Properties

Label 64.10
Level 64
Weight 10
Dimension 637
Nonzero newspaces 4
Newform subspaces 18
Sturm bound 2560
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 64 = 2^{6} \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 18 \)
Sturm bound: \(2560\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(64))\).

Total New Old
Modular forms 1188 659 529
Cusp forms 1116 637 479
Eisenstein series 72 22 50

Trace form

\( 637 q - 8 q^{2} - 6 q^{3} - 8 q^{4} - 8 q^{5} - 8 q^{6} - 8 q^{7} - 8 q^{8} - 19693 q^{9} - 8 q^{10} - 65866 q^{11} - 8 q^{12} + 194608 q^{13} - 8 q^{14} - 405004 q^{15} - 8 q^{16} + 407978 q^{17} - 8 q^{18}+ \cdots - 3713593966 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(64))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
64.10.a \(\chi_{64}(1, \cdot)\) 64.10.a.a 1 1
64.10.a.b 1
64.10.a.c 1
64.10.a.d 1
64.10.a.e 1
64.10.a.f 1
64.10.a.g 1
64.10.a.h 1
64.10.a.i 1
64.10.a.j 2
64.10.a.k 2
64.10.a.l 2
64.10.a.m 2
64.10.b \(\chi_{64}(33, \cdot)\) 64.10.b.a 2 1
64.10.b.b 4
64.10.b.c 12
64.10.e \(\chi_{64}(17, \cdot)\) 64.10.e.a 34 2
64.10.g \(\chi_{64}(9, \cdot)\) None 0 4
64.10.i \(\chi_{64}(5, \cdot)\) 64.10.i.a 568 8

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(64))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(64)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 7}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)