Properties

Label 256.10.b.l.129.4
Level $256$
Weight $10$
Character 256.129
Analytic conductor $131.849$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [256,10,Mod(129,256)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("256.129"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(256, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 256.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-5568,0,-60788] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(131.849174058\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{106})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2809 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{11} \)
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.4
Root \(5.14782 - 5.14782i\) of defining polynomial
Character \(\chi\) \(=\) 256.129
Dual form 256.10.b.l.129.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+252.730i q^{3} -2019.84i q^{5} -3039.30 q^{7} -44189.5 q^{9} +42489.0i q^{11} -74173.8i q^{13} +510474. q^{15} -607725. q^{17} -164849. i q^{19} -768123. i q^{21} -2.08911e6 q^{23} -2.12663e6 q^{25} -6.19353e6i q^{27} +1.87705e6i q^{29} -669635. q^{31} -1.07383e7 q^{33} +6.13890e6i q^{35} +5.06145e6i q^{37} +1.87459e7 q^{39} +1.46245e7 q^{41} +1.15906e7i q^{43} +8.92557e7i q^{45} +3.35490e7 q^{47} -3.11163e7 q^{49} -1.53590e8i q^{51} +2.03950e7i q^{53} +8.58211e7 q^{55} +4.16623e7 q^{57} -1.19399e8i q^{59} -9.81307e7i q^{61} +1.34305e8 q^{63} -1.49819e8 q^{65} +1.01247e8i q^{67} -5.27981e8i q^{69} +3.11299e8 q^{71} +6.82495e6 q^{73} -5.37464e8i q^{75} -1.29137e8i q^{77} +5.23080e8 q^{79} +6.95509e8 q^{81} -2.37668e8i q^{83} +1.22751e9i q^{85} -4.74388e8 q^{87} +6.21070e8 q^{89} +2.25436e8i q^{91} -1.69237e8i q^{93} -3.32969e8 q^{95} +1.11708e9 q^{97} -1.87757e9i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 5568 q^{7} - 60788 q^{9} + 1115456 q^{15} - 944376 q^{17} - 7767360 q^{23} - 1105532 q^{25} + 9714432 q^{31} - 26938624 q^{33} + 41883584 q^{39} + 64718040 q^{41} - 41886080 q^{47} - 142809372 q^{49}+ \cdots + 3701486920 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 252.730i 1.80140i 0.434437 + 0.900702i \(0.356947\pi\)
−0.434437 + 0.900702i \(0.643053\pi\)
\(4\) 0 0
\(5\) − 2019.84i − 1.44528i −0.691224 0.722640i \(-0.742928\pi\)
0.691224 0.722640i \(-0.257072\pi\)
\(6\) 0 0
\(7\) −3039.30 −0.478446 −0.239223 0.970965i \(-0.576893\pi\)
−0.239223 + 0.970965i \(0.576893\pi\)
\(8\) 0 0
\(9\) −44189.5 −2.24506
\(10\) 0 0
\(11\) 42489.0i 0.875003i 0.899218 + 0.437502i \(0.144137\pi\)
−0.899218 + 0.437502i \(0.855863\pi\)
\(12\) 0 0
\(13\) − 74173.8i − 0.720287i −0.932897 0.360143i \(-0.882728\pi\)
0.932897 0.360143i \(-0.117272\pi\)
\(14\) 0 0
\(15\) 510474. 2.60353
\(16\) 0 0
\(17\) −607725. −1.76477 −0.882383 0.470532i \(-0.844062\pi\)
−0.882383 + 0.470532i \(0.844062\pi\)
\(18\) 0 0
\(19\) − 164849.i − 0.290199i −0.989417 0.145099i \(-0.953650\pi\)
0.989417 0.145099i \(-0.0463502\pi\)
\(20\) 0 0
\(21\) − 768123.i − 0.861874i
\(22\) 0 0
\(23\) −2.08911e6 −1.55663 −0.778316 0.627873i \(-0.783926\pi\)
−0.778316 + 0.627873i \(0.783926\pi\)
\(24\) 0 0
\(25\) −2.12663e6 −1.08884
\(26\) 0 0
\(27\) − 6.19353e6i − 2.24285i
\(28\) 0 0
\(29\) 1.87705e6i 0.492817i 0.969166 + 0.246408i \(0.0792505\pi\)
−0.969166 + 0.246408i \(0.920750\pi\)
\(30\) 0 0
\(31\) −669635. −0.130230 −0.0651150 0.997878i \(-0.520741\pi\)
−0.0651150 + 0.997878i \(0.520741\pi\)
\(32\) 0 0
\(33\) −1.07383e7 −1.57624
\(34\) 0 0
\(35\) 6.13890e6i 0.691488i
\(36\) 0 0
\(37\) 5.06145e6i 0.443984i 0.975049 + 0.221992i \(0.0712558\pi\)
−0.975049 + 0.221992i \(0.928744\pi\)
\(38\) 0 0
\(39\) 1.87459e7 1.29753
\(40\) 0 0
\(41\) 1.46245e7 0.808262 0.404131 0.914701i \(-0.367574\pi\)
0.404131 + 0.914701i \(0.367574\pi\)
\(42\) 0 0
\(43\) 1.15906e7i 0.517009i 0.966010 + 0.258505i \(0.0832297\pi\)
−0.966010 + 0.258505i \(0.916770\pi\)
\(44\) 0 0
\(45\) 8.92557e7i 3.24474i
\(46\) 0 0
\(47\) 3.35490e7 1.00286 0.501428 0.865199i \(-0.332808\pi\)
0.501428 + 0.865199i \(0.332808\pi\)
\(48\) 0 0
\(49\) −3.11163e7 −0.771090
\(50\) 0 0
\(51\) − 1.53590e8i − 3.17906i
\(52\) 0 0
\(53\) 2.03950e7i 0.355045i 0.984117 + 0.177522i \(0.0568082\pi\)
−0.984117 + 0.177522i \(0.943192\pi\)
\(54\) 0 0
\(55\) 8.58211e7 1.26463
\(56\) 0 0
\(57\) 4.16623e7 0.522765
\(58\) 0 0
\(59\) − 1.19399e8i − 1.28282i −0.767196 0.641412i \(-0.778349\pi\)
0.767196 0.641412i \(-0.221651\pi\)
\(60\) 0 0
\(61\) − 9.81307e7i − 0.907446i −0.891143 0.453723i \(-0.850096\pi\)
0.891143 0.453723i \(-0.149904\pi\)
\(62\) 0 0
\(63\) 1.34305e8 1.07414
\(64\) 0 0
\(65\) −1.49819e8 −1.04102
\(66\) 0 0
\(67\) 1.01247e8i 0.613824i 0.951738 + 0.306912i \(0.0992957\pi\)
−0.951738 + 0.306912i \(0.900704\pi\)
\(68\) 0 0
\(69\) − 5.27981e8i − 2.80412i
\(70\) 0 0
\(71\) 3.11299e8 1.45383 0.726917 0.686726i \(-0.240953\pi\)
0.726917 + 0.686726i \(0.240953\pi\)
\(72\) 0 0
\(73\) 6.82495e6 0.0281285 0.0140642 0.999901i \(-0.495523\pi\)
0.0140642 + 0.999901i \(0.495523\pi\)
\(74\) 0 0
\(75\) − 5.37464e8i − 1.96143i
\(76\) 0 0
\(77\) − 1.29137e8i − 0.418641i
\(78\) 0 0
\(79\) 5.23080e8 1.51094 0.755469 0.655185i \(-0.227409\pi\)
0.755469 + 0.655185i \(0.227409\pi\)
\(80\) 0 0
\(81\) 6.95509e8 1.79523
\(82\) 0 0
\(83\) − 2.37668e8i − 0.549691i −0.961488 0.274845i \(-0.911373\pi\)
0.961488 0.274845i \(-0.0886267\pi\)
\(84\) 0 0
\(85\) 1.22751e9i 2.55058i
\(86\) 0 0
\(87\) −4.74388e8 −0.887763
\(88\) 0 0
\(89\) 6.21070e8 1.04927 0.524633 0.851328i \(-0.324202\pi\)
0.524633 + 0.851328i \(0.324202\pi\)
\(90\) 0 0
\(91\) 2.25436e8i 0.344618i
\(92\) 0 0
\(93\) − 1.69237e8i − 0.234597i
\(94\) 0 0
\(95\) −3.32969e8 −0.419418
\(96\) 0 0
\(97\) 1.11708e9 1.28118 0.640591 0.767882i \(-0.278690\pi\)
0.640591 + 0.767882i \(0.278690\pi\)
\(98\) 0 0
\(99\) − 1.87757e9i − 1.96443i
\(100\) 0 0
\(101\) − 2.84480e8i − 0.272023i −0.990707 0.136011i \(-0.956572\pi\)
0.990707 0.136011i \(-0.0434284\pi\)
\(102\) 0 0
\(103\) 5.93311e8 0.519416 0.259708 0.965687i \(-0.416374\pi\)
0.259708 + 0.965687i \(0.416374\pi\)
\(104\) 0 0
\(105\) −1.55149e9 −1.24565
\(106\) 0 0
\(107\) 6.44578e8i 0.475388i 0.971340 + 0.237694i \(0.0763916\pi\)
−0.971340 + 0.237694i \(0.923608\pi\)
\(108\) 0 0
\(109\) 5.64540e8i 0.383067i 0.981486 + 0.191534i \(0.0613461\pi\)
−0.981486 + 0.191534i \(0.938654\pi\)
\(110\) 0 0
\(111\) −1.27918e9 −0.799794
\(112\) 0 0
\(113\) −3.95050e8 −0.227929 −0.113964 0.993485i \(-0.536355\pi\)
−0.113964 + 0.993485i \(0.536355\pi\)
\(114\) 0 0
\(115\) 4.21967e9i 2.24977i
\(116\) 0 0
\(117\) 3.27770e9i 1.61709i
\(118\) 0 0
\(119\) 1.84706e9 0.844344
\(120\) 0 0
\(121\) 5.52630e8 0.234369
\(122\) 0 0
\(123\) 3.69604e9i 1.45601i
\(124\) 0 0
\(125\) 3.50455e8i 0.128392i
\(126\) 0 0
\(127\) −3.41306e9 −1.16420 −0.582099 0.813118i \(-0.697769\pi\)
−0.582099 + 0.813118i \(0.697769\pi\)
\(128\) 0 0
\(129\) −2.92930e9 −0.931343
\(130\) 0 0
\(131\) 5.95732e9i 1.76738i 0.468071 + 0.883691i \(0.344949\pi\)
−0.468071 + 0.883691i \(0.655051\pi\)
\(132\) 0 0
\(133\) 5.01026e8i 0.138844i
\(134\) 0 0
\(135\) −1.25099e10 −3.24155
\(136\) 0 0
\(137\) −3.18592e9 −0.772666 −0.386333 0.922359i \(-0.626258\pi\)
−0.386333 + 0.922359i \(0.626258\pi\)
\(138\) 0 0
\(139\) − 1.31882e9i − 0.299652i −0.988712 0.149826i \(-0.952129\pi\)
0.988712 0.149826i \(-0.0478714\pi\)
\(140\) 0 0
\(141\) 8.47883e9i 1.80655i
\(142\) 0 0
\(143\) 3.15157e9 0.630253
\(144\) 0 0
\(145\) 3.79135e9 0.712259
\(146\) 0 0
\(147\) − 7.86401e9i − 1.38904i
\(148\) 0 0
\(149\) − 6.79472e9i − 1.12936i −0.825309 0.564681i \(-0.808999\pi\)
0.825309 0.564681i \(-0.191001\pi\)
\(150\) 0 0
\(151\) −4.19125e9 −0.656065 −0.328032 0.944666i \(-0.606386\pi\)
−0.328032 + 0.944666i \(0.606386\pi\)
\(152\) 0 0
\(153\) 2.68551e10 3.96200
\(154\) 0 0
\(155\) 1.35256e9i 0.188219i
\(156\) 0 0
\(157\) 8.30545e9i 1.09097i 0.838119 + 0.545487i \(0.183655\pi\)
−0.838119 + 0.545487i \(0.816345\pi\)
\(158\) 0 0
\(159\) −5.15444e9 −0.639579
\(160\) 0 0
\(161\) 6.34943e9 0.744763
\(162\) 0 0
\(163\) 1.02083e10i 1.13269i 0.824170 + 0.566343i \(0.191642\pi\)
−0.824170 + 0.566343i \(0.808358\pi\)
\(164\) 0 0
\(165\) 2.16896e10i 2.27810i
\(166\) 0 0
\(167\) 1.78819e10 1.77906 0.889529 0.456880i \(-0.151033\pi\)
0.889529 + 0.456880i \(0.151033\pi\)
\(168\) 0 0
\(169\) 5.10275e9 0.481187
\(170\) 0 0
\(171\) 7.28460e9i 0.651513i
\(172\) 0 0
\(173\) − 4.35787e9i − 0.369885i −0.982749 0.184943i \(-0.940790\pi\)
0.982749 0.184943i \(-0.0592100\pi\)
\(174\) 0 0
\(175\) 6.46347e9 0.520948
\(176\) 0 0
\(177\) 3.01758e10 2.31089
\(178\) 0 0
\(179\) − 1.08673e10i − 0.791193i −0.918424 0.395597i \(-0.870538\pi\)
0.918424 0.395597i \(-0.129462\pi\)
\(180\) 0 0
\(181\) − 2.14725e10i − 1.48706i −0.668703 0.743530i \(-0.733150\pi\)
0.668703 0.743530i \(-0.266850\pi\)
\(182\) 0 0
\(183\) 2.48006e10 1.63468
\(184\) 0 0
\(185\) 1.02233e10 0.641681
\(186\) 0 0
\(187\) − 2.58216e10i − 1.54418i
\(188\) 0 0
\(189\) 1.88240e10i 1.07308i
\(190\) 0 0
\(191\) −2.77603e10 −1.50930 −0.754648 0.656130i \(-0.772192\pi\)
−0.754648 + 0.656130i \(0.772192\pi\)
\(192\) 0 0
\(193\) −1.74020e10 −0.902801 −0.451400 0.892322i \(-0.649075\pi\)
−0.451400 + 0.892322i \(0.649075\pi\)
\(194\) 0 0
\(195\) − 3.78638e10i − 1.87529i
\(196\) 0 0
\(197\) 2.25126e10i 1.06495i 0.846447 + 0.532473i \(0.178737\pi\)
−0.846447 + 0.532473i \(0.821263\pi\)
\(198\) 0 0
\(199\) −3.06974e10 −1.38760 −0.693798 0.720170i \(-0.744064\pi\)
−0.693798 + 0.720170i \(0.744064\pi\)
\(200\) 0 0
\(201\) −2.55881e10 −1.10575
\(202\) 0 0
\(203\) − 5.70493e9i − 0.235786i
\(204\) 0 0
\(205\) − 2.95391e10i − 1.16817i
\(206\) 0 0
\(207\) 9.23167e10 3.49473
\(208\) 0 0
\(209\) 7.00428e9 0.253925
\(210\) 0 0
\(211\) 2.20646e10i 0.766348i 0.923676 + 0.383174i \(0.125169\pi\)
−0.923676 + 0.383174i \(0.874831\pi\)
\(212\) 0 0
\(213\) 7.86745e10i 2.61894i
\(214\) 0 0
\(215\) 2.34112e10 0.747223
\(216\) 0 0
\(217\) 2.03522e9 0.0623079
\(218\) 0 0
\(219\) 1.72487e9i 0.0506708i
\(220\) 0 0
\(221\) 4.50773e10i 1.27114i
\(222\) 0 0
\(223\) 1.51667e10 0.410695 0.205348 0.978689i \(-0.434167\pi\)
0.205348 + 0.978689i \(0.434167\pi\)
\(224\) 0 0
\(225\) 9.39748e10 2.44450
\(226\) 0 0
\(227\) − 2.19810e10i − 0.549455i −0.961522 0.274727i \(-0.911412\pi\)
0.961522 0.274727i \(-0.0885876\pi\)
\(228\) 0 0
\(229\) 3.45174e10i 0.829427i 0.909952 + 0.414714i \(0.136118\pi\)
−0.909952 + 0.414714i \(0.863882\pi\)
\(230\) 0 0
\(231\) 3.26368e10 0.754143
\(232\) 0 0
\(233\) 4.06497e10 0.903558 0.451779 0.892130i \(-0.350790\pi\)
0.451779 + 0.892130i \(0.350790\pi\)
\(234\) 0 0
\(235\) − 6.77636e10i − 1.44941i
\(236\) 0 0
\(237\) 1.32198e11i 2.72181i
\(238\) 0 0
\(239\) 3.09648e10 0.613872 0.306936 0.951730i \(-0.400696\pi\)
0.306936 + 0.951730i \(0.400696\pi\)
\(240\) 0 0
\(241\) 3.55827e10 0.679457 0.339728 0.940524i \(-0.389665\pi\)
0.339728 + 0.940524i \(0.389665\pi\)
\(242\) 0 0
\(243\) 5.38689e10i 0.991082i
\(244\) 0 0
\(245\) 6.28499e10i 1.11444i
\(246\) 0 0
\(247\) −1.22275e10 −0.209026
\(248\) 0 0
\(249\) 6.00657e10 0.990216
\(250\) 0 0
\(251\) 2.11617e10i 0.336525i 0.985742 + 0.168263i \(0.0538157\pi\)
−0.985742 + 0.168263i \(0.946184\pi\)
\(252\) 0 0
\(253\) − 8.87642e10i − 1.36206i
\(254\) 0 0
\(255\) −3.10228e11 −4.59463
\(256\) 0 0
\(257\) −1.03338e11 −1.47761 −0.738804 0.673921i \(-0.764609\pi\)
−0.738804 + 0.673921i \(0.764609\pi\)
\(258\) 0 0
\(259\) − 1.53833e10i − 0.212422i
\(260\) 0 0
\(261\) − 8.29460e10i − 1.10640i
\(262\) 0 0
\(263\) −9.63331e10 −1.24158 −0.620790 0.783977i \(-0.713188\pi\)
−0.620790 + 0.783977i \(0.713188\pi\)
\(264\) 0 0
\(265\) 4.11947e10 0.513139
\(266\) 0 0
\(267\) 1.56963e11i 1.89015i
\(268\) 0 0
\(269\) 7.17446e10i 0.835419i 0.908581 + 0.417709i \(0.137167\pi\)
−0.908581 + 0.417709i \(0.862833\pi\)
\(270\) 0 0
\(271\) 1.31827e11 1.48471 0.742356 0.670006i \(-0.233708\pi\)
0.742356 + 0.670006i \(0.233708\pi\)
\(272\) 0 0
\(273\) −5.69746e10 −0.620796
\(274\) 0 0
\(275\) − 9.03585e10i − 0.952734i
\(276\) 0 0
\(277\) − 9.13454e10i − 0.932240i −0.884722 0.466120i \(-0.845652\pi\)
0.884722 0.466120i \(-0.154348\pi\)
\(278\) 0 0
\(279\) 2.95908e10 0.292374
\(280\) 0 0
\(281\) −7.50850e10 −0.718414 −0.359207 0.933258i \(-0.616953\pi\)
−0.359207 + 0.933258i \(0.616953\pi\)
\(282\) 0 0
\(283\) 9.96369e10i 0.923381i 0.887041 + 0.461691i \(0.152757\pi\)
−0.887041 + 0.461691i \(0.847243\pi\)
\(284\) 0 0
\(285\) − 8.41513e10i − 0.755542i
\(286\) 0 0
\(287\) −4.44481e10 −0.386710
\(288\) 0 0
\(289\) 2.50742e11 2.11440
\(290\) 0 0
\(291\) 2.82319e11i 2.30793i
\(292\) 0 0
\(293\) − 2.18507e11i − 1.73205i −0.499999 0.866026i \(-0.666666\pi\)
0.499999 0.866026i \(-0.333334\pi\)
\(294\) 0 0
\(295\) −2.41167e11 −1.85404
\(296\) 0 0
\(297\) 2.63157e11 1.96251
\(298\) 0 0
\(299\) 1.54957e11i 1.12122i
\(300\) 0 0
\(301\) − 3.52274e10i − 0.247361i
\(302\) 0 0
\(303\) 7.18966e10 0.490023
\(304\) 0 0
\(305\) −1.98208e11 −1.31151
\(306\) 0 0
\(307\) 4.39947e10i 0.282669i 0.989962 + 0.141334i \(0.0451393\pi\)
−0.989962 + 0.141334i \(0.954861\pi\)
\(308\) 0 0
\(309\) 1.49948e11i 0.935678i
\(310\) 0 0
\(311\) 1.89071e11 1.14605 0.573023 0.819539i \(-0.305770\pi\)
0.573023 + 0.819539i \(0.305770\pi\)
\(312\) 0 0
\(313\) 2.35414e10 0.138638 0.0693191 0.997595i \(-0.477917\pi\)
0.0693191 + 0.997595i \(0.477917\pi\)
\(314\) 0 0
\(315\) − 2.71275e11i − 1.55243i
\(316\) 0 0
\(317\) 1.91969e11i 1.06774i 0.845567 + 0.533869i \(0.179262\pi\)
−0.845567 + 0.533869i \(0.820738\pi\)
\(318\) 0 0
\(319\) −7.97542e10 −0.431216
\(320\) 0 0
\(321\) −1.62904e11 −0.856366
\(322\) 0 0
\(323\) 1.00183e11i 0.512133i
\(324\) 0 0
\(325\) 1.57740e11i 0.784273i
\(326\) 0 0
\(327\) −1.42676e11 −0.690059
\(328\) 0 0
\(329\) −1.01965e11 −0.479812
\(330\) 0 0
\(331\) − 4.23565e11i − 1.93952i −0.244063 0.969759i \(-0.578481\pi\)
0.244063 0.969759i \(-0.421519\pi\)
\(332\) 0 0
\(333\) − 2.23663e11i − 0.996769i
\(334\) 0 0
\(335\) 2.04502e11 0.887148
\(336\) 0 0
\(337\) 3.28269e11 1.38642 0.693212 0.720734i \(-0.256195\pi\)
0.693212 + 0.720734i \(0.256195\pi\)
\(338\) 0 0
\(339\) − 9.98410e10i − 0.410592i
\(340\) 0 0
\(341\) − 2.84522e10i − 0.113952i
\(342\) 0 0
\(343\) 2.17218e11 0.847370
\(344\) 0 0
\(345\) −1.06644e12 −4.05274
\(346\) 0 0
\(347\) 2.25945e11i 0.836604i 0.908308 + 0.418302i \(0.137375\pi\)
−0.908308 + 0.418302i \(0.862625\pi\)
\(348\) 0 0
\(349\) − 5.81052e10i − 0.209653i −0.994491 0.104826i \(-0.966571\pi\)
0.994491 0.104826i \(-0.0334287\pi\)
\(350\) 0 0
\(351\) −4.59397e11 −1.61550
\(352\) 0 0
\(353\) −1.00599e11 −0.344832 −0.172416 0.985024i \(-0.555157\pi\)
−0.172416 + 0.985024i \(0.555157\pi\)
\(354\) 0 0
\(355\) − 6.28774e11i − 2.10120i
\(356\) 0 0
\(357\) 4.66807e11i 1.52101i
\(358\) 0 0
\(359\) 1.42379e11 0.452397 0.226198 0.974081i \(-0.427370\pi\)
0.226198 + 0.974081i \(0.427370\pi\)
\(360\) 0 0
\(361\) 2.95512e11 0.915785
\(362\) 0 0
\(363\) 1.39666e11i 0.422194i
\(364\) 0 0
\(365\) − 1.37853e10i − 0.0406536i
\(366\) 0 0
\(367\) 5.83998e11 1.68041 0.840203 0.542272i \(-0.182436\pi\)
0.840203 + 0.542272i \(0.182436\pi\)
\(368\) 0 0
\(369\) −6.46247e11 −1.81460
\(370\) 0 0
\(371\) − 6.19866e10i − 0.169869i
\(372\) 0 0
\(373\) − 7.04616e11i − 1.88479i −0.334505 0.942394i \(-0.608569\pi\)
0.334505 0.942394i \(-0.391431\pi\)
\(374\) 0 0
\(375\) −8.85705e10 −0.231286
\(376\) 0 0
\(377\) 1.39228e11 0.354969
\(378\) 0 0
\(379\) 4.54881e11i 1.13246i 0.824248 + 0.566228i \(0.191598\pi\)
−0.824248 + 0.566228i \(0.808402\pi\)
\(380\) 0 0
\(381\) − 8.62583e11i − 2.09719i
\(382\) 0 0
\(383\) 6.11355e11 1.45177 0.725887 0.687814i \(-0.241429\pi\)
0.725887 + 0.687814i \(0.241429\pi\)
\(384\) 0 0
\(385\) −2.60836e11 −0.605054
\(386\) 0 0
\(387\) − 5.12183e11i − 1.16072i
\(388\) 0 0
\(389\) − 9.28801e10i − 0.205660i −0.994699 0.102830i \(-0.967210\pi\)
0.994699 0.102830i \(-0.0327897\pi\)
\(390\) 0 0
\(391\) 1.26960e12 2.74709
\(392\) 0 0
\(393\) −1.50559e12 −3.18377
\(394\) 0 0
\(395\) − 1.05654e12i − 2.18373i
\(396\) 0 0
\(397\) − 6.58291e11i − 1.33003i −0.746831 0.665014i \(-0.768426\pi\)
0.746831 0.665014i \(-0.231574\pi\)
\(398\) 0 0
\(399\) −1.26624e11 −0.250115
\(400\) 0 0
\(401\) −1.93836e11 −0.374356 −0.187178 0.982326i \(-0.559934\pi\)
−0.187178 + 0.982326i \(0.559934\pi\)
\(402\) 0 0
\(403\) 4.96694e10i 0.0938029i
\(404\) 0 0
\(405\) − 1.40482e12i − 2.59461i
\(406\) 0 0
\(407\) −2.15056e11 −0.388487
\(408\) 0 0
\(409\) 3.09099e11 0.546188 0.273094 0.961987i \(-0.411953\pi\)
0.273094 + 0.961987i \(0.411953\pi\)
\(410\) 0 0
\(411\) − 8.05177e11i − 1.39188i
\(412\) 0 0
\(413\) 3.62890e11i 0.613762i
\(414\) 0 0
\(415\) −4.80051e11 −0.794457
\(416\) 0 0
\(417\) 3.33304e11 0.539795
\(418\) 0 0
\(419\) 6.55357e11i 1.03876i 0.854544 + 0.519380i \(0.173837\pi\)
−0.854544 + 0.519380i \(0.826163\pi\)
\(420\) 0 0
\(421\) 2.00415e11i 0.310929i 0.987841 + 0.155465i \(0.0496875\pi\)
−0.987841 + 0.155465i \(0.950313\pi\)
\(422\) 0 0
\(423\) −1.48251e12 −2.25147
\(424\) 0 0
\(425\) 1.29241e12 1.92154
\(426\) 0 0
\(427\) 2.98249e11i 0.434163i
\(428\) 0 0
\(429\) 7.96497e11i 1.13534i
\(430\) 0 0
\(431\) −5.21200e11 −0.727540 −0.363770 0.931489i \(-0.618511\pi\)
−0.363770 + 0.931489i \(0.618511\pi\)
\(432\) 0 0
\(433\) 3.23838e11 0.442723 0.221361 0.975192i \(-0.428950\pi\)
0.221361 + 0.975192i \(0.428950\pi\)
\(434\) 0 0
\(435\) 9.58188e11i 1.28307i
\(436\) 0 0
\(437\) 3.44388e11i 0.451732i
\(438\) 0 0
\(439\) 1.59945e11 0.205532 0.102766 0.994706i \(-0.467231\pi\)
0.102766 + 0.994706i \(0.467231\pi\)
\(440\) 0 0
\(441\) 1.37501e12 1.73114
\(442\) 0 0
\(443\) − 2.33953e11i − 0.288610i −0.989533 0.144305i \(-0.953905\pi\)
0.989533 0.144305i \(-0.0460946\pi\)
\(444\) 0 0
\(445\) − 1.25446e12i − 1.51648i
\(446\) 0 0
\(447\) 1.71723e12 2.03444
\(448\) 0 0
\(449\) −1.44728e12 −1.68052 −0.840262 0.542180i \(-0.817599\pi\)
−0.840262 + 0.542180i \(0.817599\pi\)
\(450\) 0 0
\(451\) 6.21379e11i 0.707232i
\(452\) 0 0
\(453\) − 1.05925e12i − 1.18184i
\(454\) 0 0
\(455\) 4.55346e11 0.498070
\(456\) 0 0
\(457\) −1.09012e12 −1.16909 −0.584547 0.811359i \(-0.698728\pi\)
−0.584547 + 0.811359i \(0.698728\pi\)
\(458\) 0 0
\(459\) 3.76396e12i 3.95811i
\(460\) 0 0
\(461\) 1.66397e12i 1.71589i 0.513738 + 0.857947i \(0.328260\pi\)
−0.513738 + 0.857947i \(0.671740\pi\)
\(462\) 0 0
\(463\) −1.55834e12 −1.57597 −0.787985 0.615695i \(-0.788875\pi\)
−0.787985 + 0.615695i \(0.788875\pi\)
\(464\) 0 0
\(465\) −3.41832e11 −0.339058
\(466\) 0 0
\(467\) − 1.17880e12i − 1.14687i −0.819251 0.573436i \(-0.805610\pi\)
0.819251 0.573436i \(-0.194390\pi\)
\(468\) 0 0
\(469\) − 3.07719e11i − 0.293681i
\(470\) 0 0
\(471\) −2.09904e12 −1.96529
\(472\) 0 0
\(473\) −4.92474e11 −0.452385
\(474\) 0 0
\(475\) 3.50573e11i 0.315979i
\(476\) 0 0
\(477\) − 9.01246e11i − 0.797096i
\(478\) 0 0
\(479\) −1.05266e11 −0.0913645 −0.0456822 0.998956i \(-0.514546\pi\)
−0.0456822 + 0.998956i \(0.514546\pi\)
\(480\) 0 0
\(481\) 3.75427e11 0.319795
\(482\) 0 0
\(483\) 1.60469e12i 1.34162i
\(484\) 0 0
\(485\) − 2.25632e12i − 1.85167i
\(486\) 0 0
\(487\) 2.92582e11 0.235704 0.117852 0.993031i \(-0.462399\pi\)
0.117852 + 0.993031i \(0.462399\pi\)
\(488\) 0 0
\(489\) −2.57995e12 −2.04043
\(490\) 0 0
\(491\) − 1.72770e12i − 1.34154i −0.741667 0.670768i \(-0.765965\pi\)
0.741667 0.670768i \(-0.234035\pi\)
\(492\) 0 0
\(493\) − 1.14073e12i − 0.869706i
\(494\) 0 0
\(495\) −3.79239e12 −2.83916
\(496\) 0 0
\(497\) −9.46130e11 −0.695580
\(498\) 0 0
\(499\) − 2.08491e12i − 1.50534i −0.658396 0.752672i \(-0.728765\pi\)
0.658396 0.752672i \(-0.271235\pi\)
\(500\) 0 0
\(501\) 4.51930e12i 3.20480i
\(502\) 0 0
\(503\) −2.67459e11 −0.186295 −0.0931474 0.995652i \(-0.529693\pi\)
−0.0931474 + 0.995652i \(0.529693\pi\)
\(504\) 0 0
\(505\) −5.74604e11 −0.393149
\(506\) 0 0
\(507\) 1.28962e12i 0.866813i
\(508\) 0 0
\(509\) − 7.85816e11i − 0.518909i −0.965755 0.259454i \(-0.916457\pi\)
0.965755 0.259454i \(-0.0835427\pi\)
\(510\) 0 0
\(511\) −2.07431e10 −0.0134580
\(512\) 0 0
\(513\) −1.02100e12 −0.650873
\(514\) 0 0
\(515\) − 1.19839e12i − 0.750701i
\(516\) 0 0
\(517\) 1.42546e12i 0.877503i
\(518\) 0 0
\(519\) 1.10137e12 0.666313
\(520\) 0 0
\(521\) 4.69385e11 0.279100 0.139550 0.990215i \(-0.455434\pi\)
0.139550 + 0.990215i \(0.455434\pi\)
\(522\) 0 0
\(523\) − 2.40838e12i − 1.40756i −0.710418 0.703780i \(-0.751494\pi\)
0.710418 0.703780i \(-0.248506\pi\)
\(524\) 0 0
\(525\) 1.63351e12i 0.938439i
\(526\) 0 0
\(527\) 4.06954e11 0.229825
\(528\) 0 0
\(529\) 2.56322e12 1.42310
\(530\) 0 0
\(531\) 5.27619e12i 2.88002i
\(532\) 0 0
\(533\) − 1.08475e12i − 0.582181i
\(534\) 0 0
\(535\) 1.30194e12 0.687069
\(536\) 0 0
\(537\) 2.74649e12 1.42526
\(538\) 0 0
\(539\) − 1.32210e12i − 0.674706i
\(540\) 0 0
\(541\) 2.43978e12i 1.22451i 0.790660 + 0.612255i \(0.209737\pi\)
−0.790660 + 0.612255i \(0.790263\pi\)
\(542\) 0 0
\(543\) 5.42674e12 2.67880
\(544\) 0 0
\(545\) 1.14028e12 0.553640
\(546\) 0 0
\(547\) − 8.95402e11i − 0.427637i −0.976873 0.213818i \(-0.931410\pi\)
0.976873 0.213818i \(-0.0685901\pi\)
\(548\) 0 0
\(549\) 4.33635e12i 2.03727i
\(550\) 0 0
\(551\) 3.09431e11 0.143015
\(552\) 0 0
\(553\) −1.58980e12 −0.722901
\(554\) 0 0
\(555\) 2.58374e12i 1.15593i
\(556\) 0 0
\(557\) 3.89951e12i 1.71657i 0.513171 + 0.858286i \(0.328471\pi\)
−0.513171 + 0.858286i \(0.671529\pi\)
\(558\) 0 0
\(559\) 8.59720e11 0.372395
\(560\) 0 0
\(561\) 6.52591e12 2.78169
\(562\) 0 0
\(563\) − 3.25127e11i − 0.136384i −0.997672 0.0681922i \(-0.978277\pi\)
0.997672 0.0681922i \(-0.0217231\pi\)
\(564\) 0 0
\(565\) 7.97938e11i 0.329421i
\(566\) 0 0
\(567\) −2.11386e12 −0.858920
\(568\) 0 0
\(569\) 7.30167e11 0.292023 0.146012 0.989283i \(-0.453356\pi\)
0.146012 + 0.989283i \(0.453356\pi\)
\(570\) 0 0
\(571\) 1.59452e11i 0.0627723i 0.999507 + 0.0313861i \(0.00999216\pi\)
−0.999507 + 0.0313861i \(0.990008\pi\)
\(572\) 0 0
\(573\) − 7.01587e12i − 2.71885i
\(574\) 0 0
\(575\) 4.44276e12 1.69492
\(576\) 0 0
\(577\) 1.82973e12 0.687218 0.343609 0.939113i \(-0.388350\pi\)
0.343609 + 0.939113i \(0.388350\pi\)
\(578\) 0 0
\(579\) − 4.39802e12i − 1.62631i
\(580\) 0 0
\(581\) 7.22343e11i 0.262997i
\(582\) 0 0
\(583\) −8.66565e11 −0.310665
\(584\) 0 0
\(585\) 6.62044e12 2.33714
\(586\) 0 0
\(587\) − 3.74725e12i − 1.30269i −0.758782 0.651345i \(-0.774205\pi\)
0.758782 0.651345i \(-0.225795\pi\)
\(588\) 0 0
\(589\) 1.10389e11i 0.0377925i
\(590\) 0 0
\(591\) −5.68961e12 −1.91840
\(592\) 0 0
\(593\) −4.51432e12 −1.49916 −0.749578 0.661916i \(-0.769743\pi\)
−0.749578 + 0.661916i \(0.769743\pi\)
\(594\) 0 0
\(595\) − 3.73077e12i − 1.22031i
\(596\) 0 0
\(597\) − 7.75816e12i − 2.49962i
\(598\) 0 0
\(599\) 2.95283e12 0.937168 0.468584 0.883419i \(-0.344764\pi\)
0.468584 + 0.883419i \(0.344764\pi\)
\(600\) 0 0
\(601\) 3.34262e12 1.04509 0.522543 0.852613i \(-0.324984\pi\)
0.522543 + 0.852613i \(0.324984\pi\)
\(602\) 0 0
\(603\) − 4.47404e12i − 1.37807i
\(604\) 0 0
\(605\) − 1.11622e12i − 0.338729i
\(606\) 0 0
\(607\) 4.79377e12 1.43327 0.716636 0.697448i \(-0.245681\pi\)
0.716636 + 0.697448i \(0.245681\pi\)
\(608\) 0 0
\(609\) 1.44181e12 0.424746
\(610\) 0 0
\(611\) − 2.48845e12i − 0.722344i
\(612\) 0 0
\(613\) 3.04095e12i 0.869837i 0.900470 + 0.434918i \(0.143223\pi\)
−0.900470 + 0.434918i \(0.856777\pi\)
\(614\) 0 0
\(615\) 7.46541e12 2.10434
\(616\) 0 0
\(617\) 1.62097e12 0.450288 0.225144 0.974325i \(-0.427715\pi\)
0.225144 + 0.974325i \(0.427715\pi\)
\(618\) 0 0
\(619\) − 1.34898e12i − 0.369315i −0.982803 0.184658i \(-0.940882\pi\)
0.982803 0.184658i \(-0.0591176\pi\)
\(620\) 0 0
\(621\) 1.29390e13i 3.49130i
\(622\) 0 0
\(623\) −1.88762e12 −0.502017
\(624\) 0 0
\(625\) −3.44571e12 −0.903273
\(626\) 0 0
\(627\) 1.77019e12i 0.457421i
\(628\) 0 0
\(629\) − 3.07597e12i − 0.783527i
\(630\) 0 0
\(631\) 8.33673e11 0.209346 0.104673 0.994507i \(-0.466620\pi\)
0.104673 + 0.994507i \(0.466620\pi\)
\(632\) 0 0
\(633\) −5.57640e12 −1.38050
\(634\) 0 0
\(635\) 6.89384e12i 1.68259i
\(636\) 0 0
\(637\) 2.30801e12i 0.555406i
\(638\) 0 0
\(639\) −1.37561e13 −3.26394
\(640\) 0 0
\(641\) 5.03354e12 1.17764 0.588820 0.808264i \(-0.299593\pi\)
0.588820 + 0.808264i \(0.299593\pi\)
\(642\) 0 0
\(643\) 5.08235e12i 1.17251i 0.810128 + 0.586253i \(0.199398\pi\)
−0.810128 + 0.586253i \(0.800602\pi\)
\(644\) 0 0
\(645\) 5.91671e12i 1.34605i
\(646\) 0 0
\(647\) 3.34349e12 0.750120 0.375060 0.927001i \(-0.377622\pi\)
0.375060 + 0.927001i \(0.377622\pi\)
\(648\) 0 0
\(649\) 5.07316e12 1.12248
\(650\) 0 0
\(651\) 5.14362e11i 0.112242i
\(652\) 0 0
\(653\) − 5.29726e12i − 1.14010i −0.821611 0.570049i \(-0.806924\pi\)
0.821611 0.570049i \(-0.193076\pi\)
\(654\) 0 0
\(655\) 1.20328e13 2.55436
\(656\) 0 0
\(657\) −3.01591e11 −0.0631501
\(658\) 0 0
\(659\) − 7.48186e12i − 1.54534i −0.634805 0.772672i \(-0.718920\pi\)
0.634805 0.772672i \(-0.281080\pi\)
\(660\) 0 0
\(661\) − 1.03230e12i − 0.210330i −0.994455 0.105165i \(-0.966463\pi\)
0.994455 0.105165i \(-0.0335371\pi\)
\(662\) 0 0
\(663\) −1.13924e13 −2.28983
\(664\) 0 0
\(665\) 1.01199e12 0.200669
\(666\) 0 0
\(667\) − 3.92137e12i − 0.767134i
\(668\) 0 0
\(669\) 3.83309e12i 0.739828i
\(670\) 0 0
\(671\) 4.16948e12 0.794018
\(672\) 0 0
\(673\) −8.13048e12 −1.52774 −0.763868 0.645373i \(-0.776702\pi\)
−0.763868 + 0.645373i \(0.776702\pi\)
\(674\) 0 0
\(675\) 1.31714e13i 2.44210i
\(676\) 0 0
\(677\) 7.61157e12i 1.39260i 0.717753 + 0.696298i \(0.245171\pi\)
−0.717753 + 0.696298i \(0.754829\pi\)
\(678\) 0 0
\(679\) −3.39514e12 −0.612976
\(680\) 0 0
\(681\) 5.55527e12 0.989790
\(682\) 0 0
\(683\) 7.40992e12i 1.30293i 0.758680 + 0.651464i \(0.225845\pi\)
−0.758680 + 0.651464i \(0.774155\pi\)
\(684\) 0 0
\(685\) 6.43504e12i 1.11672i
\(686\) 0 0
\(687\) −8.72358e12 −1.49413
\(688\) 0 0
\(689\) 1.51278e12 0.255734
\(690\) 0 0
\(691\) − 3.64791e11i − 0.0608685i −0.999537 0.0304343i \(-0.990311\pi\)
0.999537 0.0304343i \(-0.00968902\pi\)
\(692\) 0 0
\(693\) 5.70650e12i 0.939875i
\(694\) 0 0
\(695\) −2.66380e12 −0.433081
\(696\) 0 0
\(697\) −8.88765e12 −1.42639
\(698\) 0 0
\(699\) 1.02734e13i 1.62767i
\(700\) 0 0
\(701\) − 2.33617e12i − 0.365404i −0.983168 0.182702i \(-0.941516\pi\)
0.983168 0.182702i \(-0.0584844\pi\)
\(702\) 0 0
\(703\) 8.34375e11 0.128843
\(704\) 0 0
\(705\) 1.71259e13 2.61097
\(706\) 0 0
\(707\) 8.64620e11i 0.130148i
\(708\) 0 0
\(709\) 2.17052e12i 0.322594i 0.986906 + 0.161297i \(0.0515677\pi\)
−0.986906 + 0.161297i \(0.948432\pi\)
\(710\) 0 0
\(711\) −2.31147e13 −3.39214
\(712\) 0 0
\(713\) 1.39894e12 0.202720
\(714\) 0 0
\(715\) − 6.36567e12i − 0.910893i
\(716\) 0 0
\(717\) 7.82574e12i 1.10583i
\(718\) 0 0
\(719\) 2.66823e10 0.00372342 0.00186171 0.999998i \(-0.499407\pi\)
0.00186171 + 0.999998i \(0.499407\pi\)
\(720\) 0 0
\(721\) −1.80325e12 −0.248512
\(722\) 0 0
\(723\) 8.99281e12i 1.22398i
\(724\) 0 0
\(725\) − 3.99180e12i − 0.536596i
\(726\) 0 0
\(727\) 8.81984e12 1.17100 0.585499 0.810673i \(-0.300899\pi\)
0.585499 + 0.810673i \(0.300899\pi\)
\(728\) 0 0
\(729\) 7.54253e10 0.00989107
\(730\) 0 0
\(731\) − 7.04391e12i − 0.912400i
\(732\) 0 0
\(733\) − 6.94718e12i − 0.888874i −0.895810 0.444437i \(-0.853404\pi\)
0.895810 0.444437i \(-0.146596\pi\)
\(734\) 0 0
\(735\) −1.58841e13 −2.00756
\(736\) 0 0
\(737\) −4.30187e12 −0.537098
\(738\) 0 0
\(739\) 1.65991e12i 0.204732i 0.994747 + 0.102366i \(0.0326413\pi\)
−0.994747 + 0.102366i \(0.967359\pi\)
\(740\) 0 0
\(741\) − 3.09025e12i − 0.376541i
\(742\) 0 0
\(743\) 6.92810e12 0.833997 0.416998 0.908907i \(-0.363082\pi\)
0.416998 + 0.908907i \(0.363082\pi\)
\(744\) 0 0
\(745\) −1.37242e13 −1.63224
\(746\) 0 0
\(747\) 1.05024e13i 1.23409i
\(748\) 0 0
\(749\) − 1.95907e12i − 0.227447i
\(750\) 0 0
\(751\) 1.09479e13 1.25589 0.627943 0.778259i \(-0.283897\pi\)
0.627943 + 0.778259i \(0.283897\pi\)
\(752\) 0 0
\(753\) −5.34819e12 −0.606219
\(754\) 0 0
\(755\) 8.46565e12i 0.948198i
\(756\) 0 0
\(757\) 1.11681e13i 1.23608i 0.786147 + 0.618039i \(0.212073\pi\)
−0.786147 + 0.618039i \(0.787927\pi\)
\(758\) 0 0
\(759\) 2.24334e13 2.45362
\(760\) 0 0
\(761\) −6.16538e12 −0.666391 −0.333195 0.942858i \(-0.608127\pi\)
−0.333195 + 0.942858i \(0.608127\pi\)
\(762\) 0 0
\(763\) − 1.71581e12i − 0.183277i
\(764\) 0 0
\(765\) − 5.42429e13i − 5.72620i
\(766\) 0 0
\(767\) −8.85629e12 −0.924002
\(768\) 0 0
\(769\) −4.00721e12 −0.413213 −0.206606 0.978424i \(-0.566242\pi\)
−0.206606 + 0.978424i \(0.566242\pi\)
\(770\) 0 0
\(771\) − 2.61165e13i − 2.66177i
\(772\) 0 0
\(773\) − 1.57080e13i − 1.58239i −0.611567 0.791193i \(-0.709460\pi\)
0.611567 0.791193i \(-0.290540\pi\)
\(774\) 0 0
\(775\) 1.42407e12 0.141799
\(776\) 0 0
\(777\) 3.88781e12 0.382658
\(778\) 0 0
\(779\) − 2.41083e12i − 0.234557i
\(780\) 0 0
\(781\) 1.32268e13i 1.27211i
\(782\) 0 0
\(783\) 1.16256e13 1.10532
\(784\) 0 0
\(785\) 1.67757e13 1.57676
\(786\) 0 0
\(787\) 4.11748e12i 0.382600i 0.981532 + 0.191300i \(0.0612704\pi\)
−0.981532 + 0.191300i \(0.938730\pi\)
\(788\) 0 0
\(789\) − 2.43463e13i − 2.23659i
\(790\) 0 0
\(791\) 1.20068e12 0.109052
\(792\) 0 0
\(793\) −7.27873e12 −0.653621
\(794\) 0 0
\(795\) 1.04111e13i 0.924371i
\(796\) 0 0
\(797\) − 6.62590e12i − 0.581677i −0.956772 0.290839i \(-0.906066\pi\)
0.956772 0.290839i \(-0.0939343\pi\)
\(798\) 0 0
\(799\) −2.03886e13 −1.76981
\(800\) 0 0
\(801\) −2.74448e13 −2.35566
\(802\) 0 0
\(803\) 2.89985e11i 0.0246125i
\(804\) 0 0
\(805\) − 1.28248e13i − 1.07639i
\(806\) 0 0
\(807\) −1.81320e13 −1.50493
\(808\) 0 0
\(809\) −1.19920e12 −0.0984290 −0.0492145 0.998788i \(-0.515672\pi\)
−0.0492145 + 0.998788i \(0.515672\pi\)
\(810\) 0 0
\(811\) − 2.43378e12i − 0.197555i −0.995110 0.0987775i \(-0.968507\pi\)
0.995110 0.0987775i \(-0.0314932\pi\)
\(812\) 0 0
\(813\) 3.33166e13i 2.67457i
\(814\) 0 0
\(815\) 2.06191e13 1.63705
\(816\) 0 0
\(817\) 1.91070e12 0.150035
\(818\) 0 0
\(819\) − 9.96192e12i − 0.773688i
\(820\) 0 0
\(821\) 5.54529e12i 0.425971i 0.977055 + 0.212986i \(0.0683187\pi\)
−0.977055 + 0.212986i \(0.931681\pi\)
\(822\) 0 0
\(823\) −1.48256e13 −1.12646 −0.563228 0.826302i \(-0.690441\pi\)
−0.563228 + 0.826302i \(0.690441\pi\)
\(824\) 0 0
\(825\) 2.28363e13 1.71626
\(826\) 0 0
\(827\) − 1.41723e13i − 1.05358i −0.849997 0.526788i \(-0.823396\pi\)
0.849997 0.526788i \(-0.176604\pi\)
\(828\) 0 0
\(829\) 9.67424e11i 0.0711412i 0.999367 + 0.0355706i \(0.0113249\pi\)
−0.999367 + 0.0355706i \(0.988675\pi\)
\(830\) 0 0
\(831\) 2.30857e13 1.67934
\(832\) 0 0
\(833\) 1.89101e13 1.36079
\(834\) 0 0
\(835\) − 3.61186e13i − 2.57124i
\(836\) 0 0
\(837\) 4.14741e12i 0.292087i
\(838\) 0 0
\(839\) 1.63583e13 1.13975 0.569875 0.821732i \(-0.306992\pi\)
0.569875 + 0.821732i \(0.306992\pi\)
\(840\) 0 0
\(841\) 1.09838e13 0.757131
\(842\) 0 0
\(843\) − 1.89762e13i − 1.29415i
\(844\) 0 0
\(845\) − 1.03067e13i − 0.695450i
\(846\) 0 0
\(847\) −1.67961e12 −0.112133
\(848\) 0 0
\(849\) −2.51812e13 −1.66338
\(850\) 0 0
\(851\) − 1.05739e13i − 0.691119i
\(852\) 0 0
\(853\) 8.51975e12i 0.551006i 0.961300 + 0.275503i \(0.0888444\pi\)
−0.961300 + 0.275503i \(0.911156\pi\)
\(854\) 0 0
\(855\) 1.47137e13 0.941619
\(856\) 0 0
\(857\) −2.49683e12 −0.158116 −0.0790578 0.996870i \(-0.525191\pi\)
−0.0790578 + 0.996870i \(0.525191\pi\)
\(858\) 0 0
\(859\) − 2.99678e13i − 1.87796i −0.343974 0.938979i \(-0.611773\pi\)
0.343974 0.938979i \(-0.388227\pi\)
\(860\) 0 0
\(861\) − 1.12334e13i − 0.696620i
\(862\) 0 0
\(863\) −9.11663e12 −0.559482 −0.279741 0.960076i \(-0.590249\pi\)
−0.279741 + 0.960076i \(0.590249\pi\)
\(864\) 0 0
\(865\) −8.80221e12 −0.534588
\(866\) 0 0
\(867\) 6.33700e13i 3.80889i
\(868\) 0 0
\(869\) 2.22252e13i 1.32208i
\(870\) 0 0
\(871\) 7.50984e12 0.442129
\(872\) 0 0
\(873\) −4.93631e13 −2.87633
\(874\) 0 0
\(875\) − 1.06514e12i − 0.0614285i
\(876\) 0 0
\(877\) 1.62554e13i 0.927897i 0.885862 + 0.463948i \(0.153568\pi\)
−0.885862 + 0.463948i \(0.846432\pi\)
\(878\) 0 0
\(879\) 5.52233e13 3.12013
\(880\) 0 0
\(881\) −3.34287e13 −1.86951 −0.934755 0.355294i \(-0.884381\pi\)
−0.934755 + 0.355294i \(0.884381\pi\)
\(882\) 0 0
\(883\) 1.62698e13i 0.900655i 0.892863 + 0.450328i \(0.148693\pi\)
−0.892863 + 0.450328i \(0.851307\pi\)
\(884\) 0 0
\(885\) − 6.09503e13i − 3.33988i
\(886\) 0 0
\(887\) 1.60289e13 0.869454 0.434727 0.900562i \(-0.356845\pi\)
0.434727 + 0.900562i \(0.356845\pi\)
\(888\) 0 0
\(889\) 1.03733e13 0.557006
\(890\) 0 0
\(891\) 2.95515e13i 1.57083i
\(892\) 0 0
\(893\) − 5.53052e12i − 0.291028i
\(894\) 0 0
\(895\) −2.19502e13 −1.14350
\(896\) 0 0
\(897\) −3.91623e13 −2.01977
\(898\) 0 0
\(899\) − 1.25694e12i − 0.0641795i
\(900\) 0 0
\(901\) − 1.23946e13i − 0.626570i
\(902\) 0 0
\(903\) 8.90301e12 0.445597
\(904\) 0 0
\(905\) −4.33710e13 −2.14922
\(906\) 0 0
\(907\) 1.59734e13i 0.783726i 0.920024 + 0.391863i \(0.128169\pi\)
−0.920024 + 0.391863i \(0.871831\pi\)
\(908\) 0 0
\(909\) 1.25710e13i 0.610707i
\(910\) 0 0
\(911\) −1.21013e13 −0.582104 −0.291052 0.956707i \(-0.594005\pi\)
−0.291052 + 0.956707i \(0.594005\pi\)
\(912\) 0 0
\(913\) 1.00983e13 0.480981
\(914\) 0 0
\(915\) − 5.00932e13i − 2.36257i
\(916\) 0 0
\(917\) − 1.81061e13i − 0.845596i
\(918\) 0 0
\(919\) 1.97502e13 0.913379 0.456689 0.889626i \(-0.349035\pi\)
0.456689 + 0.889626i \(0.349035\pi\)
\(920\) 0 0
\(921\) −1.11188e13 −0.509201
\(922\) 0 0
\(923\) − 2.30902e13i − 1.04718i
\(924\) 0 0
\(925\) − 1.07638e13i − 0.483425i
\(926\) 0 0
\(927\) −2.62181e13 −1.16612
\(928\) 0 0
\(929\) 7.13965e12 0.314490 0.157245 0.987560i \(-0.449739\pi\)
0.157245 + 0.987560i \(0.449739\pi\)
\(930\) 0 0
\(931\) 5.12949e12i 0.223769i
\(932\) 0 0
\(933\) 4.77838e13i 2.06449i
\(934\) 0 0
\(935\) −5.21556e13 −2.23177
\(936\) 0 0
\(937\) 3.17448e13 1.34538 0.672689 0.739925i \(-0.265139\pi\)
0.672689 + 0.739925i \(0.265139\pi\)
\(938\) 0 0
\(939\) 5.94962e12i 0.249743i
\(940\) 0 0
\(941\) − 4.59442e13i − 1.91019i −0.296296 0.955096i \(-0.595752\pi\)
0.296296 0.955096i \(-0.404248\pi\)
\(942\) 0 0
\(943\) −3.05521e13 −1.25817
\(944\) 0 0
\(945\) 3.80215e13 1.55091
\(946\) 0 0
\(947\) − 4.19613e12i − 0.169541i −0.996401 0.0847705i \(-0.972984\pi\)
0.996401 0.0847705i \(-0.0270157\pi\)
\(948\) 0 0
\(949\) − 5.06232e11i − 0.0202606i
\(950\) 0 0
\(951\) −4.85164e13 −1.92343
\(952\) 0 0
\(953\) −9.66942e11 −0.0379737 −0.0189868 0.999820i \(-0.506044\pi\)
−0.0189868 + 0.999820i \(0.506044\pi\)
\(954\) 0 0
\(955\) 5.60715e13i 2.18136i
\(956\) 0 0
\(957\) − 2.01563e13i − 0.776795i
\(958\) 0 0
\(959\) 9.68296e12 0.369679
\(960\) 0 0
\(961\) −2.59912e13 −0.983040
\(962\) 0 0
\(963\) − 2.84836e13i − 1.06727i
\(964\) 0 0
\(965\) 3.51493e13i 1.30480i
\(966\) 0 0
\(967\) 9.39038e12 0.345354 0.172677 0.984979i \(-0.444758\pi\)
0.172677 + 0.984979i \(0.444758\pi\)
\(968\) 0 0
\(969\) −2.53192e13 −0.922558
\(970\) 0 0
\(971\) 2.23874e13i 0.808196i 0.914716 + 0.404098i \(0.132414\pi\)
−0.914716 + 0.404098i \(0.867586\pi\)
\(972\) 0 0
\(973\) 4.00828e12i 0.143367i
\(974\) 0 0
\(975\) −3.98657e13 −1.41279
\(976\) 0 0
\(977\) 1.91366e13 0.671953 0.335977 0.941870i \(-0.390934\pi\)
0.335977 + 0.941870i \(0.390934\pi\)
\(978\) 0 0
\(979\) 2.63887e13i 0.918112i
\(980\) 0 0
\(981\) − 2.49467e13i − 0.860009i
\(982\) 0 0
\(983\) −3.12487e13 −1.06744 −0.533718 0.845663i \(-0.679205\pi\)
−0.533718 + 0.845663i \(0.679205\pi\)
\(984\) 0 0
\(985\) 4.54719e13 1.53915
\(986\) 0 0
\(987\) − 2.57697e13i − 0.864336i
\(988\) 0 0
\(989\) − 2.42141e13i − 0.804793i
\(990\) 0 0
\(991\) 7.43111e12 0.244750 0.122375 0.992484i \(-0.460949\pi\)
0.122375 + 0.992484i \(0.460949\pi\)
\(992\) 0 0
\(993\) 1.07048e14 3.49386
\(994\) 0 0
\(995\) 6.20039e13i 2.00546i
\(996\) 0 0
\(997\) − 2.49813e13i − 0.800730i −0.916356 0.400365i \(-0.868883\pi\)
0.916356 0.400365i \(-0.131117\pi\)
\(998\) 0 0
\(999\) 3.13482e13 0.995791
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.10.b.l.129.4 4
4.3 odd 2 256.10.b.o.129.1 4
8.3 odd 2 256.10.b.o.129.4 4
8.5 even 2 inner 256.10.b.l.129.1 4
16.3 odd 4 64.10.a.m.1.2 2
16.5 even 4 32.10.a.e.1.2 yes 2
16.11 odd 4 32.10.a.b.1.1 2
16.13 even 4 64.10.a.j.1.1 2
48.5 odd 4 288.10.a.e.1.1 2
48.11 even 4 288.10.a.d.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.10.a.b.1.1 2 16.11 odd 4
32.10.a.e.1.2 yes 2 16.5 even 4
64.10.a.j.1.1 2 16.13 even 4
64.10.a.m.1.2 2 16.3 odd 4
256.10.b.l.129.1 4 8.5 even 2 inner
256.10.b.l.129.4 4 1.1 even 1 trivial
256.10.b.o.129.1 4 4.3 odd 2
256.10.b.o.129.4 4 8.3 odd 2
288.10.a.d.1.1 2 48.11 even 4
288.10.a.e.1.1 2 48.5 odd 4