Properties

Label 62.8.a.c.1.2
Level $62$
Weight $8$
Character 62.1
Self dual yes
Analytic conductor $19.368$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [62,8,Mod(1,62)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(62, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("62.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 62 = 2 \cdot 31 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 62.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.3678715800\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 2617x^{3} - 17755x^{2} + 1742092x + 24429360 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(36.5857\) of defining polynomial
Character \(\chi\) \(=\) 62.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} -40.7973 q^{3} +64.0000 q^{4} -417.873 q^{5} +326.379 q^{6} -620.990 q^{7} -512.000 q^{8} -522.579 q^{9} +3342.99 q^{10} -7918.03 q^{11} -2611.03 q^{12} -1388.81 q^{13} +4967.92 q^{14} +17048.1 q^{15} +4096.00 q^{16} -34612.0 q^{17} +4180.63 q^{18} -6526.03 q^{19} -26743.9 q^{20} +25334.7 q^{21} +63344.2 q^{22} -9798.60 q^{23} +20888.2 q^{24} +96493.2 q^{25} +11110.5 q^{26} +110544. q^{27} -39743.4 q^{28} +103706. q^{29} -136385. q^{30} -29791.0 q^{31} -32768.0 q^{32} +323034. q^{33} +276896. q^{34} +259495. q^{35} -33445.1 q^{36} +299797. q^{37} +52208.2 q^{38} +56659.8 q^{39} +213951. q^{40} -525636. q^{41} -202678. q^{42} -385253. q^{43} -506754. q^{44} +218372. q^{45} +78388.8 q^{46} +228977. q^{47} -167106. q^{48} -437914. q^{49} -771945. q^{50} +1.41208e6 q^{51} -88884.0 q^{52} -7199.71 q^{53} -884348. q^{54} +3.30873e6 q^{55} +317947. q^{56} +266244. q^{57} -829646. q^{58} -1.73512e6 q^{59} +1.09108e6 q^{60} -2.62421e6 q^{61} +238328. q^{62} +324517. q^{63} +262144. q^{64} +580348. q^{65} -2.58427e6 q^{66} -2.22379e6 q^{67} -2.21517e6 q^{68} +399757. q^{69} -2.07596e6 q^{70} -2.06785e6 q^{71} +267561. q^{72} -2.92917e6 q^{73} -2.39837e6 q^{74} -3.93666e6 q^{75} -417666. q^{76} +4.91702e6 q^{77} -453278. q^{78} +5.93317e6 q^{79} -1.71161e6 q^{80} -3.36700e6 q^{81} +4.20509e6 q^{82} -9.72743e6 q^{83} +1.62142e6 q^{84} +1.44634e7 q^{85} +3.08202e6 q^{86} -4.23092e6 q^{87} +4.05403e6 q^{88} +5.66978e6 q^{89} -1.74698e6 q^{90} +862439. q^{91} -627110. q^{92} +1.21539e6 q^{93} -1.83182e6 q^{94} +2.72705e6 q^{95} +1.33685e6 q^{96} +1.33640e7 q^{97} +3.50331e6 q^{98} +4.13780e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 40 q^{2} + 28 q^{3} + 320 q^{4} + 152 q^{5} - 224 q^{6} - 132 q^{7} - 2560 q^{8} + 9149 q^{9} - 1216 q^{10} - 4218 q^{11} + 1792 q^{12} - 7014 q^{13} + 1056 q^{14} - 30666 q^{15} + 20480 q^{16} - 30180 q^{17}+ \cdots + 36785690 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) −40.7973 −0.872383 −0.436191 0.899854i \(-0.643673\pi\)
−0.436191 + 0.899854i \(0.643673\pi\)
\(4\) 64.0000 0.500000
\(5\) −417.873 −1.49503 −0.747515 0.664245i \(-0.768753\pi\)
−0.747515 + 0.664245i \(0.768753\pi\)
\(6\) 326.379 0.616868
\(7\) −620.990 −0.684292 −0.342146 0.939647i \(-0.611154\pi\)
−0.342146 + 0.939647i \(0.611154\pi\)
\(8\) −512.000 −0.353553
\(9\) −522.579 −0.238948
\(10\) 3342.99 1.05715
\(11\) −7918.03 −1.79367 −0.896835 0.442365i \(-0.854140\pi\)
−0.896835 + 0.442365i \(0.854140\pi\)
\(12\) −2611.03 −0.436191
\(13\) −1388.81 −0.175324 −0.0876621 0.996150i \(-0.527940\pi\)
−0.0876621 + 0.996150i \(0.527940\pi\)
\(14\) 4967.92 0.483868
\(15\) 17048.1 1.30424
\(16\) 4096.00 0.250000
\(17\) −34612.0 −1.70866 −0.854329 0.519733i \(-0.826032\pi\)
−0.854329 + 0.519733i \(0.826032\pi\)
\(18\) 4180.63 0.168962
\(19\) −6526.03 −0.218279 −0.109139 0.994026i \(-0.534809\pi\)
−0.109139 + 0.994026i \(0.534809\pi\)
\(20\) −26743.9 −0.747515
\(21\) 25334.7 0.596965
\(22\) 63344.2 1.26832
\(23\) −9798.60 −0.167925 −0.0839627 0.996469i \(-0.526758\pi\)
−0.0839627 + 0.996469i \(0.526758\pi\)
\(24\) 20888.2 0.308434
\(25\) 96493.2 1.23511
\(26\) 11110.5 0.123973
\(27\) 110544. 1.08084
\(28\) −39743.4 −0.342146
\(29\) 103706. 0.789605 0.394803 0.918766i \(-0.370813\pi\)
0.394803 + 0.918766i \(0.370813\pi\)
\(30\) −136385. −0.922236
\(31\) −29791.0 −0.179605
\(32\) −32768.0 −0.176777
\(33\) 323034. 1.56477
\(34\) 276896. 1.20820
\(35\) 259495. 1.02304
\(36\) −33445.1 −0.119474
\(37\) 299797. 0.973018 0.486509 0.873676i \(-0.338270\pi\)
0.486509 + 0.873676i \(0.338270\pi\)
\(38\) 52208.2 0.154346
\(39\) 56659.8 0.152950
\(40\) 213951. 0.528573
\(41\) −525636. −1.19108 −0.595541 0.803325i \(-0.703062\pi\)
−0.595541 + 0.803325i \(0.703062\pi\)
\(42\) −202678. −0.422118
\(43\) −385253. −0.738935 −0.369468 0.929244i \(-0.620460\pi\)
−0.369468 + 0.929244i \(0.620460\pi\)
\(44\) −506754. −0.896835
\(45\) 218372. 0.357234
\(46\) 78388.8 0.118741
\(47\) 228977. 0.321699 0.160849 0.986979i \(-0.448577\pi\)
0.160849 + 0.986979i \(0.448577\pi\)
\(48\) −167106. −0.218096
\(49\) −437914. −0.531744
\(50\) −771945. −0.873357
\(51\) 1.41208e6 1.49060
\(52\) −88884.0 −0.0876621
\(53\) −7199.71 −0.00664277 −0.00332139 0.999994i \(-0.501057\pi\)
−0.00332139 + 0.999994i \(0.501057\pi\)
\(54\) −884348. −0.764267
\(55\) 3.30873e6 2.68159
\(56\) 317947. 0.241934
\(57\) 266244. 0.190423
\(58\) −829646. −0.558335
\(59\) −1.73512e6 −1.09988 −0.549942 0.835203i \(-0.685350\pi\)
−0.549942 + 0.835203i \(0.685350\pi\)
\(60\) 1.09108e6 0.652119
\(61\) −2.62421e6 −1.48028 −0.740140 0.672452i \(-0.765241\pi\)
−0.740140 + 0.672452i \(0.765241\pi\)
\(62\) 238328. 0.127000
\(63\) 324517. 0.163510
\(64\) 262144. 0.125000
\(65\) 580348. 0.262115
\(66\) −2.58427e6 −1.10646
\(67\) −2.22379e6 −0.903298 −0.451649 0.892196i \(-0.649164\pi\)
−0.451649 + 0.892196i \(0.649164\pi\)
\(68\) −2.21517e6 −0.854329
\(69\) 399757. 0.146495
\(70\) −2.07596e6 −0.723397
\(71\) −2.06785e6 −0.685670 −0.342835 0.939396i \(-0.611387\pi\)
−0.342835 + 0.939396i \(0.611387\pi\)
\(72\) 267561. 0.0844808
\(73\) −2.92917e6 −0.881281 −0.440640 0.897684i \(-0.645249\pi\)
−0.440640 + 0.897684i \(0.645249\pi\)
\(74\) −2.39837e6 −0.688028
\(75\) −3.93666e6 −1.07749
\(76\) −417666. −0.109139
\(77\) 4.91702e6 1.22740
\(78\) −453278. −0.108152
\(79\) 5.93317e6 1.35392 0.676959 0.736021i \(-0.263298\pi\)
0.676959 + 0.736021i \(0.263298\pi\)
\(80\) −1.71161e6 −0.373757
\(81\) −3.36700e6 −0.703956
\(82\) 4.20509e6 0.842222
\(83\) −9.72743e6 −1.86735 −0.933673 0.358126i \(-0.883416\pi\)
−0.933673 + 0.358126i \(0.883416\pi\)
\(84\) 1.62142e6 0.298483
\(85\) 1.44634e7 2.55449
\(86\) 3.08202e6 0.522506
\(87\) −4.23092e6 −0.688838
\(88\) 4.05403e6 0.634158
\(89\) 5.66978e6 0.852513 0.426257 0.904602i \(-0.359832\pi\)
0.426257 + 0.904602i \(0.359832\pi\)
\(90\) −1.74698e6 −0.252603
\(91\) 862439. 0.119973
\(92\) −627110. −0.0839627
\(93\) 1.21539e6 0.156685
\(94\) −1.83182e6 −0.227475
\(95\) 2.72705e6 0.326333
\(96\) 1.33685e6 0.154217
\(97\) 1.33640e7 1.48674 0.743372 0.668879i \(-0.233225\pi\)
0.743372 + 0.668879i \(0.233225\pi\)
\(98\) 3.50331e6 0.376000
\(99\) 4.13780e6 0.428594
\(100\) 6.17556e6 0.617556
\(101\) −3.37263e6 −0.325719 −0.162860 0.986649i \(-0.552072\pi\)
−0.162860 + 0.986649i \(0.552072\pi\)
\(102\) −1.12966e7 −1.05402
\(103\) 5.53317e6 0.498934 0.249467 0.968383i \(-0.419745\pi\)
0.249467 + 0.968383i \(0.419745\pi\)
\(104\) 711072. 0.0619864
\(105\) −1.05867e7 −0.892480
\(106\) 57597.7 0.00469715
\(107\) −1.12749e7 −0.889751 −0.444875 0.895592i \(-0.646752\pi\)
−0.444875 + 0.895592i \(0.646752\pi\)
\(108\) 7.07479e6 0.540419
\(109\) −2.34093e7 −1.73139 −0.865697 0.500569i \(-0.833124\pi\)
−0.865697 + 0.500569i \(0.833124\pi\)
\(110\) −2.64699e7 −1.89617
\(111\) −1.22309e7 −0.848844
\(112\) −2.54358e6 −0.171073
\(113\) 2.16946e7 1.41441 0.707206 0.707007i \(-0.249955\pi\)
0.707206 + 0.707007i \(0.249955\pi\)
\(114\) −2.12996e6 −0.134649
\(115\) 4.09457e6 0.251053
\(116\) 6.63717e6 0.394803
\(117\) 725764. 0.0418933
\(118\) 1.38809e7 0.777735
\(119\) 2.14937e7 1.16922
\(120\) −8.72863e6 −0.461118
\(121\) 4.32080e7 2.21725
\(122\) 2.09937e7 1.04672
\(123\) 2.14445e7 1.03908
\(124\) −1.90662e6 −0.0898027
\(125\) −7.67557e6 −0.351500
\(126\) −2.59613e6 −0.115619
\(127\) −3.01075e7 −1.30425 −0.652126 0.758110i \(-0.726123\pi\)
−0.652126 + 0.758110i \(0.726123\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) 1.57173e7 0.644635
\(130\) −4.64278e6 −0.185343
\(131\) −1.68742e7 −0.655802 −0.327901 0.944712i \(-0.606341\pi\)
−0.327901 + 0.944712i \(0.606341\pi\)
\(132\) 2.06742e7 0.782384
\(133\) 4.05260e6 0.149366
\(134\) 1.77903e7 0.638728
\(135\) −4.61932e7 −1.61588
\(136\) 1.77213e7 0.604102
\(137\) 8.80817e6 0.292660 0.146330 0.989236i \(-0.453254\pi\)
0.146330 + 0.989236i \(0.453254\pi\)
\(138\) −3.19805e6 −0.103588
\(139\) −4.92255e7 −1.55467 −0.777335 0.629087i \(-0.783429\pi\)
−0.777335 + 0.629087i \(0.783429\pi\)
\(140\) 1.66077e7 0.511519
\(141\) −9.34165e6 −0.280645
\(142\) 1.65428e7 0.484842
\(143\) 1.09967e7 0.314474
\(144\) −2.14048e6 −0.0597370
\(145\) −4.33359e7 −1.18048
\(146\) 2.34333e7 0.623160
\(147\) 1.78657e7 0.463884
\(148\) 1.91870e7 0.486509
\(149\) −2.96829e7 −0.735114 −0.367557 0.930001i \(-0.619806\pi\)
−0.367557 + 0.930001i \(0.619806\pi\)
\(150\) 3.14933e7 0.761901
\(151\) −5.81968e7 −1.37556 −0.687781 0.725919i \(-0.741415\pi\)
−0.687781 + 0.725919i \(0.741415\pi\)
\(152\) 3.34133e6 0.0771732
\(153\) 1.80875e7 0.408280
\(154\) −3.93362e7 −0.867899
\(155\) 1.24489e7 0.268515
\(156\) 3.62623e6 0.0764749
\(157\) 5.32105e7 1.09736 0.548679 0.836033i \(-0.315131\pi\)
0.548679 + 0.836033i \(0.315131\pi\)
\(158\) −4.74654e7 −0.957364
\(159\) 293729. 0.00579504
\(160\) 1.36929e7 0.264286
\(161\) 6.08484e6 0.114910
\(162\) 2.69360e7 0.497772
\(163\) 2.57846e7 0.466341 0.233171 0.972436i \(-0.425090\pi\)
0.233171 + 0.972436i \(0.425090\pi\)
\(164\) −3.36407e7 −0.595541
\(165\) −1.34987e8 −2.33937
\(166\) 7.78194e7 1.32041
\(167\) −2.82779e7 −0.469829 −0.234914 0.972016i \(-0.575481\pi\)
−0.234914 + 0.972016i \(0.575481\pi\)
\(168\) −1.29714e7 −0.211059
\(169\) −6.08197e7 −0.969261
\(170\) −1.15707e8 −1.80630
\(171\) 3.41037e6 0.0521572
\(172\) −2.46562e7 −0.369468
\(173\) 6.35962e7 0.933834 0.466917 0.884301i \(-0.345365\pi\)
0.466917 + 0.884301i \(0.345365\pi\)
\(174\) 3.38473e7 0.487082
\(175\) −5.99213e7 −0.845178
\(176\) −3.24322e7 −0.448418
\(177\) 7.07881e7 0.959520
\(178\) −4.53582e7 −0.602818
\(179\) −9.56662e7 −1.24673 −0.623365 0.781931i \(-0.714235\pi\)
−0.623365 + 0.781931i \(0.714235\pi\)
\(180\) 1.39758e7 0.178617
\(181\) −6.58091e7 −0.824918 −0.412459 0.910976i \(-0.635330\pi\)
−0.412459 + 0.910976i \(0.635330\pi\)
\(182\) −6.89951e6 −0.0848337
\(183\) 1.07061e8 1.29137
\(184\) 5.01688e6 0.0593706
\(185\) −1.25277e8 −1.45469
\(186\) −9.72314e6 −0.110793
\(187\) 2.74059e8 3.06477
\(188\) 1.46545e7 0.160849
\(189\) −6.86465e7 −0.739609
\(190\) −2.18164e7 −0.230752
\(191\) −9.41465e7 −0.977659 −0.488829 0.872379i \(-0.662576\pi\)
−0.488829 + 0.872379i \(0.662576\pi\)
\(192\) −1.06948e7 −0.109048
\(193\) 1.01005e8 1.01133 0.505665 0.862730i \(-0.331247\pi\)
0.505665 + 0.862730i \(0.331247\pi\)
\(194\) −1.06912e8 −1.05129
\(195\) −2.36766e7 −0.228664
\(196\) −2.80265e7 −0.265872
\(197\) −1.39459e8 −1.29962 −0.649810 0.760097i \(-0.725151\pi\)
−0.649810 + 0.760097i \(0.725151\pi\)
\(198\) −3.31024e7 −0.303062
\(199\) 2.11768e8 1.90491 0.952456 0.304677i \(-0.0985485\pi\)
0.952456 + 0.304677i \(0.0985485\pi\)
\(200\) −4.94045e7 −0.436678
\(201\) 9.07245e7 0.788022
\(202\) 2.69810e7 0.230318
\(203\) −6.44003e7 −0.540321
\(204\) 9.03728e7 0.745302
\(205\) 2.19649e8 1.78070
\(206\) −4.42653e7 −0.352800
\(207\) 5.12054e6 0.0401254
\(208\) −5.68857e6 −0.0438310
\(209\) 5.16733e7 0.391520
\(210\) 8.46937e7 0.631079
\(211\) −8.66123e6 −0.0634733 −0.0317367 0.999496i \(-0.510104\pi\)
−0.0317367 + 0.999496i \(0.510104\pi\)
\(212\) −460781. −0.00332139
\(213\) 8.43627e7 0.598166
\(214\) 9.01990e7 0.629149
\(215\) 1.60987e8 1.10473
\(216\) −5.65983e7 −0.382134
\(217\) 1.84999e7 0.122903
\(218\) 1.87274e8 1.22428
\(219\) 1.19502e8 0.768814
\(220\) 2.11759e8 1.34079
\(221\) 4.80695e7 0.299569
\(222\) 9.78472e7 0.600224
\(223\) −7.80335e7 −0.471210 −0.235605 0.971849i \(-0.575707\pi\)
−0.235605 + 0.971849i \(0.575707\pi\)
\(224\) 2.03486e7 0.120967
\(225\) −5.04253e7 −0.295128
\(226\) −1.73556e8 −1.00014
\(227\) −6.01021e7 −0.341035 −0.170517 0.985355i \(-0.554544\pi\)
−0.170517 + 0.985355i \(0.554544\pi\)
\(228\) 1.70396e7 0.0952113
\(229\) 1.94222e8 1.06874 0.534372 0.845250i \(-0.320548\pi\)
0.534372 + 0.845250i \(0.320548\pi\)
\(230\) −3.27566e7 −0.177522
\(231\) −2.00601e8 −1.07076
\(232\) −5.30974e7 −0.279168
\(233\) 2.75094e8 1.42474 0.712369 0.701805i \(-0.247622\pi\)
0.712369 + 0.701805i \(0.247622\pi\)
\(234\) −5.80611e6 −0.0296231
\(235\) −9.56834e7 −0.480949
\(236\) −1.11047e8 −0.549942
\(237\) −2.42057e8 −1.18113
\(238\) −1.71950e8 −0.826765
\(239\) 1.08680e7 0.0514939 0.0257469 0.999668i \(-0.491804\pi\)
0.0257469 + 0.999668i \(0.491804\pi\)
\(240\) 6.98291e7 0.326060
\(241\) 3.16267e8 1.45544 0.727720 0.685874i \(-0.240580\pi\)
0.727720 + 0.685874i \(0.240580\pi\)
\(242\) −3.45664e8 −1.56783
\(243\) −1.04394e8 −0.466718
\(244\) −1.67949e8 −0.740140
\(245\) 1.82993e8 0.794973
\(246\) −1.71556e8 −0.734740
\(247\) 9.06342e6 0.0382695
\(248\) 1.52530e7 0.0635001
\(249\) 3.96853e8 1.62904
\(250\) 6.14046e7 0.248548
\(251\) −8.90394e7 −0.355406 −0.177703 0.984084i \(-0.556867\pi\)
−0.177703 + 0.984084i \(0.556867\pi\)
\(252\) 2.07691e7 0.0817551
\(253\) 7.75856e7 0.301203
\(254\) 2.40860e8 0.922246
\(255\) −5.90069e8 −2.22850
\(256\) 1.67772e7 0.0625000
\(257\) 1.91926e8 0.705291 0.352646 0.935757i \(-0.385282\pi\)
0.352646 + 0.935757i \(0.385282\pi\)
\(258\) −1.25738e8 −0.455826
\(259\) −1.86171e8 −0.665829
\(260\) 3.71422e7 0.131057
\(261\) −5.41945e7 −0.188675
\(262\) 1.34993e8 0.463722
\(263\) 2.64672e7 0.0897146 0.0448573 0.998993i \(-0.485717\pi\)
0.0448573 + 0.998993i \(0.485717\pi\)
\(264\) −1.65394e8 −0.553229
\(265\) 3.00857e6 0.00993114
\(266\) −3.24208e7 −0.105618
\(267\) −2.31312e8 −0.743718
\(268\) −1.42322e8 −0.451649
\(269\) −4.26555e8 −1.33611 −0.668054 0.744113i \(-0.732873\pi\)
−0.668054 + 0.744113i \(0.732873\pi\)
\(270\) 3.69546e8 1.14260
\(271\) 7.25746e7 0.221509 0.110755 0.993848i \(-0.464673\pi\)
0.110755 + 0.993848i \(0.464673\pi\)
\(272\) −1.41771e8 −0.427165
\(273\) −3.51852e7 −0.104662
\(274\) −7.04653e7 −0.206942
\(275\) −7.64036e8 −2.21538
\(276\) 2.55844e7 0.0732477
\(277\) 5.83878e8 1.65060 0.825302 0.564692i \(-0.191005\pi\)
0.825302 + 0.564692i \(0.191005\pi\)
\(278\) 3.93804e8 1.09932
\(279\) 1.55682e7 0.0429163
\(280\) −1.32862e8 −0.361698
\(281\) 2.37499e7 0.0638542 0.0319271 0.999490i \(-0.489836\pi\)
0.0319271 + 0.999490i \(0.489836\pi\)
\(282\) 7.47332e7 0.198446
\(283\) −6.75972e8 −1.77287 −0.886434 0.462856i \(-0.846825\pi\)
−0.886434 + 0.462856i \(0.846825\pi\)
\(284\) −1.32342e8 −0.342835
\(285\) −1.11256e8 −0.284687
\(286\) −8.79732e7 −0.222366
\(287\) 3.26415e8 0.815048
\(288\) 1.71239e7 0.0422404
\(289\) 7.87650e8 1.91951
\(290\) 3.46687e8 0.834727
\(291\) −5.45216e8 −1.29701
\(292\) −1.87467e8 −0.440640
\(293\) −4.12692e8 −0.958494 −0.479247 0.877680i \(-0.659090\pi\)
−0.479247 + 0.877680i \(0.659090\pi\)
\(294\) −1.42926e8 −0.328016
\(295\) 7.25059e8 1.64436
\(296\) −1.53496e8 −0.344014
\(297\) −8.75287e8 −1.93867
\(298\) 2.37463e8 0.519804
\(299\) 1.36084e7 0.0294414
\(300\) −2.51946e8 −0.538746
\(301\) 2.39238e8 0.505648
\(302\) 4.65575e8 0.972669
\(303\) 1.37594e8 0.284152
\(304\) −2.67306e7 −0.0545697
\(305\) 1.09659e9 2.21306
\(306\) −1.44700e8 −0.288698
\(307\) −1.72022e8 −0.339312 −0.169656 0.985503i \(-0.554266\pi\)
−0.169656 + 0.985503i \(0.554266\pi\)
\(308\) 3.14689e8 0.613698
\(309\) −2.25738e8 −0.435262
\(310\) −9.95909e7 −0.189869
\(311\) −9.15845e8 −1.72648 −0.863238 0.504797i \(-0.831567\pi\)
−0.863238 + 0.504797i \(0.831567\pi\)
\(312\) −2.90098e7 −0.0540759
\(313\) −5.11090e8 −0.942090 −0.471045 0.882109i \(-0.656123\pi\)
−0.471045 + 0.882109i \(0.656123\pi\)
\(314\) −4.25684e8 −0.775949
\(315\) −1.35607e8 −0.244453
\(316\) 3.79723e8 0.676959
\(317\) −2.00927e8 −0.354267 −0.177134 0.984187i \(-0.556683\pi\)
−0.177134 + 0.984187i \(0.556683\pi\)
\(318\) −2.34983e6 −0.00409771
\(319\) −8.21145e8 −1.41629
\(320\) −1.09543e8 −0.186879
\(321\) 4.59985e8 0.776204
\(322\) −4.86787e7 −0.0812537
\(323\) 2.25879e8 0.372964
\(324\) −2.15488e8 −0.351978
\(325\) −1.34011e8 −0.216545
\(326\) −2.06277e8 −0.329753
\(327\) 9.55037e8 1.51044
\(328\) 2.69126e8 0.421111
\(329\) −1.42193e8 −0.220136
\(330\) 1.07990e9 1.65419
\(331\) 1.72587e8 0.261584 0.130792 0.991410i \(-0.458248\pi\)
0.130792 + 0.991410i \(0.458248\pi\)
\(332\) −6.22556e8 −0.933673
\(333\) −1.56668e8 −0.232501
\(334\) 2.26223e8 0.332219
\(335\) 9.29261e8 1.35046
\(336\) 1.03771e8 0.149241
\(337\) −2.35763e8 −0.335560 −0.167780 0.985824i \(-0.553660\pi\)
−0.167780 + 0.985824i \(0.553660\pi\)
\(338\) 4.86558e8 0.685371
\(339\) −8.85080e8 −1.23391
\(340\) 9.25659e8 1.27725
\(341\) 2.35886e8 0.322153
\(342\) −2.72829e7 −0.0368807
\(343\) 7.83353e8 1.04816
\(344\) 1.97250e8 0.261253
\(345\) −1.67048e8 −0.219015
\(346\) −5.08769e8 −0.660320
\(347\) 1.06453e9 1.36774 0.683871 0.729603i \(-0.260295\pi\)
0.683871 + 0.729603i \(0.260295\pi\)
\(348\) −2.70779e8 −0.344419
\(349\) −3.71468e8 −0.467770 −0.233885 0.972264i \(-0.575144\pi\)
−0.233885 + 0.972264i \(0.575144\pi\)
\(350\) 4.79371e8 0.597631
\(351\) −1.53524e8 −0.189497
\(352\) 2.59458e8 0.317079
\(353\) 2.53889e8 0.307208 0.153604 0.988133i \(-0.450912\pi\)
0.153604 + 0.988133i \(0.450912\pi\)
\(354\) −5.66305e8 −0.678483
\(355\) 8.64100e8 1.02510
\(356\) 3.62866e8 0.426257
\(357\) −8.76885e8 −1.02001
\(358\) 7.65329e8 0.881572
\(359\) −1.19177e9 −1.35945 −0.679723 0.733469i \(-0.737900\pi\)
−0.679723 + 0.733469i \(0.737900\pi\)
\(360\) −1.11806e8 −0.126301
\(361\) −8.51283e8 −0.952354
\(362\) 5.26473e8 0.583305
\(363\) −1.76277e9 −1.93429
\(364\) 5.51961e7 0.0599865
\(365\) 1.22402e9 1.31754
\(366\) −8.56486e8 −0.913138
\(367\) 6.96395e8 0.735402 0.367701 0.929944i \(-0.380145\pi\)
0.367701 + 0.929944i \(0.380145\pi\)
\(368\) −4.01351e7 −0.0419814
\(369\) 2.74686e8 0.284606
\(370\) 1.00222e9 1.02862
\(371\) 4.47095e6 0.00454560
\(372\) 7.77851e7 0.0783423
\(373\) 4.53131e8 0.452109 0.226055 0.974115i \(-0.427417\pi\)
0.226055 + 0.974115i \(0.427417\pi\)
\(374\) −2.19247e9 −2.16712
\(375\) 3.13143e8 0.306643
\(376\) −1.17236e8 −0.113738
\(377\) −1.44028e8 −0.138437
\(378\) 5.49172e8 0.522982
\(379\) −3.55064e8 −0.335019 −0.167509 0.985871i \(-0.553572\pi\)
−0.167509 + 0.985871i \(0.553572\pi\)
\(380\) 1.74531e8 0.163167
\(381\) 1.22831e9 1.13781
\(382\) 7.53172e8 0.691309
\(383\) 1.56851e9 1.42656 0.713282 0.700877i \(-0.247208\pi\)
0.713282 + 0.700877i \(0.247208\pi\)
\(384\) 8.55582e7 0.0771085
\(385\) −2.05469e9 −1.83499
\(386\) −8.08041e8 −0.715118
\(387\) 2.01325e8 0.176567
\(388\) 8.55297e8 0.743372
\(389\) 1.37865e9 1.18749 0.593747 0.804652i \(-0.297648\pi\)
0.593747 + 0.804652i \(0.297648\pi\)
\(390\) 1.89413e8 0.161690
\(391\) 3.39149e8 0.286927
\(392\) 2.24212e8 0.188000
\(393\) 6.88420e8 0.572110
\(394\) 1.11568e9 0.918970
\(395\) −2.47931e9 −2.02415
\(396\) 2.64819e8 0.214297
\(397\) −7.58780e8 −0.608624 −0.304312 0.952572i \(-0.598427\pi\)
−0.304312 + 0.952572i \(0.598427\pi\)
\(398\) −1.69414e9 −1.34698
\(399\) −1.65335e8 −0.130305
\(400\) 3.95236e8 0.308778
\(401\) 1.87069e9 1.44876 0.724378 0.689403i \(-0.242127\pi\)
0.724378 + 0.689403i \(0.242127\pi\)
\(402\) −7.25796e8 −0.557216
\(403\) 4.13741e7 0.0314891
\(404\) −2.15848e8 −0.162860
\(405\) 1.40698e9 1.05243
\(406\) 5.15202e8 0.382065
\(407\) −2.37380e9 −1.74527
\(408\) −7.22983e8 −0.527008
\(409\) −2.45944e9 −1.77748 −0.888741 0.458410i \(-0.848419\pi\)
−0.888741 + 0.458410i \(0.848419\pi\)
\(410\) −1.75719e9 −1.25915
\(411\) −3.59350e8 −0.255312
\(412\) 3.54123e8 0.249467
\(413\) 1.07749e9 0.752642
\(414\) −4.09643e7 −0.0283730
\(415\) 4.06483e9 2.79174
\(416\) 4.55086e7 0.0309932
\(417\) 2.00827e9 1.35627
\(418\) −4.13386e8 −0.276846
\(419\) −1.23723e9 −0.821675 −0.410838 0.911708i \(-0.634764\pi\)
−0.410838 + 0.911708i \(0.634764\pi\)
\(420\) −6.77550e8 −0.446240
\(421\) 3.37838e8 0.220659 0.110329 0.993895i \(-0.464809\pi\)
0.110329 + 0.993895i \(0.464809\pi\)
\(422\) 6.92899e7 0.0448824
\(423\) −1.19659e8 −0.0768693
\(424\) 3.68625e6 0.00234857
\(425\) −3.33982e9 −2.11039
\(426\) −6.74902e8 −0.422968
\(427\) 1.62961e9 1.01294
\(428\) −7.21592e8 −0.444875
\(429\) −4.48634e8 −0.274341
\(430\) −1.28790e9 −0.781162
\(431\) −8.25702e8 −0.496767 −0.248384 0.968662i \(-0.579899\pi\)
−0.248384 + 0.968662i \(0.579899\pi\)
\(432\) 4.52786e8 0.270209
\(433\) −1.16907e9 −0.692042 −0.346021 0.938227i \(-0.612467\pi\)
−0.346021 + 0.938227i \(0.612467\pi\)
\(434\) −1.47999e8 −0.0869052
\(435\) 1.76799e9 1.02983
\(436\) −1.49820e9 −0.865697
\(437\) 6.39459e7 0.0366545
\(438\) −9.56018e8 −0.543634
\(439\) −1.13018e9 −0.637560 −0.318780 0.947829i \(-0.603273\pi\)
−0.318780 + 0.947829i \(0.603273\pi\)
\(440\) −1.69407e9 −0.948085
\(441\) 2.28845e8 0.127059
\(442\) −3.84556e8 −0.211827
\(443\) 3.45470e9 1.88798 0.943990 0.329973i \(-0.107040\pi\)
0.943990 + 0.329973i \(0.107040\pi\)
\(444\) −7.82778e8 −0.424422
\(445\) −2.36925e9 −1.27453
\(446\) 6.24268e8 0.333196
\(447\) 1.21098e9 0.641301
\(448\) −1.62789e8 −0.0855366
\(449\) −1.14401e9 −0.596443 −0.298221 0.954497i \(-0.596393\pi\)
−0.298221 + 0.954497i \(0.596393\pi\)
\(450\) 4.03403e8 0.208687
\(451\) 4.16200e9 2.13641
\(452\) 1.38845e9 0.707206
\(453\) 2.37427e9 1.20002
\(454\) 4.80817e8 0.241148
\(455\) −3.60390e8 −0.179363
\(456\) −1.36317e8 −0.0673246
\(457\) −1.71386e9 −0.839979 −0.419989 0.907529i \(-0.637966\pi\)
−0.419989 + 0.907529i \(0.637966\pi\)
\(458\) −1.55377e9 −0.755716
\(459\) −3.82613e9 −1.84678
\(460\) 2.62053e8 0.125527
\(461\) 6.08702e8 0.289368 0.144684 0.989478i \(-0.453783\pi\)
0.144684 + 0.989478i \(0.453783\pi\)
\(462\) 1.60481e9 0.757141
\(463\) −1.89787e9 −0.888655 −0.444327 0.895864i \(-0.646557\pi\)
−0.444327 + 0.895864i \(0.646557\pi\)
\(464\) 4.24779e8 0.197401
\(465\) −5.07880e8 −0.234248
\(466\) −2.20075e9 −1.00744
\(467\) −8.08808e8 −0.367482 −0.183741 0.982975i \(-0.558821\pi\)
−0.183741 + 0.982975i \(0.558821\pi\)
\(468\) 4.64489e7 0.0209467
\(469\) 1.38095e9 0.618120
\(470\) 7.65467e8 0.340082
\(471\) −2.17084e9 −0.957317
\(472\) 8.88380e8 0.388868
\(473\) 3.05044e9 1.32541
\(474\) 1.93646e9 0.835188
\(475\) −6.29717e8 −0.269599
\(476\) 1.37560e9 0.584611
\(477\) 3.76242e6 0.00158728
\(478\) −8.69437e7 −0.0364117
\(479\) 2.02860e9 0.843376 0.421688 0.906741i \(-0.361438\pi\)
0.421688 + 0.906741i \(0.361438\pi\)
\(480\) −5.58633e8 −0.230559
\(481\) −4.16361e8 −0.170594
\(482\) −2.53014e9 −1.02915
\(483\) −2.48245e8 −0.100246
\(484\) 2.76531e9 1.10863
\(485\) −5.58447e9 −2.22272
\(486\) 8.35154e8 0.330019
\(487\) 9.87432e8 0.387396 0.193698 0.981061i \(-0.437952\pi\)
0.193698 + 0.981061i \(0.437952\pi\)
\(488\) 1.34360e9 0.523358
\(489\) −1.05194e9 −0.406828
\(490\) −1.46394e9 −0.562130
\(491\) 4.09396e9 1.56084 0.780420 0.625256i \(-0.215005\pi\)
0.780420 + 0.625256i \(0.215005\pi\)
\(492\) 1.37245e9 0.519540
\(493\) −3.58946e9 −1.34917
\(494\) −7.25074e7 −0.0270606
\(495\) −1.72907e9 −0.640760
\(496\) −1.22024e8 −0.0449013
\(497\) 1.28412e9 0.469199
\(498\) −3.17482e9 −1.15191
\(499\) −5.51368e7 −0.0198650 −0.00993252 0.999951i \(-0.503162\pi\)
−0.00993252 + 0.999951i \(0.503162\pi\)
\(500\) −4.91237e8 −0.175750
\(501\) 1.15366e9 0.409871
\(502\) 7.12315e8 0.251310
\(503\) 1.91196e8 0.0669871 0.0334935 0.999439i \(-0.489337\pi\)
0.0334935 + 0.999439i \(0.489337\pi\)
\(504\) −1.66153e8 −0.0578096
\(505\) 1.40933e9 0.486960
\(506\) −6.20685e8 −0.212983
\(507\) 2.48128e9 0.845567
\(508\) −1.92688e9 −0.652126
\(509\) −4.53511e9 −1.52432 −0.762158 0.647391i \(-0.775860\pi\)
−0.762158 + 0.647391i \(0.775860\pi\)
\(510\) 4.72055e9 1.57579
\(511\) 1.81899e9 0.603054
\(512\) −1.34218e8 −0.0441942
\(513\) −7.21410e8 −0.235924
\(514\) −1.53541e9 −0.498716
\(515\) −2.31216e9 −0.745921
\(516\) 1.00591e9 0.322317
\(517\) −1.81305e9 −0.577022
\(518\) 1.48937e9 0.470812
\(519\) −2.59455e9 −0.814661
\(520\) −2.97138e8 −0.0926715
\(521\) 3.62476e9 1.12292 0.561458 0.827505i \(-0.310241\pi\)
0.561458 + 0.827505i \(0.310241\pi\)
\(522\) 4.33556e8 0.133413
\(523\) −4.09293e9 −1.25106 −0.625530 0.780200i \(-0.715117\pi\)
−0.625530 + 0.780200i \(0.715117\pi\)
\(524\) −1.07995e9 −0.327901
\(525\) 2.44463e9 0.737319
\(526\) −2.11738e8 −0.0634378
\(527\) 1.03113e9 0.306884
\(528\) 1.32315e9 0.391192
\(529\) −3.30881e9 −0.971801
\(530\) −2.40685e7 −0.00702238
\(531\) 9.06736e8 0.262815
\(532\) 2.59366e8 0.0746832
\(533\) 7.30009e8 0.208825
\(534\) 1.85049e9 0.525888
\(535\) 4.71147e9 1.33020
\(536\) 1.13858e9 0.319364
\(537\) 3.90292e9 1.08763
\(538\) 3.41244e9 0.944771
\(539\) 3.46741e9 0.953773
\(540\) −2.95637e9 −0.807942
\(541\) 2.72975e9 0.741194 0.370597 0.928794i \(-0.379153\pi\)
0.370597 + 0.928794i \(0.379153\pi\)
\(542\) −5.80597e8 −0.156631
\(543\) 2.68483e9 0.719645
\(544\) 1.13417e9 0.302051
\(545\) 9.78212e9 2.58848
\(546\) 2.81482e8 0.0740075
\(547\) 3.30606e9 0.863683 0.431842 0.901949i \(-0.357864\pi\)
0.431842 + 0.901949i \(0.357864\pi\)
\(548\) 5.63723e8 0.146330
\(549\) 1.37136e9 0.353710
\(550\) 6.11229e9 1.56651
\(551\) −6.76787e8 −0.172354
\(552\) −2.04675e8 −0.0517939
\(553\) −3.68444e9 −0.926475
\(554\) −4.67102e9 −1.16715
\(555\) 5.11097e9 1.26905
\(556\) −3.15043e9 −0.777335
\(557\) 8.14341e8 0.199670 0.0998350 0.995004i \(-0.468168\pi\)
0.0998350 + 0.995004i \(0.468168\pi\)
\(558\) −1.24545e8 −0.0303464
\(559\) 5.35044e8 0.129553
\(560\) 1.06289e9 0.255759
\(561\) −1.11809e10 −2.67365
\(562\) −1.89999e8 −0.0451517
\(563\) −3.55944e9 −0.840626 −0.420313 0.907379i \(-0.638080\pi\)
−0.420313 + 0.907379i \(0.638080\pi\)
\(564\) −5.97865e8 −0.140322
\(565\) −9.06558e9 −2.11459
\(566\) 5.40778e9 1.25361
\(567\) 2.09087e9 0.481712
\(568\) 1.05874e9 0.242421
\(569\) 2.88158e9 0.655748 0.327874 0.944721i \(-0.393668\pi\)
0.327874 + 0.944721i \(0.393668\pi\)
\(570\) 8.90052e8 0.201304
\(571\) 5.68986e9 1.27901 0.639507 0.768785i \(-0.279138\pi\)
0.639507 + 0.768785i \(0.279138\pi\)
\(572\) 7.03786e8 0.157237
\(573\) 3.84092e9 0.852893
\(574\) −2.61132e9 −0.576326
\(575\) −9.45498e8 −0.207407
\(576\) −1.36991e8 −0.0298685
\(577\) −3.28049e9 −0.710925 −0.355462 0.934691i \(-0.615677\pi\)
−0.355462 + 0.934691i \(0.615677\pi\)
\(578\) −6.30120e9 −1.35730
\(579\) −4.12074e9 −0.882267
\(580\) −2.77350e9 −0.590241
\(581\) 6.04064e9 1.27781
\(582\) 4.36173e9 0.917124
\(583\) 5.70075e7 0.0119149
\(584\) 1.49973e9 0.311580
\(585\) −3.03277e8 −0.0626318
\(586\) 3.30154e9 0.677757
\(587\) 3.57385e9 0.729295 0.364648 0.931146i \(-0.381189\pi\)
0.364648 + 0.931146i \(0.381189\pi\)
\(588\) 1.14341e9 0.231942
\(589\) 1.94417e8 0.0392040
\(590\) −5.80047e9 −1.16274
\(591\) 5.68957e9 1.13377
\(592\) 1.22797e9 0.243254
\(593\) −2.16031e8 −0.0425426 −0.0212713 0.999774i \(-0.506771\pi\)
−0.0212713 + 0.999774i \(0.506771\pi\)
\(594\) 7.00230e9 1.37084
\(595\) −8.98165e9 −1.74802
\(596\) −1.89971e9 −0.367557
\(597\) −8.63957e9 −1.66181
\(598\) −1.08867e8 −0.0208182
\(599\) −6.35978e9 −1.20906 −0.604531 0.796582i \(-0.706639\pi\)
−0.604531 + 0.796582i \(0.706639\pi\)
\(600\) 2.01557e9 0.380951
\(601\) −6.72076e9 −1.26287 −0.631434 0.775430i \(-0.717533\pi\)
−0.631434 + 0.775430i \(0.717533\pi\)
\(602\) −1.91391e9 −0.357547
\(603\) 1.16210e9 0.215841
\(604\) −3.72460e9 −0.687781
\(605\) −1.80555e10 −3.31486
\(606\) −1.10075e9 −0.200926
\(607\) −5.74452e9 −1.04254 −0.521270 0.853392i \(-0.674542\pi\)
−0.521270 + 0.853392i \(0.674542\pi\)
\(608\) 2.13845e8 0.0385866
\(609\) 2.62736e9 0.471367
\(610\) −8.77270e9 −1.56487
\(611\) −3.18006e8 −0.0564016
\(612\) 1.15760e9 0.204140
\(613\) 7.35937e9 1.29041 0.645207 0.764008i \(-0.276771\pi\)
0.645207 + 0.764008i \(0.276771\pi\)
\(614\) 1.37618e9 0.239930
\(615\) −8.96110e9 −1.55345
\(616\) −2.51751e9 −0.433950
\(617\) −6.91278e9 −1.18483 −0.592413 0.805634i \(-0.701825\pi\)
−0.592413 + 0.805634i \(0.701825\pi\)
\(618\) 1.80591e9 0.307777
\(619\) −8.46739e9 −1.43494 −0.717468 0.696592i \(-0.754699\pi\)
−0.717468 + 0.696592i \(0.754699\pi\)
\(620\) 7.96727e8 0.134258
\(621\) −1.08317e9 −0.181500
\(622\) 7.32676e9 1.22080
\(623\) −3.52088e9 −0.583369
\(624\) 2.32079e8 0.0382374
\(625\) −4.33111e9 −0.709609
\(626\) 4.08872e9 0.666158
\(627\) −2.10813e9 −0.341555
\(628\) 3.40547e9 0.548679
\(629\) −1.03766e10 −1.66255
\(630\) 1.08485e9 0.172854
\(631\) −4.28026e8 −0.0678215 −0.0339108 0.999425i \(-0.510796\pi\)
−0.0339108 + 0.999425i \(0.510796\pi\)
\(632\) −3.03778e9 −0.478682
\(633\) 3.53355e8 0.0553730
\(634\) 1.60742e9 0.250505
\(635\) 1.25811e10 1.94990
\(636\) 1.87986e7 0.00289752
\(637\) 6.08180e8 0.0932275
\(638\) 6.56916e9 1.00147
\(639\) 1.08062e9 0.163839
\(640\) 8.76344e8 0.132143
\(641\) 9.78813e9 1.46790 0.733950 0.679203i \(-0.237674\pi\)
0.733950 + 0.679203i \(0.237674\pi\)
\(642\) −3.67988e9 −0.548859
\(643\) 5.90503e9 0.875958 0.437979 0.898985i \(-0.355694\pi\)
0.437979 + 0.898985i \(0.355694\pi\)
\(644\) 3.89430e8 0.0574551
\(645\) −6.56784e9 −0.963748
\(646\) −1.80703e9 −0.263725
\(647\) −4.45052e9 −0.646019 −0.323010 0.946396i \(-0.604695\pi\)
−0.323010 + 0.946396i \(0.604695\pi\)
\(648\) 1.72390e9 0.248886
\(649\) 1.37387e10 1.97283
\(650\) 1.07209e9 0.153120
\(651\) −7.54747e8 −0.107218
\(652\) 1.65021e9 0.233171
\(653\) 1.04534e10 1.46914 0.734568 0.678535i \(-0.237385\pi\)
0.734568 + 0.678535i \(0.237385\pi\)
\(654\) −7.64029e9 −1.06804
\(655\) 7.05126e9 0.980443
\(656\) −2.15300e9 −0.297770
\(657\) 1.53072e9 0.210580
\(658\) 1.13754e9 0.155660
\(659\) 5.54564e9 0.754837 0.377418 0.926043i \(-0.376812\pi\)
0.377418 + 0.926043i \(0.376812\pi\)
\(660\) −8.63920e9 −1.16969
\(661\) −1.05040e10 −1.41466 −0.707329 0.706885i \(-0.750100\pi\)
−0.707329 + 0.706885i \(0.750100\pi\)
\(662\) −1.38070e9 −0.184968
\(663\) −1.96111e9 −0.261339
\(664\) 4.98044e9 0.660207
\(665\) −1.69347e9 −0.223307
\(666\) 1.25334e9 0.164403
\(667\) −1.01617e9 −0.132595
\(668\) −1.80979e9 −0.234914
\(669\) 3.18356e9 0.411075
\(670\) −7.43409e9 −0.954917
\(671\) 2.07786e10 2.65514
\(672\) −8.30169e8 −0.105530
\(673\) 1.01223e10 1.28005 0.640023 0.768356i \(-0.278925\pi\)
0.640023 + 0.768356i \(0.278925\pi\)
\(674\) 1.88610e9 0.237277
\(675\) 1.06667e10 1.33496
\(676\) −3.89246e9 −0.484631
\(677\) −5.53216e8 −0.0685226 −0.0342613 0.999413i \(-0.510908\pi\)
−0.0342613 + 0.999413i \(0.510908\pi\)
\(678\) 7.08064e9 0.872506
\(679\) −8.29893e9 −1.01737
\(680\) −7.40527e9 −0.903150
\(681\) 2.45200e9 0.297513
\(682\) −1.88709e9 −0.227796
\(683\) −4.69427e9 −0.563761 −0.281881 0.959449i \(-0.590958\pi\)
−0.281881 + 0.959449i \(0.590958\pi\)
\(684\) 2.18263e8 0.0260786
\(685\) −3.68070e9 −0.437536
\(686\) −6.26682e9 −0.741162
\(687\) −7.92372e9 −0.932353
\(688\) −1.57800e9 −0.184734
\(689\) 9.99904e6 0.00116464
\(690\) 1.33638e9 0.154867
\(691\) −1.07481e10 −1.23925 −0.619623 0.784899i \(-0.712715\pi\)
−0.619623 + 0.784899i \(0.712715\pi\)
\(692\) 4.07015e9 0.466917
\(693\) −2.56953e9 −0.293284
\(694\) −8.51623e9 −0.967140
\(695\) 2.05700e10 2.32428
\(696\) 2.16623e9 0.243541
\(697\) 1.81933e10 2.03515
\(698\) 2.97174e9 0.330763
\(699\) −1.12231e10 −1.24292
\(700\) −3.83497e9 −0.422589
\(701\) 1.50160e10 1.64642 0.823211 0.567735i \(-0.192180\pi\)
0.823211 + 0.567735i \(0.192180\pi\)
\(702\) 1.22819e9 0.133994
\(703\) −1.95648e9 −0.212389
\(704\) −2.07566e9 −0.224209
\(705\) 3.90363e9 0.419572
\(706\) −2.03111e9 −0.217229
\(707\) 2.09437e9 0.222887
\(708\) 4.53044e9 0.479760
\(709\) −1.14211e10 −1.20350 −0.601750 0.798685i \(-0.705530\pi\)
−0.601750 + 0.798685i \(0.705530\pi\)
\(710\) −6.91280e9 −0.724852
\(711\) −3.10055e9 −0.323516
\(712\) −2.90293e9 −0.301409
\(713\) 2.91910e8 0.0301603
\(714\) 7.01508e9 0.721255
\(715\) −4.59521e9 −0.470147
\(716\) −6.12263e9 −0.623365
\(717\) −4.43384e8 −0.0449224
\(718\) 9.53416e9 0.961273
\(719\) 2.40273e9 0.241076 0.120538 0.992709i \(-0.461538\pi\)
0.120538 + 0.992709i \(0.461538\pi\)
\(720\) 8.94451e8 0.0893085
\(721\) −3.43604e9 −0.341417
\(722\) 6.81026e9 0.673416
\(723\) −1.29029e10 −1.26970
\(724\) −4.21178e9 −0.412459
\(725\) 1.00069e10 0.975251
\(726\) 1.41022e10 1.36775
\(727\) 1.34707e10 1.30023 0.650115 0.759836i \(-0.274721\pi\)
0.650115 + 0.759836i \(0.274721\pi\)
\(728\) −4.41569e8 −0.0424169
\(729\) 1.16226e10 1.11111
\(730\) −9.79217e9 −0.931642
\(731\) 1.33344e10 1.26259
\(732\) 6.85188e9 0.645686
\(733\) −1.98292e10 −1.85969 −0.929845 0.367952i \(-0.880059\pi\)
−0.929845 + 0.367952i \(0.880059\pi\)
\(734\) −5.57116e9 −0.520007
\(735\) −7.46561e9 −0.693521
\(736\) 3.21080e8 0.0296853
\(737\) 1.76080e10 1.62022
\(738\) −2.19749e9 −0.201247
\(739\) −5.34582e9 −0.487258 −0.243629 0.969869i \(-0.578338\pi\)
−0.243629 + 0.969869i \(0.578338\pi\)
\(740\) −8.01773e9 −0.727345
\(741\) −3.69763e8 −0.0333857
\(742\) −3.57676e7 −0.00321422
\(743\) −5.70628e9 −0.510378 −0.255189 0.966891i \(-0.582138\pi\)
−0.255189 + 0.966891i \(0.582138\pi\)
\(744\) −6.22281e8 −0.0553964
\(745\) 1.24037e10 1.09902
\(746\) −3.62505e9 −0.319689
\(747\) 5.08335e9 0.446199
\(748\) 1.75397e10 1.53238
\(749\) 7.00159e9 0.608850
\(750\) −2.50514e9 −0.216829
\(751\) 2.55448e9 0.220071 0.110035 0.993928i \(-0.464904\pi\)
0.110035 + 0.993928i \(0.464904\pi\)
\(752\) 9.37890e8 0.0804247
\(753\) 3.63257e9 0.310050
\(754\) 1.15222e9 0.0978896
\(755\) 2.43189e10 2.05650
\(756\) −4.39338e9 −0.369804
\(757\) −6.09090e9 −0.510324 −0.255162 0.966898i \(-0.582129\pi\)
−0.255162 + 0.966898i \(0.582129\pi\)
\(758\) 2.84051e9 0.236894
\(759\) −3.16528e9 −0.262764
\(760\) −1.39625e9 −0.115376
\(761\) −1.56404e9 −0.128647 −0.0643236 0.997929i \(-0.520489\pi\)
−0.0643236 + 0.997929i \(0.520489\pi\)
\(762\) −9.82644e9 −0.804552
\(763\) 1.45370e10 1.18478
\(764\) −6.02537e9 −0.488829
\(765\) −7.55828e9 −0.610391
\(766\) −1.25481e10 −1.00873
\(767\) 2.40975e9 0.192836
\(768\) −6.84465e8 −0.0545239
\(769\) −1.81491e10 −1.43918 −0.719588 0.694402i \(-0.755669\pi\)
−0.719588 + 0.694402i \(0.755669\pi\)
\(770\) 1.64375e10 1.29754
\(771\) −7.83008e9 −0.615284
\(772\) 6.46433e9 0.505665
\(773\) −2.07867e10 −1.61867 −0.809335 0.587347i \(-0.800172\pi\)
−0.809335 + 0.587347i \(0.800172\pi\)
\(774\) −1.61060e9 −0.124852
\(775\) −2.87463e9 −0.221833
\(776\) −6.84238e9 −0.525643
\(777\) 7.59527e9 0.580858
\(778\) −1.10292e10 −0.839685
\(779\) 3.43031e9 0.259988
\(780\) −1.51530e9 −0.114332
\(781\) 1.63733e10 1.22987
\(782\) −2.71319e9 −0.202888
\(783\) 1.14640e10 0.853435
\(784\) −1.79370e9 −0.132936
\(785\) −2.22352e10 −1.64058
\(786\) −5.50736e9 −0.404543
\(787\) −2.25373e10 −1.64813 −0.824064 0.566497i \(-0.808298\pi\)
−0.824064 + 0.566497i \(0.808298\pi\)
\(788\) −8.92540e9 −0.649810
\(789\) −1.07979e9 −0.0782655
\(790\) 1.98345e10 1.43129
\(791\) −1.34721e10 −0.967872
\(792\) −2.11855e9 −0.151531
\(793\) 3.64453e9 0.259529
\(794\) 6.07024e9 0.430362
\(795\) −1.22741e8 −0.00866376
\(796\) 1.35532e10 0.952456
\(797\) −1.48826e10 −1.04129 −0.520647 0.853772i \(-0.674309\pi\)
−0.520647 + 0.853772i \(0.674309\pi\)
\(798\) 1.32268e9 0.0921394
\(799\) −7.92535e9 −0.549673
\(800\) −3.16189e9 −0.218339
\(801\) −2.96291e9 −0.203706
\(802\) −1.49655e10 −1.02443
\(803\) 2.31932e10 1.58073
\(804\) 5.80637e9 0.394011
\(805\) −2.54269e9 −0.171794
\(806\) −3.30993e8 −0.0222662
\(807\) 1.74023e10 1.16560
\(808\) 1.72679e9 0.115159
\(809\) −1.45923e10 −0.968955 −0.484477 0.874804i \(-0.660990\pi\)
−0.484477 + 0.874804i \(0.660990\pi\)
\(810\) −1.12558e10 −0.744184
\(811\) 1.55759e9 0.102537 0.0512685 0.998685i \(-0.483674\pi\)
0.0512685 + 0.998685i \(0.483674\pi\)
\(812\) −4.12162e9 −0.270160
\(813\) −2.96085e9 −0.193241
\(814\) 1.89904e10 1.23409
\(815\) −1.07747e10 −0.697194
\(816\) 5.78386e9 0.372651
\(817\) 2.51417e9 0.161294
\(818\) 1.96755e10 1.25687
\(819\) −4.50693e8 −0.0286673
\(820\) 1.40575e10 0.890351
\(821\) 1.10726e9 0.0698313 0.0349157 0.999390i \(-0.488884\pi\)
0.0349157 + 0.999390i \(0.488884\pi\)
\(822\) 2.87480e9 0.180533
\(823\) −1.28442e10 −0.803171 −0.401586 0.915821i \(-0.631541\pi\)
−0.401586 + 0.915821i \(0.631541\pi\)
\(824\) −2.83298e9 −0.176400
\(825\) 3.11706e10 1.93266
\(826\) −8.61993e9 −0.532198
\(827\) 7.20214e9 0.442785 0.221392 0.975185i \(-0.428940\pi\)
0.221392 + 0.975185i \(0.428940\pi\)
\(828\) 3.27715e8 0.0200627
\(829\) −3.36146e9 −0.204921 −0.102461 0.994737i \(-0.532672\pi\)
−0.102461 + 0.994737i \(0.532672\pi\)
\(830\) −3.25187e10 −1.97406
\(831\) −2.38206e10 −1.43996
\(832\) −3.64069e8 −0.0219155
\(833\) 1.51571e10 0.908568
\(834\) −1.60661e10 −0.959025
\(835\) 1.18166e10 0.702408
\(836\) 3.30709e9 0.195760
\(837\) −3.29320e9 −0.194124
\(838\) 9.89782e9 0.581012
\(839\) −4.51585e9 −0.263981 −0.131990 0.991251i \(-0.542137\pi\)
−0.131990 + 0.991251i \(0.542137\pi\)
\(840\) 5.42040e9 0.315539
\(841\) −6.49499e9 −0.376524
\(842\) −2.70271e9 −0.156029
\(843\) −9.68931e8 −0.0557053
\(844\) −5.54319e8 −0.0317367
\(845\) 2.54149e10 1.44907
\(846\) 9.57269e8 0.0543548
\(847\) −2.68318e10 −1.51725
\(848\) −2.94900e7 −0.00166069
\(849\) 2.75778e10 1.54662
\(850\) 2.67186e10 1.49227
\(851\) −2.93759e9 −0.163394
\(852\) 5.39922e9 0.299083
\(853\) 1.43396e10 0.791070 0.395535 0.918451i \(-0.370559\pi\)
0.395535 + 0.918451i \(0.370559\pi\)
\(854\) −1.30369e10 −0.716260
\(855\) −1.42510e9 −0.0779766
\(856\) 5.77274e9 0.314574
\(857\) −2.38691e9 −0.129540 −0.0647698 0.997900i \(-0.520631\pi\)
−0.0647698 + 0.997900i \(0.520631\pi\)
\(858\) 3.58907e9 0.193989
\(859\) −1.84668e10 −0.994065 −0.497032 0.867732i \(-0.665577\pi\)
−0.497032 + 0.867732i \(0.665577\pi\)
\(860\) 1.03032e10 0.552365
\(861\) −1.33168e10 −0.711034
\(862\) 6.60562e9 0.351267
\(863\) −1.90229e10 −1.00748 −0.503742 0.863854i \(-0.668044\pi\)
−0.503742 + 0.863854i \(0.668044\pi\)
\(864\) −3.62229e9 −0.191067
\(865\) −2.65751e10 −1.39611
\(866\) 9.35256e9 0.489348
\(867\) −3.21340e10 −1.67455
\(868\) 1.18400e9 0.0614513
\(869\) −4.69790e10 −2.42848
\(870\) −1.41439e10 −0.728202
\(871\) 3.08842e9 0.158370
\(872\) 1.19856e10 0.612140
\(873\) −6.98376e9 −0.355254
\(874\) −5.11567e8 −0.0259187
\(875\) 4.76646e9 0.240529
\(876\) 7.64814e9 0.384407
\(877\) −3.63551e10 −1.81998 −0.909989 0.414632i \(-0.863910\pi\)
−0.909989 + 0.414632i \(0.863910\pi\)
\(878\) 9.04142e9 0.450823
\(879\) 1.68367e10 0.836174
\(880\) 1.35526e10 0.670397
\(881\) −1.67922e10 −0.827357 −0.413679 0.910423i \(-0.635756\pi\)
−0.413679 + 0.910423i \(0.635756\pi\)
\(882\) −1.83076e9 −0.0898443
\(883\) −9.20607e9 −0.449999 −0.225000 0.974359i \(-0.572238\pi\)
−0.225000 + 0.974359i \(0.572238\pi\)
\(884\) 3.07645e9 0.149784
\(885\) −2.95805e10 −1.43451
\(886\) −2.76376e10 −1.33500
\(887\) −3.69325e10 −1.77695 −0.888477 0.458922i \(-0.848236\pi\)
−0.888477 + 0.458922i \(0.848236\pi\)
\(888\) 6.26222e9 0.300112
\(889\) 1.86965e10 0.892490
\(890\) 1.89540e10 0.901231
\(891\) 2.66600e10 1.26266
\(892\) −4.99415e9 −0.235605
\(893\) −1.49431e9 −0.0702200
\(894\) −9.68787e9 −0.453468
\(895\) 3.99763e10 1.86390
\(896\) 1.30231e9 0.0604835
\(897\) −5.55187e8 −0.0256842
\(898\) 9.15210e9 0.421749
\(899\) −3.08950e9 −0.141817
\(900\) −3.22722e9 −0.147564
\(901\) 2.49196e8 0.0113502
\(902\) −3.32960e10 −1.51067
\(903\) −9.76029e9 −0.441119
\(904\) −1.11076e10 −0.500070
\(905\) 2.74999e10 1.23328
\(906\) −1.89942e10 −0.848540
\(907\) 5.40746e9 0.240640 0.120320 0.992735i \(-0.461608\pi\)
0.120320 + 0.992735i \(0.461608\pi\)
\(908\) −3.84653e9 −0.170517
\(909\) 1.76246e9 0.0778300
\(910\) 2.88312e9 0.126829
\(911\) 4.05406e10 1.77654 0.888271 0.459319i \(-0.151906\pi\)
0.888271 + 0.459319i \(0.151906\pi\)
\(912\) 1.09054e9 0.0476057
\(913\) 7.70221e10 3.34940
\(914\) 1.37109e10 0.593955
\(915\) −4.47378e10 −1.93064
\(916\) 1.24302e10 0.534372
\(917\) 1.04787e10 0.448760
\(918\) 3.06090e10 1.30587
\(919\) −4.00001e10 −1.70003 −0.850015 0.526758i \(-0.823407\pi\)
−0.850015 + 0.526758i \(0.823407\pi\)
\(920\) −2.09642e9 −0.0887608
\(921\) 7.01804e9 0.296010
\(922\) −4.86961e9 −0.204614
\(923\) 2.87185e9 0.120214
\(924\) −1.28385e10 −0.535379
\(925\) 2.89283e10 1.20179
\(926\) 1.51830e10 0.628374
\(927\) −2.89152e9 −0.119219
\(928\) −3.39823e9 −0.139584
\(929\) 1.46712e10 0.600360 0.300180 0.953883i \(-0.402953\pi\)
0.300180 + 0.953883i \(0.402953\pi\)
\(930\) 4.06304e9 0.165638
\(931\) 2.85784e9 0.116068
\(932\) 1.76060e10 0.712369
\(933\) 3.73640e10 1.50615
\(934\) 6.47047e9 0.259849
\(935\) −1.14522e11 −4.58192
\(936\) −3.71591e8 −0.0148115
\(937\) 3.16419e9 0.125653 0.0628267 0.998024i \(-0.479988\pi\)
0.0628267 + 0.998024i \(0.479988\pi\)
\(938\) −1.10476e10 −0.437077
\(939\) 2.08511e10 0.821863
\(940\) −6.12374e9 −0.240475
\(941\) 9.23936e9 0.361475 0.180738 0.983531i \(-0.442152\pi\)
0.180738 + 0.983531i \(0.442152\pi\)
\(942\) 1.73668e10 0.676925
\(943\) 5.15049e9 0.200013
\(944\) −7.10704e9 −0.274971
\(945\) 2.86855e10 1.10574
\(946\) −2.44036e10 −0.937204
\(947\) 2.22265e10 0.850445 0.425222 0.905089i \(-0.360196\pi\)
0.425222 + 0.905089i \(0.360196\pi\)
\(948\) −1.54917e10 −0.590567
\(949\) 4.06806e9 0.154510
\(950\) 5.03774e9 0.190635
\(951\) 8.19729e9 0.309057
\(952\) −1.10048e10 −0.413382
\(953\) 1.34511e10 0.503423 0.251711 0.967802i \(-0.419007\pi\)
0.251711 + 0.967802i \(0.419007\pi\)
\(954\) −3.00993e7 −0.00112237
\(955\) 3.93413e10 1.46163
\(956\) 6.95550e8 0.0257469
\(957\) 3.35005e10 1.23555
\(958\) −1.62288e10 −0.596357
\(959\) −5.46979e9 −0.200265
\(960\) 4.46906e9 0.163030
\(961\) 8.87504e8 0.0322581
\(962\) 3.33089e9 0.120628
\(963\) 5.89201e9 0.212604
\(964\) 2.02411e10 0.727720
\(965\) −4.22074e10 −1.51197
\(966\) 1.98596e9 0.0708844
\(967\) 2.76468e10 0.983224 0.491612 0.870814i \(-0.336408\pi\)
0.491612 + 0.870814i \(0.336408\pi\)
\(968\) −2.21225e10 −0.783917
\(969\) −9.21525e9 −0.325367
\(970\) 4.46757e10 1.57170
\(971\) 7.45508e9 0.261327 0.130664 0.991427i \(-0.458289\pi\)
0.130664 + 0.991427i \(0.458289\pi\)
\(972\) −6.68123e9 −0.233359
\(973\) 3.05685e10 1.06385
\(974\) −7.89945e9 −0.273931
\(975\) 5.46728e9 0.188910
\(976\) −1.07488e10 −0.370070
\(977\) −2.64244e10 −0.906514 −0.453257 0.891380i \(-0.649738\pi\)
−0.453257 + 0.891380i \(0.649738\pi\)
\(978\) 8.41554e9 0.287671
\(979\) −4.48935e10 −1.52913
\(980\) 1.17115e10 0.397486
\(981\) 1.22332e10 0.413713
\(982\) −3.27517e10 −1.10368
\(983\) 1.18942e10 0.399390 0.199695 0.979858i \(-0.436005\pi\)
0.199695 + 0.979858i \(0.436005\pi\)
\(984\) −1.09796e10 −0.367370
\(985\) 5.82764e10 1.94297
\(986\) 2.87157e10 0.954004
\(987\) 5.80107e9 0.192043
\(988\) 5.80059e8 0.0191348
\(989\) 3.77494e9 0.124086
\(990\) 1.38326e10 0.453086
\(991\) −9.57215e9 −0.312429 −0.156215 0.987723i \(-0.549929\pi\)
−0.156215 + 0.987723i \(0.549929\pi\)
\(992\) 9.76191e8 0.0317500
\(993\) −7.04109e9 −0.228201
\(994\) −1.02729e10 −0.331773
\(995\) −8.84923e10 −2.84790
\(996\) 2.53986e10 0.814521
\(997\) −6.04369e10 −1.93139 −0.965694 0.259684i \(-0.916382\pi\)
−0.965694 + 0.259684i \(0.916382\pi\)
\(998\) 4.41094e8 0.0140467
\(999\) 3.31406e10 1.05167
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 62.8.a.c.1.2 5
3.2 odd 2 558.8.a.m.1.4 5
4.3 odd 2 496.8.a.c.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
62.8.a.c.1.2 5 1.1 even 1 trivial
496.8.a.c.1.4 5 4.3 odd 2
558.8.a.m.1.4 5 3.2 odd 2