Properties

Label 64.10.a
Level $64$
Weight $10$
Character orbit 64.a
Rep. character $\chi_{64}(1,\cdot)$
Character field $\Q$
Dimension $17$
Newform subspaces $13$
Sturm bound $80$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 64.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 13 \)
Sturm bound: \(80\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(64))\).

Total New Old
Modular forms 78 19 59
Cusp forms 66 17 49
Eisenstein series 12 2 10

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(38\)\(9\)\(29\)\(32\)\(8\)\(24\)\(6\)\(1\)\(5\)
\(-\)\(40\)\(10\)\(30\)\(34\)\(9\)\(25\)\(6\)\(1\)\(5\)

Trace form

\( 17 q + 2 q^{5} + 98413 q^{9} + 194618 q^{13} - 203998 q^{17} - 1998592 q^{21} + 6799887 q^{25} - 633398 q^{29} - 77184 q^{33} + 18215938 q^{37} - 11923478 q^{41} - 18175686 q^{45} + 63412809 q^{49} + 236380786 q^{53}+ \cdots + 359465138 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(64))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
64.10.a.a 64.a 1.a $1$ $32.962$ \(\Q\) None 4.10.a.a \(0\) \(-228\) \(666\) \(-6328\) $+$ $\mathrm{SU}(2)$ \(q-228q^{3}+666q^{5}-6328q^{7}+32301q^{9}+\cdots\)
64.10.a.b 64.a 1.a $1$ $32.962$ \(\Q\) None 2.10.a.a \(0\) \(-156\) \(-870\) \(952\) $-$ $\mathrm{SU}(2)$ \(q-156q^{3}-870q^{5}+952q^{7}+4653q^{9}+\cdots\)
64.10.a.c 64.a 1.a $1$ $32.962$ \(\Q\) None 8.10.a.b \(0\) \(-68\) \(-1510\) \(10248\) $+$ $\mathrm{SU}(2)$ \(q-68q^{3}-1510q^{5}+10248q^{7}-15059q^{9}+\cdots\)
64.10.a.d 64.a 1.a $1$ $32.962$ \(\Q\) None 8.10.a.a \(0\) \(-60\) \(2074\) \(4344\) $-$ $\mathrm{SU}(2)$ \(q-60q^{3}+2074q^{5}+4344q^{7}-16083q^{9}+\cdots\)
64.10.a.e 64.a 1.a $1$ $32.962$ \(\Q\) \(\Q(\sqrt{-1}) \) 32.10.a.a \(0\) \(0\) \(-2398\) \(0\) $-$ $N(\mathrm{U}(1))$ \(q-2398q^{5}-3^{9}q^{9}-112806q^{13}+\cdots\)
64.10.a.f 64.a 1.a $1$ $32.962$ \(\Q\) None 8.10.a.a \(0\) \(60\) \(2074\) \(-4344\) $+$ $\mathrm{SU}(2)$ \(q+60q^{3}+2074q^{5}-4344q^{7}-16083q^{9}+\cdots\)
64.10.a.g 64.a 1.a $1$ $32.962$ \(\Q\) None 8.10.a.b \(0\) \(68\) \(-1510\) \(-10248\) $-$ $\mathrm{SU}(2)$ \(q+68q^{3}-1510q^{5}-10248q^{7}-15059q^{9}+\cdots\)
64.10.a.h 64.a 1.a $1$ $32.962$ \(\Q\) None 2.10.a.a \(0\) \(156\) \(-870\) \(-952\) $+$ $\mathrm{SU}(2)$ \(q+156q^{3}-870q^{5}-952q^{7}+4653q^{9}+\cdots\)
64.10.a.i 64.a 1.a $1$ $32.962$ \(\Q\) None 4.10.a.a \(0\) \(228\) \(666\) \(6328\) $-$ $\mathrm{SU}(2)$ \(q+228q^{3}+666q^{5}+6328q^{7}+32301q^{9}+\cdots\)
64.10.a.j 64.a 1.a $2$ $32.962$ \(\Q(\sqrt{106}) \) None 32.10.a.b \(0\) \(-176\) \(-1404\) \(2784\) $+$ $\mathrm{SU}(2)$ \(q+(-88+\beta )q^{3}+(-702+8\beta )q^{5}+\cdots\)
64.10.a.k 64.a 1.a $2$ $32.962$ \(\Q(\sqrt{7}) \) None 32.10.a.d \(0\) \(0\) \(68\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+34q^{5}+86\beta q^{7}-3555q^{9}+\cdots\)
64.10.a.l 64.a 1.a $2$ $32.962$ \(\Q(\sqrt{5}) \) None 32.10.a.c \(0\) \(0\) \(4420\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-\beta q^{3}+2210q^{5}+42\beta q^{7}+26397q^{9}+\cdots\)
64.10.a.m 64.a 1.a $2$ $32.962$ \(\Q(\sqrt{106}) \) None 32.10.a.b \(0\) \(176\) \(-1404\) \(-2784\) $+$ $\mathrm{SU}(2)$ \(q+(88+\beta )q^{3}+(-702-8\beta )q^{5}+(-1392+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(64))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(64)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 2}\)