Properties

Label 2-62-1.1-c7-0-0
Degree $2$
Conductor $62$
Sign $1$
Analytic cond. $19.3678$
Root an. cond. $4.40089$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s − 40.7·3-s + 64·4-s − 417.·5-s + 326.·6-s − 620.·7-s − 512·8-s − 522.·9-s + 3.34e3·10-s − 7.91e3·11-s − 2.61e3·12-s − 1.38e3·13-s + 4.96e3·14-s + 1.70e4·15-s + 4.09e3·16-s − 3.46e4·17-s + 4.18e3·18-s − 6.52e3·19-s − 2.67e4·20-s + 2.53e4·21-s + 6.33e4·22-s − 9.79e3·23-s + 2.08e4·24-s + 9.64e4·25-s + 1.11e4·26-s + 1.10e5·27-s − 3.97e4·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.872·3-s + 0.5·4-s − 1.49·5-s + 0.616·6-s − 0.684·7-s − 0.353·8-s − 0.238·9-s + 1.05·10-s − 1.79·11-s − 0.436·12-s − 0.175·13-s + 0.483·14-s + 1.30·15-s + 0.250·16-s − 1.70·17-s + 0.168·18-s − 0.218·19-s − 0.747·20-s + 0.596·21-s + 1.26·22-s − 0.167·23-s + 0.308·24-s + 1.23·25-s + 0.123·26-s + 1.08·27-s − 0.342·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62\)    =    \(2 \cdot 31\)
Sign: $1$
Analytic conductor: \(19.3678\)
Root analytic conductor: \(4.40089\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 62,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.002382153068\)
\(L(\frac12)\) \(\approx\) \(0.002382153068\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
31 \( 1 + 2.97e4T \)
good3 \( 1 + 40.7T + 2.18e3T^{2} \)
5 \( 1 + 417.T + 7.81e4T^{2} \)
7 \( 1 + 620.T + 8.23e5T^{2} \)
11 \( 1 + 7.91e3T + 1.94e7T^{2} \)
13 \( 1 + 1.38e3T + 6.27e7T^{2} \)
17 \( 1 + 3.46e4T + 4.10e8T^{2} \)
19 \( 1 + 6.52e3T + 8.93e8T^{2} \)
23 \( 1 + 9.79e3T + 3.40e9T^{2} \)
29 \( 1 - 1.03e5T + 1.72e10T^{2} \)
37 \( 1 - 2.99e5T + 9.49e10T^{2} \)
41 \( 1 + 5.25e5T + 1.94e11T^{2} \)
43 \( 1 + 3.85e5T + 2.71e11T^{2} \)
47 \( 1 - 2.28e5T + 5.06e11T^{2} \)
53 \( 1 + 7.19e3T + 1.17e12T^{2} \)
59 \( 1 + 1.73e6T + 2.48e12T^{2} \)
61 \( 1 + 2.62e6T + 3.14e12T^{2} \)
67 \( 1 + 2.22e6T + 6.06e12T^{2} \)
71 \( 1 + 2.06e6T + 9.09e12T^{2} \)
73 \( 1 + 2.92e6T + 1.10e13T^{2} \)
79 \( 1 - 5.93e6T + 1.92e13T^{2} \)
83 \( 1 + 9.72e6T + 2.71e13T^{2} \)
89 \( 1 - 5.66e6T + 4.42e13T^{2} \)
97 \( 1 - 1.33e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.18402797660072253186475829567, −12.09282825178758933246158724972, −11.16013396577547618969800939173, −10.39279142761971456308733789961, −8.662343314373201026788298251632, −7.63277654859942154501364671890, −6.38566289369355687387499095341, −4.74416666258073524725279468891, −2.86864830486608979768701266036, −0.03600905635187031383214116715, 0.03600905635187031383214116715, 2.86864830486608979768701266036, 4.74416666258073524725279468891, 6.38566289369355687387499095341, 7.63277654859942154501364671890, 8.662343314373201026788298251632, 10.39279142761971456308733789961, 11.16013396577547618969800939173, 12.09282825178758933246158724972, 13.18402797660072253186475829567

Graph of the $Z$-function along the critical line