Properties

Label 62.8.a.c
Level $62$
Weight $8$
Character orbit 62.a
Self dual yes
Analytic conductor $19.368$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [62,8,Mod(1,62)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(62, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("62.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 62 = 2 \cdot 31 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 62.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.3678715800\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 2617x^{3} - 17755x^{2} + 1742092x + 24429360 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 q^{2} + ( - \beta_{3} + 6) q^{3} + 64 q^{4} + ( - 2 \beta_{2} - 11 \beta_1 + 33) q^{5} + (8 \beta_{3} - 48) q^{6} + ( - \beta_{4} - 5 \beta_{3} + \cdots - 23) q^{7} - 512 q^{8} + ( - 35 \beta_{3} - 47 \beta_{2} + \cdots + 1851) q^{9}+ \cdots + ( - 70397 \beta_{4} - 173451 \beta_{3} + \cdots + 7428786) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 40 q^{2} + 28 q^{3} + 320 q^{4} + 152 q^{5} - 224 q^{6} - 132 q^{7} - 2560 q^{8} + 9149 q^{9} - 1216 q^{10} - 4218 q^{11} + 1792 q^{12} - 7014 q^{13} + 1056 q^{14} - 30666 q^{15} + 20480 q^{16} - 30180 q^{17}+ \cdots + 36785690 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 2617x^{3} - 17755x^{2} + 1742092x + 24429360 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{4} + 20\nu^{3} + 2237\nu^{2} - 25424\nu - 1219152 ) / 1352 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 5\nu^{4} - 126\nu^{3} - 10847\nu^{2} + 158580\nu + 6055824 ) / 2704 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} - 20\nu^{3} - 2068\nu^{2} + 23903\nu + 1042716 ) / 338 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{4} + 8\beta_{2} + 9\beta _1 + 1044 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 26\beta_{4} - 104\beta_{3} - 156\beta_{2} + 1327\beta _1 + 12036 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4994\beta_{4} - 2080\beta_{3} + 13424\beta_{2} + 21249\beta _1 + 1356996 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−20.5419
36.5857
−34.8901
42.0188
−22.1724
−8.00000 −69.3126 64.0000 413.350 554.501 −1175.22 −512.000 2617.23 −3306.80
1.2 −8.00000 −40.7973 64.0000 −417.873 326.379 −620.990 −512.000 −522.579 3342.99
1.3 −8.00000 −23.4184 64.0000 328.445 187.347 1228.01 −512.000 −1638.58 −2627.56
1.4 −8.00000 77.5058 64.0000 −471.579 −620.047 −401.066 −512.000 3820.15 3772.63
1.5 −8.00000 84.0225 64.0000 299.658 −672.180 837.264 −512.000 4872.77 −2397.26
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 62.8.a.c 5
3.b odd 2 1 558.8.a.m 5
4.b odd 2 1 496.8.a.c 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
62.8.a.c 5 1.a even 1 1 trivial
496.8.a.c 5 4.b odd 2 1
558.8.a.m 5 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{5} - 28T_{3}^{4} - 9650T_{3}^{3} + 62508T_{3}^{2} + 24510792T_{3} + 431251200 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(62))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 28 T^{4} + \cdots + 431251200 \) Copy content Toggle raw display
$5$ \( T^{5} + \cdots - 8016877035000 \) Copy content Toggle raw display
$7$ \( T^{5} + \cdots + 300940831353600 \) Copy content Toggle raw display
$11$ \( T^{5} + \cdots + 68\!\cdots\!20 \) Copy content Toggle raw display
$13$ \( T^{5} + \cdots - 71\!\cdots\!40 \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots + 14\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots + 97\!\cdots\!68 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots + 82\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 50\!\cdots\!64 \) Copy content Toggle raw display
$31$ \( (T + 29791)^{5} \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 13\!\cdots\!40 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 91\!\cdots\!72 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 70\!\cdots\!12 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 29\!\cdots\!32 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 75\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 26\!\cdots\!68 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 11\!\cdots\!36 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 20\!\cdots\!20 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 13\!\cdots\!52 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 16\!\cdots\!40 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 14\!\cdots\!60 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 20\!\cdots\!20 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 19\!\cdots\!32 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
show more
show less