Defining parameters
Level: | \( N \) | \(=\) | \( 62 = 2 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 62.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(62))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 58 | 18 | 40 |
Cusp forms | 54 | 18 | 36 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(31\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(17\) | \(5\) | \(12\) | \(16\) | \(5\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(12\) | \(3\) | \(9\) | \(11\) | \(3\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(15\) | \(4\) | \(11\) | \(14\) | \(4\) | \(10\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(14\) | \(6\) | \(8\) | \(13\) | \(6\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(31\) | \(11\) | \(20\) | \(29\) | \(11\) | \(18\) | \(2\) | \(0\) | \(2\) | ||||
Minus space | \(-\) | \(27\) | \(7\) | \(20\) | \(25\) | \(7\) | \(18\) | \(2\) | \(0\) | \(2\) |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(62))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 31 | |||||||
62.8.a.a | $3$ | $19.368$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(-24\) | \(-26\) | \(152\) | \(-1504\) | $+$ | $-$ | \(q-8q^{2}+(-9-\beta _{1})q^{3}+2^{6}q^{4}+(50+\cdots)q^{5}+\cdots\) | |
62.8.a.b | $4$ | $19.368$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(32\) | \(-68\) | \(-334\) | \(-948\) | $-$ | $+$ | \(q+8q^{2}+(-17+\beta _{1}+\beta _{3})q^{3}+2^{6}q^{4}+\cdots\) | |
62.8.a.c | $5$ | $19.368$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(-40\) | \(28\) | \(152\) | \(-132\) | $+$ | $+$ | \(q-8q^{2}+(6-\beta _{3})q^{3}+2^{6}q^{4}+(33-11\beta _{1}+\cdots)q^{5}+\cdots\) | |
62.8.a.d | $6$ | $19.368$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(48\) | \(40\) | \(166\) | \(1796\) | $-$ | $-$ | \(q+8q^{2}+(7-\beta _{1})q^{3}+2^{6}q^{4}+(29-3\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(62))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(62)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 2}\)