Properties

Label 256.10
Level 256
Weight 10
Dimension 10316
Nonzero newspaces 6
Sturm bound 40960
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 256 = 2^{8} \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 6 \)
Sturm bound: \(40960\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(256))\).

Total New Old
Modular forms 18608 10420 8188
Cusp forms 18256 10316 7940
Eisenstein series 352 104 248

Trace form

\( 10316 q - 32 q^{2} - 24 q^{3} - 32 q^{4} - 32 q^{5} - 32 q^{6} - 24 q^{7} - 32 q^{8} - 40 q^{9} - 32 q^{10} - 24 q^{11} - 32 q^{12} - 32 q^{13} - 32 q^{14} - 24 q^{15} - 32 q^{16} - 48 q^{17} - 32 q^{18}+ \cdots - 157488 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(256))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
256.10.a \(\chi_{256}(1, \cdot)\) 256.10.a.a 1 1
256.10.a.b 1
256.10.a.c 1
256.10.a.d 1
256.10.a.e 2
256.10.a.f 2
256.10.a.g 2
256.10.a.h 2
256.10.a.i 2
256.10.a.j 2
256.10.a.k 2
256.10.a.l 4
256.10.a.m 4
256.10.a.n 6
256.10.a.o 6
256.10.a.p 8
256.10.a.q 8
256.10.a.r 8
256.10.a.s 8
256.10.b \(\chi_{256}(129, \cdot)\) 256.10.b.a 2 1
256.10.b.b 2
256.10.b.c 2
256.10.b.d 2
256.10.b.e 2
256.10.b.f 2
256.10.b.g 2
256.10.b.h 2
256.10.b.i 2
256.10.b.j 2
256.10.b.k 2
256.10.b.l 4
256.10.b.m 4
256.10.b.n 4
256.10.b.o 4
256.10.b.p 8
256.10.b.q 8
256.10.b.r 8
256.10.b.s 8
256.10.e \(\chi_{256}(65, \cdot)\) n/a 144 2
256.10.g \(\chi_{256}(33, \cdot)\) n/a 280 4
256.10.i \(\chi_{256}(17, \cdot)\) n/a 568 8
256.10.k \(\chi_{256}(9, \cdot)\) None 0 16
256.10.m \(\chi_{256}(5, \cdot)\) n/a 9184 32

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(256))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(256)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 7}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(128))\)\(^{\oplus 2}\)