Properties

Label 62.8.a
Level $62$
Weight $8$
Character orbit 62.a
Rep. character $\chi_{62}(1,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $4$
Sturm bound $64$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 62 = 2 \cdot 31 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 62.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(64\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(62))\).

Total New Old
Modular forms 58 18 40
Cusp forms 54 18 36
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(31\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(17\)\(5\)\(12\)\(16\)\(5\)\(11\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(12\)\(3\)\(9\)\(11\)\(3\)\(8\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(15\)\(4\)\(11\)\(14\)\(4\)\(10\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(14\)\(6\)\(8\)\(13\)\(6\)\(7\)\(1\)\(0\)\(1\)
Plus space\(+\)\(31\)\(11\)\(20\)\(29\)\(11\)\(18\)\(2\)\(0\)\(2\)
Minus space\(-\)\(27\)\(7\)\(20\)\(25\)\(7\)\(18\)\(2\)\(0\)\(2\)

Trace form

\( 18 q + 16 q^{2} - 26 q^{3} + 1152 q^{4} + 136 q^{5} - 240 q^{6} - 788 q^{7} + 1024 q^{8} + 17266 q^{9} - 3776 q^{10} - 7482 q^{11} - 1664 q^{12} + 5838 q^{13} + 19872 q^{14} - 2356 q^{15} + 73728 q^{16}+ \cdots + 28181314 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(62))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 31
62.8.a.a 62.a 1.a $3$ $19.368$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 62.8.a.a \(-24\) \(-26\) \(152\) \(-1504\) $+$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+(-9-\beta _{1})q^{3}+2^{6}q^{4}+(50+\cdots)q^{5}+\cdots\)
62.8.a.b 62.a 1.a $4$ $19.368$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 62.8.a.b \(32\) \(-68\) \(-334\) \(-948\) $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+(-17+\beta _{1}+\beta _{3})q^{3}+2^{6}q^{4}+\cdots\)
62.8.a.c 62.a 1.a $5$ $19.368$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 62.8.a.c \(-40\) \(28\) \(152\) \(-132\) $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+(6-\beta _{3})q^{3}+2^{6}q^{4}+(33-11\beta _{1}+\cdots)q^{5}+\cdots\)
62.8.a.d 62.a 1.a $6$ $19.368$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 62.8.a.d \(48\) \(40\) \(166\) \(1796\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+(7-\beta _{1})q^{3}+2^{6}q^{4}+(29-3\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(62))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(62)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 2}\)