Properties

Label 2-62-1.1-c7-0-4
Degree $2$
Conductor $62$
Sign $1$
Analytic cond. $19.3678$
Root an. cond. $4.40089$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 77.5·3-s + 64·4-s − 471.·5-s − 620.·6-s − 401.·7-s − 512·8-s + 3.82e3·9-s + 3.77e3·10-s + 2.59e3·11-s + 4.96e3·12-s + 1.35e4·13-s + 3.20e3·14-s − 3.65e4·15-s + 4.09e3·16-s + 1.19e4·17-s − 3.05e4·18-s + 2.67e4·19-s − 3.01e4·20-s − 3.10e4·21-s − 2.07e4·22-s − 1.58e4·23-s − 3.96e4·24-s + 1.44e5·25-s − 1.08e5·26-s + 1.26e5·27-s − 2.56e4·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.65·3-s + 0.5·4-s − 1.68·5-s − 1.17·6-s − 0.441·7-s − 0.353·8-s + 1.74·9-s + 1.19·10-s + 0.586·11-s + 0.828·12-s + 1.70·13-s + 0.312·14-s − 2.79·15-s + 0.250·16-s + 0.590·17-s − 1.23·18-s + 0.895·19-s − 0.843·20-s − 0.732·21-s − 0.414·22-s − 0.272·23-s − 0.585·24-s + 1.84·25-s − 1.20·26-s + 1.23·27-s − 0.220·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62\)    =    \(2 \cdot 31\)
Sign: $1$
Analytic conductor: \(19.3678\)
Root analytic conductor: \(4.40089\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 62,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.958058148\)
\(L(\frac12)\) \(\approx\) \(1.958058148\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
31 \( 1 + 2.97e4T \)
good3 \( 1 - 77.5T + 2.18e3T^{2} \)
5 \( 1 + 471.T + 7.81e4T^{2} \)
7 \( 1 + 401.T + 8.23e5T^{2} \)
11 \( 1 - 2.59e3T + 1.94e7T^{2} \)
13 \( 1 - 1.35e4T + 6.27e7T^{2} \)
17 \( 1 - 1.19e4T + 4.10e8T^{2} \)
19 \( 1 - 2.67e4T + 8.93e8T^{2} \)
23 \( 1 + 1.58e4T + 3.40e9T^{2} \)
29 \( 1 - 2.09e5T + 1.72e10T^{2} \)
37 \( 1 - 2.62e4T + 9.49e10T^{2} \)
41 \( 1 + 4.77e5T + 1.94e11T^{2} \)
43 \( 1 - 9.44e5T + 2.71e11T^{2} \)
47 \( 1 + 1.22e6T + 5.06e11T^{2} \)
53 \( 1 - 3.90e5T + 1.17e12T^{2} \)
59 \( 1 - 2.25e6T + 2.48e12T^{2} \)
61 \( 1 + 4.04e5T + 3.14e12T^{2} \)
67 \( 1 - 2.32e6T + 6.06e12T^{2} \)
71 \( 1 + 7.76e5T + 9.09e12T^{2} \)
73 \( 1 - 5.50e6T + 1.10e13T^{2} \)
79 \( 1 - 1.48e6T + 1.92e13T^{2} \)
83 \( 1 + 2.04e6T + 2.71e13T^{2} \)
89 \( 1 + 2.19e6T + 4.42e13T^{2} \)
97 \( 1 + 1.71e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.73671737646815897867589990354, −12.34334245086670939133336574122, −11.19745481170308546562347516970, −9.698956004120989844600033876347, −8.515307687427896070573862216489, −8.053009029877443457917126173521, −6.83764982337566587207023323332, −3.87307327377466591970747836605, −3.15777117520131615378624195888, −1.07289814588735869390369453757, 1.07289814588735869390369453757, 3.15777117520131615378624195888, 3.87307327377466591970747836605, 6.83764982337566587207023323332, 8.053009029877443457917126173521, 8.515307687427896070573862216489, 9.698956004120989844600033876347, 11.19745481170308546562347516970, 12.34334245086670939133336574122, 13.73671737646815897867589990354

Graph of the $Z$-function along the critical line