Defining parameters
| Level: | \( N \) | \(=\) | \( 64 = 2^{6} \) |
| Weight: | \( k \) | \(=\) | \( 10 \) |
| Character orbit: | \([\chi]\) | \(=\) | 64.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 13 \) | ||
| Sturm bound: | \(80\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(64))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 78 | 19 | 59 |
| Cusp forms | 66 | 17 | 49 |
| Eisenstein series | 12 | 2 | 10 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(38\) | \(9\) | \(29\) | \(32\) | \(8\) | \(24\) | \(6\) | \(1\) | \(5\) | |||
| \(-\) | \(40\) | \(10\) | \(30\) | \(34\) | \(9\) | \(25\) | \(6\) | \(1\) | \(5\) | |||
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(64))\) into newform subspaces
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(64))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(64)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 2}\)