648 + 0.656130i \(0.227808\pi\)
\(192\) 0 0
\(193\) −1.74020e10 −0.902801 −0.451400 0.892322i \(-0.649075\pi\)
−0.451400 + 0.892322i \(0.649075\pi\)
\(194\) 0 0
\(195\) −3.78638e10 −1.87529
\(196\) 0 0
\(197\) 2.25126e10 1.06495 0.532473 0.846447i \(-0.321263\pi\)
0.532473 + 0.846447i \(0.321263\pi\)
\(198\) 0 0
\(199\) −3.06974e10 −1.38760 −0.693798 0.720170i \(-0.744064\pi\)
−0.693798 + 0.720170i \(0.744064\pi\)
\(200\) 0 0
\(201\) 2.55881e10 1.10575
\(202\) 0 0
\(203\) 5.70493e9 0.235786
\(204\) 0 0
\(205\) 2.95391e10 1.16817
\(206\) 0 0
\(207\) −9.23167e10 −3.49473
\(208\) 0 0
\(209\) 7.00428e9 0.253925
\(210\) 0 0
\(211\) 2.20646e10 0.766348 0.383174 0.923676i \(-0.374831\pi\)
0.383174 + 0.923676i \(0.374831\pi\)
\(212\) 0 0
\(213\) 7.86745e10 2.61894
\(214\) 0 0
\(215\) 2.34112e10 0.747223
\(216\) 0 0
\(217\) −2.03522e9 −0.0623079
\(218\) 0 0
\(219\) −1.72487e9 −0.0506708
\(220\) 0 0
\(221\) −4.50773e10 −1.27114
\(222\) 0 0
\(223\) −1.51667e10 −0.410695 −0.205348 0.978689i \(-0.565833\pi\)
−0.205348 + 0.978689i \(0.565833\pi\)
\(224\) 0 0
\(225\) 9.39748e10 2.44450
\(226\) 0 0
\(227\) −2.19810e10 −0.549455 −0.274727 0.961522i \(-0.588588\pi\)
−0.274727 + 0.961522i \(0.588588\pi\)
\(228\) 0 0
\(229\) 3.45174e10 0.829427 0.414714 0.909952i \(-0.363882\pi\)
0.414714 + 0.909952i \(0.363882\pi\)
\(230\) 0 0
\(231\) 3.26368e10 0.754143
\(232\) 0 0
\(233\) −4.06497e10 −0.903558 −0.451779 0.892130i \(-0.649210\pi\)
−0.451779 + 0.892130i \(0.649210\pi\)
\(234\) 0 0
\(235\) 6.77636e10 1.44941
\(236\) 0 0
\(237\) −1.32198e11 −2.72181
\(238\) 0 0
\(239\) −3.09648e10 −0.613872 −0.306936 0.951730i \(-0.599304\pi\)
−0.306936 + 0.951730i \(0.599304\pi\)
\(240\) 0 0
\(241\) 3.55827e10 0.679457 0.339728 0.940524i \(-0.389665\pi\)
0.339728 + 0.940524i \(0.389665\pi\)
\(242\) 0 0
\(243\) 5.38689e10 0.991082
\(244\) 0 0
\(245\) 6.28499e10 1.11444
\(246\) 0 0
\(247\) −1.22275e10 −0.209026
\(248\) 0 0
\(249\) −6.00657e10 −0.990216
\(250\) 0 0
\(251\) −2.11617e10 −0.336525 −0.168263 0.985742i \(-0.553816\pi\)
−0.168263 + 0.985742i \(0.553816\pi\)
\(252\) 0 0
\(253\) 8.87642e10 1.36206
\(254\) 0 0
\(255\) 3.10228e11 4.59463
\(256\) 0 0
\(257\) −1.03338e11 −1.47761 −0.738804 0.673921i \(-0.764609\pi\)
−0.738804 + 0.673921i \(0.764609\pi\)
\(258\) 0 0
\(259\) −1.53833e10 −0.212422
\(260\) 0 0
\(261\) −8.29460e10 −1.10640
\(262\) 0 0
\(263\) −9.63331e10 −1.24158 −0.620790 0.783977i \(-0.713188\pi\)
−0.620790 + 0.783977i \(0.713188\pi\)
\(264\) 0 0
\(265\) −4.11947e10 −0.513139
\(266\) 0 0
\(267\) −1.56963e11 −1.89015
\(268\) 0 0
\(269\) −7.17446e10 −0.835419 −0.417709 0.908581i \(-0.637167\pi\)
−0.417709 + 0.908581i \(0.637167\pi\)
\(270\) 0 0
\(271\) −1.31827e11 −1.48471 −0.742356 0.670006i \(-0.766292\pi\)
−0.742356 + 0.670006i \(0.766292\pi\)
\(272\) 0 0
\(273\) −5.69746e10 −0.620796
\(274\) 0 0
\(275\) −9.03585e10 −0.952734
\(276\) 0 0
\(277\) −9.13454e10 −0.932240 −0.466120 0.884722i \(-0.654348\pi\)
−0.466120 + 0.884722i \(0.654348\pi\)
\(278\) 0 0
\(279\) 2.95908e10 0.292374
\(280\) 0 0
\(281\) 7.50850e10 0.718414 0.359207 0.933258i \(-0.383047\pi\)
0.359207 + 0.933258i \(0.383047\pi\)
\(282\) 0 0
\(283\) −9.96369e10 −0.923381 −0.461691 0.887041i \(-0.652757\pi\)
−0.461691 + 0.887041i \(0.652757\pi\)
\(284\) 0 0
\(285\) 8.41513e10 0.755542
\(286\) 0 0
\(287\) 4.44481e10 0.386710
\(288\) 0 0
\(289\) 2.50742e11 2.11440
\(290\) 0 0
\(291\) 2.82319e11 2.30793
\(292\) 0 0
\(293\) −2.18507e11 −1.73205 −0.866026 0.499999i \(-0.833334\pi\)
−0.866026 + 0.499999i \(0.833334\pi\)
\(294\) 0 0
\(295\) −2.41167e11 −1.85404
\(296\) 0 0
\(297\) −2.63157e11 −1.96251
\(298\) 0 0
\(299\) −1.54957e11 −1.12122
\(300\) 0 0
\(301\) 3.52274e10 0.247361
\(302\) 0 0
\(303\) −7.18966e10 −0.490023
\(304\) 0 0
\(305\) −1.98208e11 −1.31151
\(306\) 0 0
\(307\) 4.39947e10 0.282669 0.141334 0.989962i \(-0.454861\pi\)
0.141334 + 0.989962i \(0.454861\pi\)
\(308\) 0 0
\(309\) 1.49948e11 0.935678
\(310\) 0 0
\(311\) 1.89071e11 1.14605 0.573023 0.819539i \(-0.305770\pi\)
0.573023 + 0.819539i \(0.305770\pi\)
\(312\) 0 0
\(313\) −2.35414e10 −0.138638 −0.0693191 0.997595i \(-0.522083\pi\)
−0.0693191 + 0.997595i \(0.522083\pi\)
\(314\) 0 0
\(315\) 2.71275e11 1.55243
\(316\) 0 0
\(317\) −1.91969e11 −1.06774 −0.533869 0.845567i \(-0.679262\pi\)
−0.533869 + 0.845567i \(0.679262\pi\)
\(318\) 0 0
\(319\) 7.97542e10 0.431216
\(320\) 0 0
\(321\) −1.62904e11 −0.856366
\(322\) 0 0
\(323\) 1.00183e11 0.512133
\(324\) 0 0
\(325\) 1.57740e11 0.784273
\(326\) 0 0
\(327\) −1.42676e11 −0.690059
\(328\) 0 0
\(329\) 1.01965e11 0.479812
\(330\) 0 0
\(331\) 4.23565e11 1.93952 0.969759 0.244063i \(-0.0784805\pi\)
0.969759 + 0.244063i \(0.0784805\pi\)
\(332\) 0 0
\(333\) 2.23663e11 0.996769
\(334\) 0 0
\(335\) −2.04502e11 −0.887148
\(336\) 0 0
\(337\) 3.28269e11 1.38642 0.693212 0.720734i \(-0.256195\pi\)
0.693212 + 0.720734i \(0.256195\pi\)
\(338\) 0 0
\(339\) −9.98410e10 −0.410592
\(340\) 0 0
\(341\) −2.84522e10 −0.113952
\(342\) 0 0
\(343\) 2.17218e11 0.847370
\(344\) 0 0
\(345\) 1.06644e12 4.05274
\(346\) 0 0
\(347\) −2.25945e11 −0.836604 −0.418302 0.908308i \(-0.637375\pi\)
−0.418302 + 0.908308i \(0.637375\pi\)
\(348\) 0 0
\(349\) 5.81052e10 0.209653 0.104826 0.994491i \(-0.466571\pi\)
0.104826 + 0.994491i \(0.466571\pi\)
\(350\) 0 0
\(351\) 4.59397e11 1.61550
\(352\) 0 0
\(353\) −1.00599e11 −0.344832 −0.172416 0.985024i \(-0.555157\pi\)
−0.172416 + 0.985024i \(0.555157\pi\)
\(354\) 0 0
\(355\) −6.28774e11 −2.10120
\(356\) 0 0
\(357\) 4.66807e11 1.52101
\(358\) 0 0
\(359\) 1.42379e11 0.452397 0.226198 0.974081i \(-0.427370\pi\)
0.226198 + 0.974081i \(0.427370\pi\)
\(360\) 0 0
\(361\) −2.95512e11 −0.915785
\(362\) 0 0
\(363\) −1.39666e11 −0.422194
\(364\) 0 0
\(365\) 1.37853e10 0.0406536
\(366\) 0 0
\(367\) −5.83998e11 −1.68041 −0.840203 0.542272i \(-0.817564\pi\)
−0.840203 + 0.542272i \(0.817564\pi\)
\(368\) 0 0
\(369\) −6.46247e11 −1.81460
\(370\) 0 0
\(371\) −6.19866e10 −0.169869
\(372\) 0 0
\(373\) −7.04616e11 −1.88479 −0.942394 0.334505i \(-0.891431\pi\)
−0.942394 + 0.334505i \(0.891431\pi\)
\(374\) 0 0
\(375\) −8.85705e10 −0.231286
\(376\) 0 0
\(377\) −1.39228e11 −0.354969
\(378\) 0 0
\(379\) −4.54881e11 −1.13246 −0.566228 0.824248i \(-0.691598\pi\)
−0.566228 + 0.824248i \(0.691598\pi\)
\(380\) 0 0
\(381\) 8.62583e11 2.09719
\(382\) 0 0
\(383\) −6.11355e11 −1.45177 −0.725887 0.687814i \(-0.758571\pi\)
−0.725887 + 0.687814i \(0.758571\pi\)
\(384\) 0 0
\(385\) −2.60836e11 −0.605054
\(386\) 0 0
\(387\) −5.12183e11 −1.16072
\(388\) 0 0
\(389\) −9.28801e10 −0.205660 −0.102830 0.994699i \(-0.532790\pi\)
−0.102830 + 0.994699i \(0.532790\pi\)
\(390\) 0 0
\(391\) 1.26960e12 2.74709
\(392\) 0 0
\(393\) 1.50559e12 3.18377
\(394\) 0 0
\(395\) 1.05654e12 2.18373
\(396\) 0 0
\(397\) 6.58291e11 1.33003 0.665014 0.746831i \(-0.268426\pi\)
0.665014 + 0.746831i \(0.268426\pi\)
\(398\) 0 0
\(399\) 1.26624e11 0.250115
\(400\) 0 0
\(401\) −1.93836e11 −0.374356 −0.187178 0.982326i \(-0.559934\pi\)
−0.187178 + 0.982326i \(0.559934\pi\)
\(402\) 0 0
\(403\) 4.96694e10 0.0938029
\(404\) 0 0
\(405\) −1.40482e12 −2.59461
\(406\) 0 0
\(407\) −2.15056e11 −0.388487
\(408\) 0 0
\(409\) −3.09099e11 −0.546188 −0.273094 0.961987i \(-0.588047\pi\)
−0.273094 + 0.961987i \(0.588047\pi\)
\(410\) 0 0
\(411\) 8.05177e11 1.39188
\(412\) 0 0
\(413\) −3.62890e11 −0.613762
\(414\) 0 0
\(415\) 4.80051e11 0.794457
\(416\) 0 0
\(417\) 3.33304e11 0.539795
\(418\) 0 0
\(419\) 6.55357e11 1.03876 0.519380 0.854544i \(-0.326163\pi\)
0.519380 + 0.854544i \(0.326163\pi\)
\(420\) 0 0
\(421\) 2.00415e11 0.310929 0.155465 0.987841i \(-0.450313\pi\)
0.155465 + 0.987841i \(0.450313\pi\)
\(422\) 0 0
\(423\) −1.48251e12 −2.25147
\(424\) 0 0
\(425\) −1.29241e12 −1.92154
\(426\) 0 0
\(427\) −2.98249e11 −0.434163
\(428\) 0 0
\(429\) −7.96497e11 −1.13534
\(430\) 0 0
\(431\) 5.21200e11 0.727540 0.363770 0.931489i \(-0.381489\pi\)
0.363770 + 0.931489i \(0.381489\pi\)
\(432\) 0 0
\(433\) 3.23838e11 0.442723 0.221361 0.975192i \(-0.428950\pi\)
0.221361 + 0.975192i \(0.428950\pi\)
\(434\) 0 0
\(435\) 9.58188e11 1.28307
\(436\) 0 0
\(437\) 3.44388e11 0.451732
\(438\) 0 0
\(439\) 1.59945e11 0.205532 0.102766 0.994706i \(-0.467231\pi\)
0.102766 + 0.994706i \(0.467231\pi\)
\(440\) 0 0
\(441\) −1.37501e12 −1.73114
\(442\) 0 0
\(443\) 2.33953e11 0.288610 0.144305 0.989533i \(-0.453905\pi\)
0.144305 + 0.989533i \(0.453905\pi\)
\(444\) 0 0
\(445\) 1.25446e12 1.51648
\(446\) 0 0
\(447\) −1.71723e12 −2.03444
\(448\) 0 0
\(449\) −1.44728e12 −1.68052 −0.840262 0.542180i \(-0.817599\pi\)
−0.840262 + 0.542180i \(0.817599\pi\)
\(450\) 0 0
\(451\) 6.21379e11 0.707232
\(452\) 0 0
\(453\) −1.05925e12 −1.18184
\(454\) 0 0
\(455\) 4.55346e11 0.498070
\(456\) 0 0
\(457\) 1.09012e12 1.16909 0.584547 0.811359i \(-0.301272\pi\)
0.584547 + 0.811359i \(0.301272\pi\)
\(458\) 0 0
\(459\) −3.76396e12 −3.95811
\(460\) 0 0
\(461\) −1.66397e12 −1.71589 −0.857947 0.513738i \(-0.828260\pi\)
−0.857947 + 0.513738i \(0.828260\pi\)
\(462\) 0 0
\(463\) 1.55834e12 1.57597 0.787985 0.615695i \(-0.211125\pi\)
0.787985 + 0.615695i \(0.211125\pi\)
\(464\) 0 0
\(465\) −3.41832e11 −0.339058
\(466\) 0 0
\(467\) −1.17880e12 −1.14687 −0.573436 0.819251i \(-0.694390\pi\)
−0.573436 + 0.819251i \(0.694390\pi\)
\(468\) 0 0
\(469\) −3.07719e11 −0.293681
\(470\) 0 0
\(471\) −2.09904e12 −1.96529
\(472\) 0 0
\(473\) 4.92474e11 0.452385
\(474\) 0 0
\(475\) −3.50573e11 −0.315979
\(476\) 0 0
\(477\) 9.01246e11 0.797096
\(478\) 0 0
\(479\) 1.05266e11 0.0913645 0.0456822 0.998956i \(-0.485454\pi\)
0.0456822 + 0.998956i \(0.485454\pi\)
\(480\) 0 0
\(481\) 3.75427e11 0.319795
\(482\) 0 0
\(483\) 1.60469e12 1.34162
\(484\) 0 0
\(485\) −2.25632e12 −1.85167
\(486\) 0 0
\(487\) 2.92582e11 0.235704 0.117852 0.993031i \(-0.462399\pi\)
0.117852 + 0.993031i \(0.462399\pi\)
\(488\) 0 0
\(489\) 2.57995e12 2.04043
\(490\) 0 0
\(491\) 1.72770e12 1.34154 0.670768 0.741667i \(-0.265965\pi\)
0.670768 + 0.741667i \(0.265965\pi\)
\(492\) 0 0
\(493\) 1.14073e12 0.869706
\(494\) 0 0
\(495\) 3.79239e12 2.83916
\(496\) 0 0
\(497\) −9.46130e11 −0.695580
\(498\) 0 0
\(499\) −2.08491e12 −1.50534 −0.752672 0.658396i \(-0.771235\pi\)
−0.752672 + 0.658396i \(0.771235\pi\)
\(500\) 0 0
\(501\) 4.51930e12 3.20480
\(502\) 0 0
\(503\) −2.67459e11 −0.186295 −0.0931474 0.995652i \(-0.529693\pi\)
−0.0931474 + 0.995652i \(0.529693\pi\)
\(504\) 0 0
\(505\) 5.74604e11 0.393149
\(506\) 0 0
\(507\) −1.28962e12 −0.866813
\(508\) 0 0
\(509\) 7.85816e11 0.518909 0.259454 0.965755i \(-0.416457\pi\)
0.259454 + 0.965755i \(0.416457\pi\)
\(510\) 0 0
\(511\) 2.07431e10 0.0134580
\(512\) 0 0
\(513\) −1.02100e12 −0.650873
\(514\) 0 0
\(515\) −1.19839e12 −0.750701
\(516\) 0 0
\(517\) 1.42546e12 0.877503
\(518\) 0 0
\(519\) 1.10137e12 0.666313
\(520\) 0 0
\(521\) −4.69385e11 −0.279100 −0.139550 0.990215i \(-0.544566\pi\)
−0.139550 + 0.990215i \(0.544566\pi\)
\(522\) 0 0
\(523\) 2.40838e12 1.40756 0.703780 0.710418i \(-0.251494\pi\)
0.703780 + 0.710418i \(0.251494\pi\)
\(524\) 0 0
\(525\) −1.63351e12 −0.938439
\(526\) 0 0
\(527\) −4.06954e11 −0.229825
\(528\) 0 0
\(529\) 2.56322e12 1.42310
\(530\) 0 0
\(531\) 5.27619e12 2.88002
\(532\) 0 0
\(533\) −1.08475e12 −0.582181
\(534\) 0 0
\(535\) 1.30194e12 0.687069
\(536\) 0 0
\(537\) −2.74649e12 −1.42526
\(538\) 0 0
\(539\) 1.32210e12 0.674706
\(540\) 0 0
\(541\) −2.43978e12 −1.22451 −0.612255 0.790660i \(-0.709737\pi\)
−0.612255 + 0.790660i \(0.709737\pi\)
\(542\) 0 0
\(543\) −5.42674e12 −2.67880
\(544\) 0 0
\(545\) 1.14028e12 0.553640
\(546\) 0 0
\(547\) −8.95402e11 −0.427637 −0.213818 0.976873i \(-0.568590\pi\)
−0.213818 + 0.976873i \(0.568590\pi\)
\(548\) 0 0
\(549\) 4.33635e12 2.03727
\(550\) 0 0
\(551\) 3.09431e11 0.143015
\(552\) 0 0
\(553\) 1.58980e12 0.722901
\(554\) 0 0
\(555\) −2.58374e12 −1.15593
\(556\) 0 0
\(557\) −3.89951e12 −1.71657 −0.858286 0.513171i \(-0.828471\pi\)
−0.858286 + 0.513171i \(0.828471\pi\)
\(558\) 0 0
\(559\) −8.59720e11 −0.372395
\(560\) 0 0
\(561\) 6.52591e12 2.78169
\(562\) 0 0
\(563\) −3.25127e11 −0.136384 −0.0681922 0.997672i \(-0.521723\pi\)
−0.0681922 + 0.997672i \(0.521723\pi\)
\(564\) 0 0
\(565\) 7.97938e11 0.329421
\(566\) 0 0
\(567\) −2.11386e12 −0.858920
\(568\) 0 0
\(569\) −7.30167e11 −0.292023 −0.146012 0.989283i \(-0.546644\pi\)
−0.146012 + 0.989283i \(0.546644\pi\)
\(570\) 0 0
\(571\) −1.59452e11 −0.0627723 −0.0313861 0.999507i \(-0.509992\pi\)
−0.0313861 + 0.999507i \(0.509992\pi\)
\(572\) 0 0
\(573\) 7.01587e12 2.71885
\(574\) 0 0
\(575\) −4.44276e12 −1.69492
\(576\) 0 0
\(577\) 1.82973e12 0.687218 0.343609 0.939113i \(-0.388350\pi\)
0.343609 + 0.939113i \(0.388350\pi\)
\(578\) 0 0
\(579\) −4.39802e12 −1.62631
\(580\) 0 0
\(581\) 7.22343e11 0.262997
\(582\) 0 0
\(583\) −8.66565e11 −0.310665
\(584\) 0 0
\(585\) −6.62044e12 −2.33714
\(586\) 0 0
\(587\) 3.74725e12 1.30269 0.651345 0.758782i \(-0.274205\pi\)
0.651345 + 0.758782i \(0.274205\pi\)
\(588\) 0 0
\(589\) −1.10389e11 −0.0377925
\(590\) 0 0
\(591\) 5.68961e12 1.91840
\(592\) 0 0
\(593\) −4.51432e12 −1.49916 −0.749578 0.661916i \(-0.769743\pi\)
−0.749578 + 0.661916i \(0.769743\pi\)
\(594\) 0 0
\(595\) −3.73077e12 −1.22031
\(596\) 0 0
\(597\) −7.75816e12 −2.49962
\(598\) 0 0
\(599\) 2.95283e12 0.937168 0.468584 0.883419i \(-0.344764\pi\)
0.468584 + 0.883419i \(0.344764\pi\)
\(600\) 0 0
\(601\) −3.34262e12 −1.04509 −0.522543 0.852613i \(-0.675016\pi\)
−0.522543 + 0.852613i \(0.675016\pi\)
\(602\) 0 0
\(603\) 4.47404e12 1.37807
\(604\) 0 0
\(605\) 1.11622e12 0.338729
\(606\) 0 0
\(607\) −4.79377e12 −1.43327 −0.716636 0.697448i \(-0.754319\pi\)
−0.716636 + 0.697448i \(0.754319\pi\)
\(608\) 0 0
\(609\) 1.44181e12 0.424746
\(610\) 0 0
\(611\) −2.48845e12 −0.722344
\(612\) 0 0
\(613\) 3.04095e12 0.869837 0.434918 0.900470i \(-0.356777\pi\)
0.434918 + 0.900470i \(0.356777\pi\)
\(614\) 0 0
\(615\) 7.46541e12 2.10434
\(616\) 0 0
\(617\) −1.62097e12 −0.450288 −0.225144 0.974325i \(-0.572285\pi\)
−0.225144 + 0.974325i \(0.572285\pi\)
\(618\) 0 0
\(619\) 1.34898e12 0.369315 0.184658 0.982803i \(-0.440882\pi\)
0.184658 + 0.982803i \(0.440882\pi\)
\(620\) 0 0
\(621\) −1.29390e13 −3.49130
\(622\) 0 0
\(623\) 1.88762e12 0.502017
\(624\) 0 0
\(625\) −3.44571e12 −0.903273
\(626\) 0 0
\(627\) 1.77019e12 0.457421
\(628\) 0 0
\(629\) −3.07597e12 −0.783527
\(630\) 0 0
\(631\) 8.33673e11 0.209346 0.104673 0.994507i \(-0.466620\pi\)
0.104673 + 0.994507i \(0.466620\pi\)
\(632\) 0 0
\(633\) 5.57640e12 1.38050
\(634\) 0 0
\(635\) −6.89384e12 −1.68259
\(636\) 0 0
\(637\) −2.30801e12 −0.555406
\(638\) 0 0
\(639\) 1.37561e13 3.26394
\(640\) 0 0
\(641\) 5.03354e12 1.17764 0.588820 0.808264i \(-0.299593\pi\)
0.588820 + 0.808264i \(0.299593\pi\)
\(642\) 0 0
\(643\) 5.08235e12 1.17251 0.586253 0.810128i \(-0.300602\pi\)
0.586253 + 0.810128i \(0.300602\pi\)
\(644\) 0 0
\(645\) 5.91671e12 1.34605
\(646\) 0 0
\(647\) 3.34349e12 0.750120 0.375060 0.927001i \(-0.377622\pi\)
0.375060 + 0.927001i \(0.377622\pi\)
\(648\) 0 0
\(649\) −5.07316e12 −1.12248
\(650\) 0 0
\(651\) −5.14362e11 −0.112242
\(652\) 0 0
\(653\) 5.29726e12 1.14010 0.570049 0.821611i \(-0.306924\pi\)
0.570049 + 0.821611i \(0.306924\pi\)
\(654\) 0 0
\(655\) −1.20328e13 −2.55436
\(656\) 0 0
\(657\) −3.01591e11 −0.0631501
\(658\) 0 0
\(659\) −7.48186e12 −1.54534 −0.772672 0.634805i \(-0.781080\pi\)
−0.772672 + 0.634805i \(0.781080\pi\)
\(660\) 0 0
\(661\) −1.03230e12 −0.210330 −0.105165 0.994455i \(-0.533537\pi\)
−0.105165 + 0.994455i \(0.533537\pi\)
\(662\) 0 0
\(663\) −1.13924e13 −2.28983
\(664\) 0 0
\(665\) −1.01199e12 −0.200669
\(666\) 0 0
\(667\) 3.92137e12 0.767134
\(668\) 0 0
\(669\) −3.83309e12 −0.739828
\(670\) 0 0
\(671\) −4.16948e12 −0.794018
\(672\) 0 0
\(673\) −8.13048e12 −1.52774 −0.763868 0.645373i \(-0.776702\pi\)
−0.763868 + 0.645373i \(0.776702\pi\)
\(674\) 0 0
\(675\) 1.31714e13 2.44210
\(676\) 0 0
\(677\) 7.61157e12 1.39260 0.696298 0.717753i \(-0.254829\pi\)
0.696298 + 0.717753i \(0.254829\pi\)
\(678\) 0 0
\(679\) −3.39514e12 −0.612976
\(680\) 0 0
\(681\) −5.55527e12 −0.989790
\(682\) 0 0
\(683\) −7.40992e12 −1.30293 −0.651464 0.758680i \(-0.725845\pi\)
−0.651464 + 0.758680i \(0.725845\pi\)
\(684\) 0 0
\(685\) −6.43504e12 −1.11672
\(686\) 0 0
\(687\) 8.72358e12 1.49413
\(688\) 0 0
\(689\) 1.51278e12 0.255734
\(690\) 0 0
\(691\) −3.64791e11 −0.0608685 −0.0304343 0.999537i \(-0.509689\pi\)
−0.0304343 + 0.999537i \(0.509689\pi\)
\(692\) 0 0
\(693\) 5.70650e12 0.939875
\(694\) 0 0
\(695\) −2.66380e12 −0.433081
\(696\) 0 0
\(697\) 8.88765e12 1.42639
\(698\) 0 0
\(699\) −1.02734e13 −1.62767
\(700\) 0 0
\(701\) 2.33617e12 0.365404 0.182702 0.983168i \(-0.441516\pi\)
0.182702 + 0.983168i \(0.441516\pi\)
\(702\) 0 0
\(703\) −8.34375e11 −0.128843
\(704\) 0 0
\(705\) 1.71259e13 2.61097
\(706\) 0 0
\(707\) 8.64620e11 0.130148
\(708\) 0 0
\(709\) 2.17052e12 0.322594 0.161297 0.986906i \(-0.448432\pi\)
0.161297 + 0.986906i \(0.448432\pi\)
\(710\) 0 0
\(711\) −2.31147e13 −3.39214
\(712\) 0 0
\(713\) −1.39894e12 −0.202720
\(714\) 0 0
\(715\) 6.36567e12 0.910893
\(716\) 0 0
\(717\) −7.82574e12 −1.10583
\(718\) 0 0
\(719\) −2.66823e10 −0.00372342 −0.00186171 0.999998i \(-0.500593\pi\)
−0.00186171 + 0.999998i \(0.500593\pi\)
\(720\) 0 0
\(721\) −1.80325e12 −0.248512
\(722\) 0 0
\(723\) 8.99281e12 1.22398
\(724\) 0 0
\(725\) −3.99180e12 −0.536596
\(726\) 0 0
\(727\) 8.81984e12 1.17100 0.585499 0.810673i \(-0.300899\pi\)
0.585499 + 0.810673i \(0.300899\pi\)
\(728\) 0 0
\(729\) −7.54253e10 −0.00989107
\(730\) 0 0
\(731\) 7.04391e12 0.912400
\(732\) 0 0
\(733\) 6.94718e12 0.888874 0.444437 0.895810i \(-0.353404\pi\)
0.444437 + 0.895810i \(0.353404\pi\)
\(734\) 0 0
\(735\) 1.58841e13 2.00756
\(736\) 0 0
\(737\) −4.30187e12 −0.537098
\(738\) 0 0
\(739\) 1.65991e12 0.204732 0.102366 0.994747i \(-0.467359\pi\)
0.102366 + 0.994747i \(0.467359\pi\)
\(740\) 0 0
\(741\) −3.09025e12 −0.376541
\(742\) 0 0
\(743\) 6.92810e12 0.833997 0.416998 0.908907i \(-0.363082\pi\)
0.416998 + 0.908907i \(0.363082\pi\)
\(744\) 0 0
\(745\) 1.37242e13 1.63224
\(746\) 0 0
\(747\) −1.05024e13 −1.23409
\(748\) 0 0
\(749\) 1.95907e12 0.227447
\(750\) 0 0
\(751\) −1.09479e13 −1.25589 −0.627943 0.778259i \(-0.716103\pi\)
−0.627943 + 0.778259i \(0.716103\pi\)
\(752\) 0 0
\(753\) −5.34819e12 −0.606219
\(754\) 0 0
\(755\) 8.46565e12 0.948198
\(756\) 0 0
\(757\) 1.11681e13 1.23608 0.618039 0.786147i \(-0.287927\pi\)
0.618039 + 0.786147i \(0.287927\pi\)
\(758\) 0 0
\(759\) 2.24334e13 2.45362
\(760\) 0 0
\(761\) 6.16538e12 0.666391 0.333195 0.942858i \(-0.391873\pi\)
0.333195 + 0.942858i \(0.391873\pi\)
\(762\) 0 0
\(763\) 1.71581e12 0.183277
\(764\) 0 0
\(765\) 5.42429e13 5.72620
\(766\) 0 0
\(767\) 8.85629e12 0.924002
\(768\) 0 0
\(769\) −4.00721e12 −0.413213 −0.206606 0.978424i \(-0.566242\pi\)
−0.206606 + 0.978424i \(0.566242\pi\)
\(770\) 0 0
\(771\) −2.61165e13 −2.66177
\(772\) 0 0
\(773\) −1.57080e13 −1.58239 −0.791193 0.611567i \(-0.790540\pi\)
−0.791193 + 0.611567i \(0.790540\pi\)
\(774\) 0 0
\(775\) 1.42407e12 0.141799
\(776\) 0 0
\(777\) −3.88781e12 −0.382658
\(778\) 0 0
\(779\) 2.41083e12 0.234557
\(780\) 0 0
\(781\) −1.32268e13 −1.27211
\(782\) 0 0
\(783\) −1.16256e13 −1.10532
\(784\) 0 0
\(785\) 1.67757e13 1.57676
\(786\) 0 0
\(787\) 4.11748e12 0.382600 0.191300 0.981532i \(-0.438730\pi\)
0.191300 + 0.981532i \(0.438730\pi\)
\(788\) 0 0
\(789\) −2.43463e13 −2.23659
\(790\) 0 0
\(791\) 1.20068e12 0.109052
\(792\) 0 0
\(793\) 7.27873e12 0.653621
\(794\) 0 0
\(795\) −1.04111e13 −0.924371
\(796\) 0 0
\(797\) 6.62590e12 0.581677 0.290839 0.956772i \(-0.406066\pi\)
0.290839 + 0.956772i \(0.406066\pi\)
\(798\) 0 0
\(799\) 2.03886e13 1.76981
\(800\) 0 0
\(801\) −2.74448e13 −2.35566
\(802\) 0 0
\(803\) 2.89985e11 0.0246125
\(804\) 0 0
\(805\) −1.28248e13 −1.07639
\(806\) 0 0
\(807\) −1.81320e13 −1.50493
\(808\) 0 0
\(809\) 1.19920e12 0.0984290 0.0492145 0.998788i \(-0.484328\pi\)
0.0492145 + 0.998788i \(0.484328\pi\)
\(810\) 0 0
\(811\) 2.43378e12 0.197555 0.0987775 0.995110i \(-0.468507\pi\)
0.0987775 + 0.995110i \(0.468507\pi\)
\(812\) 0 0
\(813\) −3.33166e13 −2.67457
\(814\) 0 0
\(815\) −2.06191e13 −1.63705
\(816\) 0 0
\(817\) 1.91070e12 0.150035
\(818\) 0 0
\(819\) −9.96192e12 −0.773688
\(820\) 0 0
\(821\) 5.54529e12 0.425971 0.212986 0.977055i \(-0.431681\pi\)
0.212986 + 0.977055i \(0.431681\pi\)
\(822\) 0 0
\(823\) −1.48256e13 −1.12646 −0.563228 0.826302i \(-0.690441\pi\)
−0.563228 + 0.826302i \(0.690441\pi\)
\(824\) 0 0
\(825\) −2.28363e13 −1.71626
\(826\) 0 0
\(827\) 1.41723e13 1.05358 0.526788 0.849997i \(-0.323396\pi\)
0.526788 + 0.849997i \(0.323396\pi\)
\(828\) 0 0
\(829\) −9.67424e11 −0.0711412 −0.0355706 0.999367i \(-0.511325\pi\)
−0.0355706 + 0.999367i \(0.511325\pi\)
\(830\) 0 0
\(831\) −2.30857e13 −1.67934
\(832\) 0 0
\(833\) 1.89101e13 1.36079
\(834\) 0 0
\(835\) −3.61186e13 −2.57124
\(836\) 0 0
\(837\) 4.14741e12 0.292087
\(838\) 0 0
\(839\) 1.63583e13 1.13975 0.569875 0.821732i \(-0.306992\pi\)
0.569875 + 0.821732i \(0.306992\pi\)
\(840\) 0 0
\(841\) −1.09838e13 −0.757131
\(842\) 0 0
\(843\) 1.89762e13 1.29415
\(844\) 0 0
\(845\) 1.03067e13 0.695450
\(846\) 0 0
\(847\) 1.67961e12 0.112133
\(848\) 0 0
\(849\) −2.51812e13 −1.66338
\(850\) 0 0
\(851\) −1.05739e13 −0.691119
\(852\) 0 0
\(853\) 8.51975e12 0.551006 0.275503 0.961300i \(-0.411156\pi\)
0.275503 + 0.961300i \(0.411156\pi\)
\(854\) 0 0
\(855\) 1.47137e13 0.941619
\(856\) 0 0
\(857\) 2.49683e12 0.158116 0.0790578 0.996870i \(-0.474809\pi\)
0.0790578 + 0.996870i \(0.474809\pi\)
\(858\) 0 0
\(859\) 2.99678e13 1.87796 0.938979 0.343974i \(-0.111773\pi\)
0.938979 + 0.343974i \(0.111773\pi\)
\(860\) 0 0
\(861\) 1.12334e13 0.696620
\(862\) 0 0
\(863\) 9.11663e12 0.559482 0.279741 0.960076i \(-0.409751\pi\)
0.279741 + 0.960076i \(0.409751\pi\)
\(864\) 0 0
\(865\) −8.80221e12 −0.534588
\(866\) 0 0
\(867\) 6.33700e13 3.80889
\(868\) 0 0
\(869\) 2.22252e13 1.32208
\(870\) 0 0
\(871\) 7.50984e12 0.442129
\(872\) 0 0
\(873\) 4.93631e13 2.87633
\(874\) 0 0
\(875\) 1.06514e12 0.0614285
\(876\) 0 0
\(877\) −1.62554e13 −0.927897 −0.463948 0.885862i \(-0.653568\pi\)
−0.463948 + 0.885862i \(0.653568\pi\)
\(878\) 0 0
\(879\) −5.52233e13 −3.12013
\(880\) 0 0
\(881\) −3.34287e13 −1.86951 −0.934755 0.355294i \(-0.884381\pi\)
−0.934755 + 0.355294i \(0.884381\pi\)
\(882\) 0 0
\(883\) 1.62698e13 0.900655 0.450328 0.892863i \(-0.351307\pi\)
0.450328 + 0.892863i \(0.351307\pi\)
\(884\) 0 0
\(885\) −6.09503e13 −3.33988
\(886\) 0 0
\(887\) 1.60289e13 0.869454 0.434727 0.900562i \(-0.356845\pi\)
0.434727 + 0.900562i \(0.356845\pi\)
\(888\) 0 0
\(889\) −1.03733e13 −0.557006
\(890\) 0 0
\(891\) −2.95515e13 −1.57083
\(892\) 0 0
\(893\) 5.53052e12 0.291028
\(894\) 0 0
\(895\) 2.19502e13 1.14350
\(896\) 0 0
\(897\) −3.91623e13 −2.01977
\(898\) 0 0
\(899\) −1.25694e12 −0.0641795
\(900\) 0 0
\(901\) −1.23946e13 −0.626570
\(902\) 0 0
\(903\) 8.90301e12 0.445597
\(904\) 0 0
\(905\) 4.33710e13 2.14922
\(906\) 0 0
\(907\) −1.59734e13 −0.783726 −0.391863 0.920024i \(-0.628169\pi\)
−0.391863 + 0.920024i \(0.628169\pi\)
\(908\) 0 0
\(909\) −1.25710e13 −0.610707
\(910\) 0 0
\(911\) 1.21013e13 0.582104 0.291052 0.956707i \(-0.405995\pi\)
0.291052 + 0.956707i \(0.405995\pi\)
\(912\) 0 0
\(913\) 1.00983e13 0.480981
\(914\) 0 0
\(915\) −5.00932e13 −2.36257
\(916\) 0 0
\(917\) −1.81061e13 −0.845596
\(918\) 0 0
\(919\) 1.97502e13 0.913379 0.456689 0.889626i \(-0.349035\pi\)
0.456689 + 0.889626i \(0.349035\pi\)
\(920\) 0 0
\(921\) 1.11188e13 0.509201
\(922\) 0 0
\(923\) 2.30902e13 1.04718
\(924\) 0 0
\(925\) 1.07638e13 0.483425
\(926\) 0 0
\(927\) 2.62181e13 1.16612
\(928\) 0 0
\(929\) 7.13965e12 0.314490 0.157245 0.987560i \(-0.449739\pi\)
0.157245 + 0.987560i \(0.449739\pi\)
\(930\) 0 0
\(931\) 5.12949e12 0.223769
\(932\) 0 0
\(933\) 4.77838e13 2.06449
\(934\) 0 0
\(935\) −5.21556e13 −2.23177
\(936\) 0 0
\(937\) −3.17448e13 −1.34538 −0.672689 0.739925i \(-0.734861\pi\)
−0.672689 + 0.739925i \(0.734861\pi\)
\(938\) 0 0
\(939\) −5.94962e12 −0.249743
\(940\) 0 0
\(941\) 4.59442e13 1.91019 0.955096 0.296296i \(-0.0957516\pi\)
0.955096 + 0.296296i \(0.0957516\pi\)
\(942\) 0 0
\(943\) 3.05521e13 1.25817
\(944\) 0 0
\(945\) 3.80215e13 1.55091
\(946\) 0 0
\(947\) −4.19613e12 −0.169541 −0.0847705 0.996401i \(-0.527016\pi\)
−0.0847705 + 0.996401i \(0.527016\pi\)
\(948\) 0 0
\(949\) −5.06232e11 −0.0202606
\(950\) 0 0
\(951\) −4.85164e13 −1.92343
\(952\) 0 0
\(953\) 9.66942e11 0.0379737 0.0189868 0.999820i \(-0.493956\pi\)
0.0189868 + 0.999820i \(0.493956\pi\)
\(954\) 0 0
\(955\) −5.60715e13 −2.18136
\(956\) 0 0
\(957\) 2.01563e13 0.776795
\(958\) 0 0
\(959\) −9.68296e12 −0.369679
\(960\) 0 0
\(961\) −2.59912e13 −0.983040
\(962\) 0 0
\(963\) −2.84836e13 −1.06727
\(964\) 0 0
\(965\) 3.51493e13 1.30480
\(966\) 0 0
\(967\) 9.39038e12 0.345354 0.172677 0.984979i \(-0.444758\pi\)
0.172677 + 0.984979i \(0.444758\pi\)
\(968\) 0 0
\(969\) 2.53192e13 0.922558
\(970\) 0 0
\(971\) −2.23874e13 −0.808196 −0.404098 0.914716i \(-0.632414\pi\)
−0.404098 + 0.914716i \(0.632414\pi\)
\(972\) 0 0
\(973\) −4.00828e12 −0.143367
\(974\) 0 0
\(975\) 3.98657e13 1.41279
\(976\) 0 0
\(977\) 1.91366e13 0.671953 0.335977 0.941870i \(-0.390934\pi\)
0.335977 + 0.941870i \(0.390934\pi\)
\(978\) 0 0
\(979\) 2.63887e13 0.918112
\(980\) 0 0
\(981\) −2.49467e13 −0.860009
\(982\) 0 0
\(983\) −3.12487e13 −1.06744 −0.533718 0.845663i \(-0.679205\pi\)
−0.533718 + 0.845663i \(0.679205\pi\)
\(984\) 0 0
\(985\) −4.54719e13 −1.53915
\(986\) 0 0
\(987\) 2.57697e13 0.864336
\(988\) 0 0
\(989\) 2.42141e13 0.804793
\(990\) 0 0
\(991\) −7.43111e12 −0.244750 −0.122375 0.992484i \(-0.539051\pi\)
−0.122375 + 0.992484i \(0.539051\pi\)
\(992\) 0 0
\(993\) 1.07048e14 3.49386
\(994\) 0 0
\(995\) 6.20039e13 2.00546
\(996\) 0 0
\(997\) −2.49813e13 −0.800730 −0.400365 0.916356i \(-0.631117\pi\)
−0.400365 + 0.916356i \(0.631117\pi\)
\(998\) 0 0
\(999\) 3.13482e13 0.995791
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 64.10.a.m.1.2 2
4.3 odd 2 64.10.a.j.1.1 2
8.3 odd 2 32.10.a.e.1.2 yes 2
8.5 even 2 32.10.a.b.1.1 2
16.3 odd 4 256.10.b.l.129.1 4
16.5 even 4 256.10.b.o.129.1 4
16.11 odd 4 256.10.b.l.129.4 4
16.13 even 4 256.10.b.o.129.4 4
24.5 odd 2 288.10.a.d.1.1 2
24.11 even 2 288.10.a.e.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.10.a.b.1.1 2 8.5 even 2
32.10.a.e.1.2 yes 2 8.3 odd 2
64.10.a.j.1.1 2 4.3 odd 2
64.10.a.m.1.2 2 1.1 even 1 trivial
256.10.b.l.129.1 4 16.3 odd 4
256.10.b.l.129.4 4 16.11 odd 4
256.10.b.o.129.1 4 16.5 even 4
256.10.b.o.129.4 4 16.13 even 4
288.10.a.d.1.1 2 24.5 odd 2
288.10.a.e.1.1 2 24.11 even 2