Properties

Label 62.6.a.b.1.2
Level $62$
Weight $6$
Character 62.1
Self dual yes
Analytic conductor $9.944$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [62,6,Mod(1,62)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(62, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("62.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 62 = 2 \cdot 31 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 62.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.94379682840\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.64575\) of defining polynomial
Character \(\chi\) \(=\) 62.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +1.29150 q^{3} +16.0000 q^{4} -65.5830 q^{5} +5.16601 q^{6} -195.288 q^{7} +64.0000 q^{8} -241.332 q^{9} -262.332 q^{10} +309.984 q^{11} +20.6640 q^{12} -173.129 q^{13} -781.150 q^{14} -84.7006 q^{15} +256.000 q^{16} -852.110 q^{17} -965.328 q^{18} +1712.40 q^{19} -1049.33 q^{20} -252.214 q^{21} +1239.94 q^{22} -4592.57 q^{23} +82.6562 q^{24} +1176.13 q^{25} -692.518 q^{26} -625.516 q^{27} -3124.60 q^{28} +5710.27 q^{29} -338.802 q^{30} +961.000 q^{31} +1024.00 q^{32} +400.345 q^{33} -3408.44 q^{34} +12807.5 q^{35} -3861.31 q^{36} -8135.04 q^{37} +6849.59 q^{38} -223.597 q^{39} -4197.31 q^{40} -7341.41 q^{41} -1008.86 q^{42} +7371.18 q^{43} +4959.75 q^{44} +15827.3 q^{45} -18370.3 q^{46} +5723.32 q^{47} +330.625 q^{48} +21330.2 q^{49} +4704.52 q^{50} -1100.50 q^{51} -2770.07 q^{52} -178.889 q^{53} -2502.06 q^{54} -20329.7 q^{55} -12498.4 q^{56} +2211.57 q^{57} +22841.1 q^{58} +43351.1 q^{59} -1355.21 q^{60} +8809.09 q^{61} +3844.00 q^{62} +47129.1 q^{63} +4096.00 q^{64} +11354.3 q^{65} +1601.38 q^{66} -32810.7 q^{67} -13633.8 q^{68} -5931.32 q^{69} +51230.2 q^{70} -75149.7 q^{71} -15445.2 q^{72} -72572.8 q^{73} -32540.2 q^{74} +1518.98 q^{75} +27398.4 q^{76} -60536.1 q^{77} -894.388 q^{78} -90109.7 q^{79} -16789.2 q^{80} +57835.8 q^{81} -29365.6 q^{82} -93947.8 q^{83} -4035.43 q^{84} +55883.9 q^{85} +29484.7 q^{86} +7374.82 q^{87} +19839.0 q^{88} +26373.1 q^{89} +63309.1 q^{90} +33810.0 q^{91} -73481.2 q^{92} +1241.13 q^{93} +22893.3 q^{94} -112304. q^{95} +1322.50 q^{96} +76137.4 q^{97} +85320.9 q^{98} -74809.1 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 8 q^{3} + 32 q^{4} - 110 q^{5} - 32 q^{6} - 126 q^{7} + 128 q^{8} - 398 q^{9} - 440 q^{10} - 396 q^{11} - 128 q^{12} - 632 q^{13} - 504 q^{14} + 328 q^{15} + 512 q^{16} - 720 q^{17} - 1592 q^{18}+ \cdots + 35796 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 1.29150 0.0828499 0.0414250 0.999142i \(-0.486810\pi\)
0.0414250 + 0.999142i \(0.486810\pi\)
\(4\) 16.0000 0.500000
\(5\) −65.5830 −1.17318 −0.586592 0.809882i \(-0.699531\pi\)
−0.586592 + 0.809882i \(0.699531\pi\)
\(6\) 5.16601 0.0585837
\(7\) −195.288 −1.50636 −0.753181 0.657813i \(-0.771482\pi\)
−0.753181 + 0.657813i \(0.771482\pi\)
\(8\) 64.0000 0.353553
\(9\) −241.332 −0.993136
\(10\) −262.332 −0.829567
\(11\) 309.984 0.772428 0.386214 0.922409i \(-0.373783\pi\)
0.386214 + 0.922409i \(0.373783\pi\)
\(12\) 20.6640 0.0414250
\(13\) −173.129 −0.284127 −0.142064 0.989858i \(-0.545374\pi\)
−0.142064 + 0.989858i \(0.545374\pi\)
\(14\) −781.150 −1.06516
\(15\) −84.7006 −0.0971983
\(16\) 256.000 0.250000
\(17\) −852.110 −0.715111 −0.357555 0.933892i \(-0.616390\pi\)
−0.357555 + 0.933892i \(0.616390\pi\)
\(18\) −965.328 −0.702253
\(19\) 1712.40 1.08823 0.544115 0.839011i \(-0.316865\pi\)
0.544115 + 0.839011i \(0.316865\pi\)
\(20\) −1049.33 −0.586592
\(21\) −252.214 −0.124802
\(22\) 1239.94 0.546189
\(23\) −4592.57 −1.81024 −0.905121 0.425154i \(-0.860220\pi\)
−0.905121 + 0.425154i \(0.860220\pi\)
\(24\) 82.6562 0.0292919
\(25\) 1176.13 0.376362
\(26\) −692.518 −0.200908
\(27\) −625.516 −0.165131
\(28\) −3124.60 −0.753181
\(29\) 5710.27 1.26084 0.630422 0.776253i \(-0.282882\pi\)
0.630422 + 0.776253i \(0.282882\pi\)
\(30\) −338.802 −0.0687295
\(31\) 961.000 0.179605
\(32\) 1024.00 0.176777
\(33\) 400.345 0.0639956
\(34\) −3408.44 −0.505660
\(35\) 12807.5 1.76724
\(36\) −3861.31 −0.496568
\(37\) −8135.04 −0.976912 −0.488456 0.872589i \(-0.662440\pi\)
−0.488456 + 0.872589i \(0.662440\pi\)
\(38\) 6849.59 0.769495
\(39\) −223.597 −0.0235399
\(40\) −4197.31 −0.414783
\(41\) −7341.41 −0.682056 −0.341028 0.940053i \(-0.610775\pi\)
−0.341028 + 0.940053i \(0.610775\pi\)
\(42\) −1008.86 −0.0882484
\(43\) 7371.18 0.607947 0.303974 0.952680i \(-0.401687\pi\)
0.303974 + 0.952680i \(0.401687\pi\)
\(44\) 4959.75 0.386214
\(45\) 15827.3 1.16513
\(46\) −18370.3 −1.28003
\(47\) 5723.32 0.377923 0.188962 0.981984i \(-0.439488\pi\)
0.188962 + 0.981984i \(0.439488\pi\)
\(48\) 330.625 0.0207125
\(49\) 21330.2 1.26913
\(50\) 4704.52 0.266128
\(51\) −1100.50 −0.0592469
\(52\) −2770.07 −0.142064
\(53\) −178.889 −0.00874772 −0.00437386 0.999990i \(-0.501392\pi\)
−0.00437386 + 0.999990i \(0.501392\pi\)
\(54\) −2502.06 −0.116765
\(55\) −20329.7 −0.906200
\(56\) −12498.4 −0.532580
\(57\) 2211.57 0.0901598
\(58\) 22841.1 0.891551
\(59\) 43351.1 1.62132 0.810662 0.585514i \(-0.199107\pi\)
0.810662 + 0.585514i \(0.199107\pi\)
\(60\) −1355.21 −0.0485991
\(61\) 8809.09 0.303114 0.151557 0.988448i \(-0.451571\pi\)
0.151557 + 0.988448i \(0.451571\pi\)
\(62\) 3844.00 0.127000
\(63\) 47129.1 1.49602
\(64\) 4096.00 0.125000
\(65\) 11354.3 0.333333
\(66\) 1601.38 0.0452517
\(67\) −32810.7 −0.892952 −0.446476 0.894796i \(-0.647321\pi\)
−0.446476 + 0.894796i \(0.647321\pi\)
\(68\) −13633.8 −0.357555
\(69\) −5931.32 −0.149978
\(70\) 51230.2 1.24963
\(71\) −75149.7 −1.76922 −0.884609 0.466334i \(-0.845574\pi\)
−0.884609 + 0.466334i \(0.845574\pi\)
\(72\) −15445.2 −0.351127
\(73\) −72572.8 −1.59392 −0.796961 0.604031i \(-0.793560\pi\)
−0.796961 + 0.604031i \(0.793560\pi\)
\(74\) −32540.2 −0.690781
\(75\) 1518.98 0.0311815
\(76\) 27398.4 0.544115
\(77\) −60536.1 −1.16356
\(78\) −894.388 −0.0166452
\(79\) −90109.7 −1.62444 −0.812220 0.583351i \(-0.801741\pi\)
−0.812220 + 0.583351i \(0.801741\pi\)
\(80\) −16789.2 −0.293296
\(81\) 57835.8 0.979455
\(82\) −29365.6 −0.482286
\(83\) −93947.8 −1.49689 −0.748447 0.663194i \(-0.769200\pi\)
−0.748447 + 0.663194i \(0.769200\pi\)
\(84\) −4035.43 −0.0624010
\(85\) 55883.9 0.838957
\(86\) 29484.7 0.429884
\(87\) 7374.82 0.104461
\(88\) 19839.0 0.273094
\(89\) 26373.1 0.352928 0.176464 0.984307i \(-0.443534\pi\)
0.176464 + 0.984307i \(0.443534\pi\)
\(90\) 63309.1 0.823872
\(91\) 33810.0 0.427998
\(92\) −73481.2 −0.905121
\(93\) 1241.13 0.0148803
\(94\) 22893.3 0.267232
\(95\) −112304. −1.27669
\(96\) 1322.50 0.0146459
\(97\) 76137.4 0.821616 0.410808 0.911722i \(-0.365247\pi\)
0.410808 + 0.911722i \(0.365247\pi\)
\(98\) 85320.9 0.897409
\(99\) −74809.1 −0.767126
\(100\) 18818.1 0.188181
\(101\) 51708.1 0.504377 0.252188 0.967678i \(-0.418850\pi\)
0.252188 + 0.967678i \(0.418850\pi\)
\(102\) −4402.01 −0.0418939
\(103\) −143290. −1.33083 −0.665414 0.746474i \(-0.731745\pi\)
−0.665414 + 0.746474i \(0.731745\pi\)
\(104\) −11080.3 −0.100454
\(105\) 16541.0 0.146416
\(106\) −715.558 −0.00618557
\(107\) −96262.8 −0.812829 −0.406414 0.913689i \(-0.633221\pi\)
−0.406414 + 0.913689i \(0.633221\pi\)
\(108\) −10008.3 −0.0825656
\(109\) −96625.4 −0.778977 −0.389489 0.921031i \(-0.627348\pi\)
−0.389489 + 0.921031i \(0.627348\pi\)
\(110\) −81318.8 −0.640780
\(111\) −10506.4 −0.0809371
\(112\) −49993.6 −0.376591
\(113\) 224729. 1.65563 0.827815 0.561002i \(-0.189584\pi\)
0.827815 + 0.561002i \(0.189584\pi\)
\(114\) 8846.27 0.0637526
\(115\) 301195. 2.12375
\(116\) 91364.3 0.630422
\(117\) 41781.7 0.282177
\(118\) 173404. 1.14645
\(119\) 166406. 1.07722
\(120\) −5420.84 −0.0343648
\(121\) −64960.8 −0.403355
\(122\) 35236.4 0.214334
\(123\) −9481.45 −0.0565083
\(124\) 15376.0 0.0898027
\(125\) 127813. 0.731643
\(126\) 188517. 1.05785
\(127\) −27227.6 −0.149796 −0.0748979 0.997191i \(-0.523863\pi\)
−0.0748979 + 0.997191i \(0.523863\pi\)
\(128\) 16384.0 0.0883883
\(129\) 9519.90 0.0503684
\(130\) 45417.4 0.235702
\(131\) −9919.84 −0.0505041 −0.0252520 0.999681i \(-0.508039\pi\)
−0.0252520 + 0.999681i \(0.508039\pi\)
\(132\) 6405.53 0.0319978
\(133\) −334410. −1.63927
\(134\) −131243. −0.631412
\(135\) 41023.2 0.193729
\(136\) −54535.0 −0.252830
\(137\) 306512. 1.39523 0.697616 0.716471i \(-0.254244\pi\)
0.697616 + 0.716471i \(0.254244\pi\)
\(138\) −23725.3 −0.106051
\(139\) 244113. 1.07165 0.535825 0.844329i \(-0.320001\pi\)
0.535825 + 0.844329i \(0.320001\pi\)
\(140\) 204921. 0.883621
\(141\) 7391.68 0.0313109
\(142\) −300599. −1.25103
\(143\) −53667.4 −0.219468
\(144\) −61781.0 −0.248284
\(145\) −374496. −1.47920
\(146\) −290291. −1.12707
\(147\) 27548.1 0.105147
\(148\) −130161. −0.488456
\(149\) −265675. −0.980360 −0.490180 0.871621i \(-0.663069\pi\)
−0.490180 + 0.871621i \(0.663069\pi\)
\(150\) 6075.90 0.0220487
\(151\) −37210.4 −0.132807 −0.0664036 0.997793i \(-0.521152\pi\)
−0.0664036 + 0.997793i \(0.521152\pi\)
\(152\) 109594. 0.384748
\(153\) 205641. 0.710202
\(154\) −242144. −0.822759
\(155\) −63025.3 −0.210710
\(156\) −3577.55 −0.0117700
\(157\) 352648. 1.14181 0.570903 0.821017i \(-0.306593\pi\)
0.570903 + 0.821017i \(0.306593\pi\)
\(158\) −360439. −1.14865
\(159\) −231.036 −0.000724748 0
\(160\) −67157.0 −0.207392
\(161\) 896873. 2.72688
\(162\) 231343. 0.692579
\(163\) −590432. −1.74061 −0.870305 0.492514i \(-0.836078\pi\)
−0.870305 + 0.492514i \(0.836078\pi\)
\(164\) −117463. −0.341028
\(165\) −26255.9 −0.0750786
\(166\) −375791. −1.05846
\(167\) 68521.1 0.190122 0.0950611 0.995471i \(-0.469695\pi\)
0.0950611 + 0.995471i \(0.469695\pi\)
\(168\) −16141.7 −0.0441242
\(169\) −341319. −0.919272
\(170\) 223536. 0.593232
\(171\) −413257. −1.08076
\(172\) 117939. 0.303974
\(173\) 99010.0 0.251515 0.125758 0.992061i \(-0.459864\pi\)
0.125758 + 0.992061i \(0.459864\pi\)
\(174\) 29499.3 0.0738650
\(175\) −229684. −0.566937
\(176\) 79356.0 0.193107
\(177\) 55988.1 0.134327
\(178\) 105492. 0.249558
\(179\) 54258.8 0.126572 0.0632860 0.997995i \(-0.479842\pi\)
0.0632860 + 0.997995i \(0.479842\pi\)
\(180\) 253236. 0.582566
\(181\) −557488. −1.26485 −0.632425 0.774622i \(-0.717940\pi\)
−0.632425 + 0.774622i \(0.717940\pi\)
\(182\) 135240. 0.302640
\(183\) 11377.0 0.0251130
\(184\) −293925. −0.640017
\(185\) 533520. 1.14610
\(186\) 4964.54 0.0105220
\(187\) −264141. −0.552371
\(188\) 91573.1 0.188962
\(189\) 122156. 0.248747
\(190\) −449217. −0.902760
\(191\) −138605. −0.274912 −0.137456 0.990508i \(-0.543893\pi\)
−0.137456 + 0.990508i \(0.543893\pi\)
\(192\) 5289.99 0.0103562
\(193\) 243571. 0.470688 0.235344 0.971912i \(-0.424378\pi\)
0.235344 + 0.971912i \(0.424378\pi\)
\(194\) 304550. 0.580970
\(195\) 14664.2 0.0276166
\(196\) 341284. 0.634564
\(197\) 528257. 0.969794 0.484897 0.874571i \(-0.338857\pi\)
0.484897 + 0.874571i \(0.338857\pi\)
\(198\) −299237. −0.542440
\(199\) −114329. −0.204656 −0.102328 0.994751i \(-0.532629\pi\)
−0.102328 + 0.994751i \(0.532629\pi\)
\(200\) 75272.4 0.133064
\(201\) −42375.1 −0.0739810
\(202\) 206832. 0.356648
\(203\) −1.11514e6 −1.89929
\(204\) −17608.0 −0.0296234
\(205\) 481472. 0.800177
\(206\) −573159. −0.941038
\(207\) 1.10834e6 1.79782
\(208\) −44321.1 −0.0710318
\(209\) 530817. 0.840579
\(210\) 66163.9 0.103532
\(211\) −202926. −0.313785 −0.156892 0.987616i \(-0.550148\pi\)
−0.156892 + 0.987616i \(0.550148\pi\)
\(212\) −2862.23 −0.00437386
\(213\) −97056.0 −0.146580
\(214\) −385051. −0.574757
\(215\) −483424. −0.713234
\(216\) −40033.0 −0.0583827
\(217\) −187671. −0.270551
\(218\) −386501. −0.550820
\(219\) −93728.0 −0.132056
\(220\) −325275. −0.453100
\(221\) 147525. 0.203182
\(222\) −42025.7 −0.0572312
\(223\) 241672. 0.325435 0.162717 0.986673i \(-0.447974\pi\)
0.162717 + 0.986673i \(0.447974\pi\)
\(224\) −199974. −0.266290
\(225\) −283838. −0.373778
\(226\) 898916. 1.17071
\(227\) −214659. −0.276493 −0.138246 0.990398i \(-0.544147\pi\)
−0.138246 + 0.990398i \(0.544147\pi\)
\(228\) 35385.1 0.0450799
\(229\) 963826. 1.21453 0.607267 0.794498i \(-0.292266\pi\)
0.607267 + 0.794498i \(0.292266\pi\)
\(230\) 1.20478e6 1.50172
\(231\) −78182.5 −0.0964006
\(232\) 365457. 0.445776
\(233\) 1.50308e6 1.81382 0.906909 0.421327i \(-0.138435\pi\)
0.906909 + 0.421327i \(0.138435\pi\)
\(234\) 167127. 0.199529
\(235\) −375353. −0.443374
\(236\) 693618. 0.810662
\(237\) −116377. −0.134585
\(238\) 665626. 0.761707
\(239\) −501423. −0.567819 −0.283909 0.958851i \(-0.591632\pi\)
−0.283909 + 0.958851i \(0.591632\pi\)
\(240\) −21683.4 −0.0242996
\(241\) −1.28032e6 −1.41996 −0.709979 0.704223i \(-0.751296\pi\)
−0.709979 + 0.704223i \(0.751296\pi\)
\(242\) −259843. −0.285215
\(243\) 226696. 0.246279
\(244\) 140945. 0.151557
\(245\) −1.39890e6 −1.48892
\(246\) −37925.8 −0.0399574
\(247\) −296467. −0.309196
\(248\) 61504.0 0.0635001
\(249\) −121334. −0.124018
\(250\) 511251. 0.517349
\(251\) 1.79494e6 1.79832 0.899160 0.437621i \(-0.144179\pi\)
0.899160 + 0.437621i \(0.144179\pi\)
\(252\) 754066. 0.748011
\(253\) −1.42363e6 −1.39828
\(254\) −108910. −0.105922
\(255\) 72174.2 0.0695075
\(256\) 65536.0 0.0625000
\(257\) −764457. −0.721972 −0.360986 0.932571i \(-0.617560\pi\)
−0.360986 + 0.932571i \(0.617560\pi\)
\(258\) 38079.6 0.0356158
\(259\) 1.58867e6 1.47158
\(260\) 181670. 0.166667
\(261\) −1.37807e6 −1.25219
\(262\) −39679.4 −0.0357118
\(263\) −192800. −0.171877 −0.0859385 0.996300i \(-0.527389\pi\)
−0.0859385 + 0.996300i \(0.527389\pi\)
\(264\) 25622.1 0.0226259
\(265\) 11732.1 0.0102627
\(266\) −1.33764e6 −1.15914
\(267\) 34060.9 0.0292401
\(268\) −524971. −0.446476
\(269\) 1.19600e6 1.00775 0.503873 0.863778i \(-0.331908\pi\)
0.503873 + 0.863778i \(0.331908\pi\)
\(270\) 164093. 0.136987
\(271\) 498025. 0.411934 0.205967 0.978559i \(-0.433966\pi\)
0.205967 + 0.978559i \(0.433966\pi\)
\(272\) −218140. −0.178778
\(273\) 43665.7 0.0354596
\(274\) 1.22605e6 0.986579
\(275\) 364582. 0.290712
\(276\) −94901.2 −0.0749892
\(277\) −196572. −0.153929 −0.0769646 0.997034i \(-0.524523\pi\)
−0.0769646 + 0.997034i \(0.524523\pi\)
\(278\) 976450. 0.757771
\(279\) −231920. −0.178372
\(280\) 819683. 0.624814
\(281\) −1.51427e6 −1.14403 −0.572015 0.820243i \(-0.693838\pi\)
−0.572015 + 0.820243i \(0.693838\pi\)
\(282\) 29566.7 0.0221402
\(283\) 185214. 0.137470 0.0687350 0.997635i \(-0.478104\pi\)
0.0687350 + 0.997635i \(0.478104\pi\)
\(284\) −1.20239e6 −0.884609
\(285\) −145041. −0.105774
\(286\) −214670. −0.155187
\(287\) 1.43369e6 1.02742
\(288\) −247124. −0.175563
\(289\) −693766. −0.488617
\(290\) −1.49799e6 −1.04595
\(291\) 98331.6 0.0680708
\(292\) −1.16117e6 −0.796961
\(293\) 1.94301e6 1.32223 0.661113 0.750286i \(-0.270084\pi\)
0.661113 + 0.750286i \(0.270084\pi\)
\(294\) 110192. 0.0743503
\(295\) −2.84310e6 −1.90211
\(296\) −520643. −0.345391
\(297\) −193900. −0.127552
\(298\) −1.06270e6 −0.693219
\(299\) 795110. 0.514339
\(300\) 24303.6 0.0155908
\(301\) −1.43950e6 −0.915789
\(302\) −148841. −0.0939088
\(303\) 66781.1 0.0417876
\(304\) 438374. 0.272058
\(305\) −577727. −0.355609
\(306\) 822565. 0.502189
\(307\) −1.31431e6 −0.795886 −0.397943 0.917410i \(-0.630276\pi\)
−0.397943 + 0.917410i \(0.630276\pi\)
\(308\) −968577. −0.581778
\(309\) −185059. −0.110259
\(310\) −252101. −0.148995
\(311\) 1.53845e6 0.901953 0.450976 0.892536i \(-0.351076\pi\)
0.450976 + 0.892536i \(0.351076\pi\)
\(312\) −14310.2 −0.00832261
\(313\) −2.73153e6 −1.57596 −0.787980 0.615701i \(-0.788873\pi\)
−0.787980 + 0.615701i \(0.788873\pi\)
\(314\) 1.41059e6 0.807379
\(315\) −3.09087e6 −1.75511
\(316\) −1.44176e6 −0.812220
\(317\) 1.57517e6 0.880397 0.440199 0.897900i \(-0.354908\pi\)
0.440199 + 0.897900i \(0.354908\pi\)
\(318\) −924.145 −0.000512474 0
\(319\) 1.77009e6 0.973911
\(320\) −268628. −0.146648
\(321\) −124324. −0.0673428
\(322\) 3.58749e6 1.92820
\(323\) −1.45915e6 −0.778205
\(324\) 925373. 0.489727
\(325\) −203623. −0.106935
\(326\) −2.36173e6 −1.23080
\(327\) −124792. −0.0645382
\(328\) −469850. −0.241143
\(329\) −1.11769e6 −0.569289
\(330\) −105023. −0.0530886
\(331\) 1.17314e6 0.588546 0.294273 0.955721i \(-0.404922\pi\)
0.294273 + 0.955721i \(0.404922\pi\)
\(332\) −1.50316e6 −0.748447
\(333\) 1.96325e6 0.970206
\(334\) 274084. 0.134437
\(335\) 2.15182e6 1.04760
\(336\) −64566.9 −0.0312005
\(337\) 3.02853e6 1.45264 0.726319 0.687358i \(-0.241230\pi\)
0.726319 + 0.687358i \(0.241230\pi\)
\(338\) −1.36528e6 −0.650023
\(339\) 290238. 0.137169
\(340\) 894143. 0.419478
\(341\) 297895. 0.138732
\(342\) −1.65303e6 −0.764213
\(343\) −883331. −0.405404
\(344\) 471756. 0.214942
\(345\) 388994. 0.175952
\(346\) 396040. 0.177848
\(347\) 585540. 0.261055 0.130528 0.991445i \(-0.458333\pi\)
0.130528 + 0.991445i \(0.458333\pi\)
\(348\) 117997. 0.0522304
\(349\) 683086. 0.300201 0.150100 0.988671i \(-0.452040\pi\)
0.150100 + 0.988671i \(0.452040\pi\)
\(350\) −918735. −0.400885
\(351\) 108295. 0.0469182
\(352\) 317424. 0.136547
\(353\) −15814.1 −0.00675472 −0.00337736 0.999994i \(-0.501075\pi\)
−0.00337736 + 0.999994i \(0.501075\pi\)
\(354\) 223952. 0.0949833
\(355\) 4.92854e6 2.07562
\(356\) 421970. 0.176464
\(357\) 214914. 0.0892473
\(358\) 217035. 0.0895000
\(359\) −2.80905e6 −1.15033 −0.575166 0.818037i \(-0.695063\pi\)
−0.575166 + 0.818037i \(0.695063\pi\)
\(360\) 1.01295e6 0.411936
\(361\) 456209. 0.184245
\(362\) −2.22995e6 −0.894384
\(363\) −83897.0 −0.0334180
\(364\) 540960. 0.213999
\(365\) 4.75955e6 1.86996
\(366\) 45507.9 0.0177576
\(367\) 1.21884e6 0.472371 0.236185 0.971708i \(-0.424103\pi\)
0.236185 + 0.971708i \(0.424103\pi\)
\(368\) −1.17570e6 −0.452560
\(369\) 1.77172e6 0.677374
\(370\) 2.13408e6 0.810414
\(371\) 34934.9 0.0131772
\(372\) 19858.1 0.00744014
\(373\) −4.15198e6 −1.54519 −0.772596 0.634897i \(-0.781042\pi\)
−0.772596 + 0.634897i \(0.781042\pi\)
\(374\) −1.05656e6 −0.390586
\(375\) 165070. 0.0606165
\(376\) 366293. 0.133616
\(377\) −988615. −0.358240
\(378\) 488622. 0.175891
\(379\) 3.61806e6 1.29383 0.646915 0.762562i \(-0.276059\pi\)
0.646915 + 0.762562i \(0.276059\pi\)
\(380\) −1.79687e6 −0.638347
\(381\) −35164.5 −0.0124106
\(382\) −554419. −0.194392
\(383\) −2.06786e6 −0.720318 −0.360159 0.932891i \(-0.617277\pi\)
−0.360159 + 0.932891i \(0.617277\pi\)
\(384\) 21160.0 0.00732297
\(385\) 3.97014e6 1.36507
\(386\) 974286. 0.332827
\(387\) −1.77890e6 −0.603774
\(388\) 1.21820e6 0.410808
\(389\) −5.52964e6 −1.85278 −0.926388 0.376570i \(-0.877104\pi\)
−0.926388 + 0.376570i \(0.877104\pi\)
\(390\) 58656.7 0.0195279
\(391\) 3.91338e6 1.29452
\(392\) 1.36513e6 0.448704
\(393\) −12811.5 −0.00418426
\(394\) 2.11303e6 0.685748
\(395\) 5.90966e6 1.90577
\(396\) −1.19695e6 −0.383563
\(397\) −59019.4 −0.0187940 −0.00939699 0.999956i \(-0.502991\pi\)
−0.00939699 + 0.999956i \(0.502991\pi\)
\(398\) −457317. −0.144714
\(399\) −431892. −0.135813
\(400\) 301089. 0.0940904
\(401\) 4.45947e6 1.38491 0.692456 0.721460i \(-0.256529\pi\)
0.692456 + 0.721460i \(0.256529\pi\)
\(402\) −169500. −0.0523125
\(403\) −166377. −0.0510307
\(404\) 827329. 0.252188
\(405\) −3.79305e6 −1.14908
\(406\) −4.46058e6 −1.34300
\(407\) −2.52173e6 −0.754594
\(408\) −70432.1 −0.0209469
\(409\) 4.44468e6 1.31381 0.656905 0.753974i \(-0.271865\pi\)
0.656905 + 0.753974i \(0.271865\pi\)
\(410\) 1.92589e6 0.565811
\(411\) 395862. 0.115595
\(412\) −2.29264e6 −0.665414
\(413\) −8.46593e6 −2.44230
\(414\) 4.43334e6 1.27125
\(415\) 6.16138e6 1.75613
\(416\) −177285. −0.0502270
\(417\) 315272. 0.0887862
\(418\) 2.12327e6 0.594379
\(419\) −3.69305e6 −1.02766 −0.513831 0.857892i \(-0.671774\pi\)
−0.513831 + 0.857892i \(0.671774\pi\)
\(420\) 264656. 0.0732079
\(421\) −4.14595e6 −1.14004 −0.570018 0.821632i \(-0.693064\pi\)
−0.570018 + 0.821632i \(0.693064\pi\)
\(422\) −811705. −0.221879
\(423\) −1.38122e6 −0.375329
\(424\) −11448.9 −0.00309279
\(425\) −1.00219e6 −0.269140
\(426\) −388224. −0.103647
\(427\) −1.72031e6 −0.456600
\(428\) −1.54020e6 −0.406414
\(429\) −69311.6 −0.0181829
\(430\) −1.93370e6 −0.504333
\(431\) −1.82807e6 −0.474022 −0.237011 0.971507i \(-0.576168\pi\)
−0.237011 + 0.971507i \(0.576168\pi\)
\(432\) −160132. −0.0412828
\(433\) −6.74348e6 −1.72848 −0.864240 0.503080i \(-0.832200\pi\)
−0.864240 + 0.503080i \(0.832200\pi\)
\(434\) −750685. −0.191308
\(435\) −483663. −0.122552
\(436\) −1.54601e6 −0.389489
\(437\) −7.86432e6 −1.96996
\(438\) −374912. −0.0933779
\(439\) 476092. 0.117904 0.0589521 0.998261i \(-0.481224\pi\)
0.0589521 + 0.998261i \(0.481224\pi\)
\(440\) −1.30110e6 −0.320390
\(441\) −5.14767e6 −1.26042
\(442\) 590101. 0.143672
\(443\) 4.07935e6 0.987602 0.493801 0.869575i \(-0.335607\pi\)
0.493801 + 0.869575i \(0.335607\pi\)
\(444\) −168103. −0.0404685
\(445\) −1.72963e6 −0.414050
\(446\) 966688. 0.230117
\(447\) −343120. −0.0812228
\(448\) −799898. −0.188295
\(449\) 737645. 0.172676 0.0863379 0.996266i \(-0.472484\pi\)
0.0863379 + 0.996266i \(0.472484\pi\)
\(450\) −1.13535e6 −0.264301
\(451\) −2.27572e6 −0.526839
\(452\) 3.59566e6 0.827815
\(453\) −48057.3 −0.0110031
\(454\) −858635. −0.195510
\(455\) −2.21736e6 −0.502121
\(456\) 141540. 0.0318763
\(457\) 5.13171e6 1.14940 0.574700 0.818364i \(-0.305119\pi\)
0.574700 + 0.818364i \(0.305119\pi\)
\(458\) 3.85530e6 0.858806
\(459\) 533008. 0.118087
\(460\) 4.81912e6 1.06187
\(461\) −5.79486e6 −1.26996 −0.634981 0.772528i \(-0.718992\pi\)
−0.634981 + 0.772528i \(0.718992\pi\)
\(462\) −312730. −0.0681655
\(463\) −5.86480e6 −1.27145 −0.635727 0.771914i \(-0.719300\pi\)
−0.635727 + 0.771914i \(0.719300\pi\)
\(464\) 1.46183e6 0.315211
\(465\) −81397.3 −0.0174573
\(466\) 6.01234e6 1.28256
\(467\) 6.82248e6 1.44760 0.723802 0.690007i \(-0.242393\pi\)
0.723802 + 0.690007i \(0.242393\pi\)
\(468\) 668507. 0.141088
\(469\) 6.40752e6 1.34511
\(470\) −1.50141e6 −0.313512
\(471\) 455446. 0.0945986
\(472\) 2.77447e6 0.573225
\(473\) 2.28495e6 0.469595
\(474\) −465508. −0.0951658
\(475\) 2.01400e6 0.409568
\(476\) 2.66250e6 0.538608
\(477\) 43171.7 0.00868768
\(478\) −2.00569e6 −0.401509
\(479\) 2.38213e6 0.474380 0.237190 0.971463i \(-0.423774\pi\)
0.237190 + 0.971463i \(0.423774\pi\)
\(480\) −86733.4 −0.0171824
\(481\) 1.40841e6 0.277567
\(482\) −5.12128e6 −1.00406
\(483\) 1.15831e6 0.225922
\(484\) −1.03937e6 −0.201678
\(485\) −4.99332e6 −0.963907
\(486\) 906782. 0.174146
\(487\) −7.51429e6 −1.43571 −0.717853 0.696195i \(-0.754875\pi\)
−0.717853 + 0.696195i \(0.754875\pi\)
\(488\) 563782. 0.107167
\(489\) −762545. −0.144209
\(490\) −5.59560e6 −1.05283
\(491\) −9.46802e6 −1.77237 −0.886187 0.463328i \(-0.846655\pi\)
−0.886187 + 0.463328i \(0.846655\pi\)
\(492\) −151703. −0.0282541
\(493\) −4.86577e6 −0.901643
\(494\) −1.18587e6 −0.218634
\(495\) 4.90621e6 0.899980
\(496\) 246016. 0.0449013
\(497\) 1.46758e7 2.66508
\(498\) −485335. −0.0876937
\(499\) −4.96201e6 −0.892085 −0.446042 0.895012i \(-0.647167\pi\)
−0.446042 + 0.895012i \(0.647167\pi\)
\(500\) 2.04500e6 0.365821
\(501\) 88495.1 0.0157516
\(502\) 7.17978e6 1.27160
\(503\) −2.37337e6 −0.418259 −0.209129 0.977888i \(-0.567063\pi\)
−0.209129 + 0.977888i \(0.567063\pi\)
\(504\) 3.01627e6 0.528924
\(505\) −3.39117e6 −0.591727
\(506\) −5.69450e6 −0.988734
\(507\) −440815. −0.0761616
\(508\) −435641. −0.0748979
\(509\) 8.01464e6 1.37116 0.685582 0.727995i \(-0.259548\pi\)
0.685582 + 0.727995i \(0.259548\pi\)
\(510\) 288697. 0.0491492
\(511\) 1.41726e7 2.40102
\(512\) 262144. 0.0441942
\(513\) −1.07113e6 −0.179701
\(514\) −3.05783e6 −0.510511
\(515\) 9.39737e6 1.56131
\(516\) 152318. 0.0251842
\(517\) 1.77414e6 0.291918
\(518\) 6.35469e6 1.04057
\(519\) 127872. 0.0208380
\(520\) 726678. 0.117851
\(521\) −1.11852e7 −1.80530 −0.902651 0.430373i \(-0.858382\pi\)
−0.902651 + 0.430373i \(0.858382\pi\)
\(522\) −5.51228e6 −0.885432
\(523\) −1.01033e7 −1.61514 −0.807570 0.589772i \(-0.799218\pi\)
−0.807570 + 0.589772i \(0.799218\pi\)
\(524\) −158717. −0.0252520
\(525\) −296637. −0.0469707
\(526\) −771200. −0.121535
\(527\) −818877. −0.128438
\(528\) 102488. 0.0159989
\(529\) 1.46554e7 2.27698
\(530\) 46928.4 0.00725682
\(531\) −1.04620e7 −1.61020
\(532\) −5.35056e6 −0.819635
\(533\) 1.27101e6 0.193790
\(534\) 136244. 0.0206759
\(535\) 6.31320e6 0.953598
\(536\) −2.09988e6 −0.315706
\(537\) 70075.4 0.0104865
\(538\) 4.78401e6 0.712584
\(539\) 6.61204e6 0.980310
\(540\) 656372. 0.0968647
\(541\) −2.72151e6 −0.399777 −0.199888 0.979819i \(-0.564058\pi\)
−0.199888 + 0.979819i \(0.564058\pi\)
\(542\) 1.99210e6 0.291281
\(543\) −719997. −0.104793
\(544\) −872560. −0.126415
\(545\) 6.33698e6 0.913884
\(546\) 174663. 0.0250737
\(547\) −5.18727e6 −0.741260 −0.370630 0.928781i \(-0.620858\pi\)
−0.370630 + 0.928781i \(0.620858\pi\)
\(548\) 4.90420e6 0.697616
\(549\) −2.12592e6 −0.301034
\(550\) 1.45833e6 0.205565
\(551\) 9.77825e6 1.37209
\(552\) −379605. −0.0530254
\(553\) 1.75973e7 2.44700
\(554\) −786286. −0.108844
\(555\) 689043. 0.0949541
\(556\) 3.90580e6 0.535825
\(557\) −1.08410e7 −1.48058 −0.740292 0.672286i \(-0.765313\pi\)
−0.740292 + 0.672286i \(0.765313\pi\)
\(558\) −927680. −0.126128
\(559\) −1.27617e6 −0.172734
\(560\) 3.27873e6 0.441810
\(561\) −341138. −0.0457639
\(562\) −6.05708e6 −0.808951
\(563\) −1.06532e7 −1.41647 −0.708236 0.705975i \(-0.750509\pi\)
−0.708236 + 0.705975i \(0.750509\pi\)
\(564\) 118267. 0.0156555
\(565\) −1.47384e7 −1.94236
\(566\) 740856. 0.0972060
\(567\) −1.12946e7 −1.47541
\(568\) −4.80958e6 −0.625513
\(569\) 1.08514e7 1.40509 0.702544 0.711640i \(-0.252047\pi\)
0.702544 + 0.711640i \(0.252047\pi\)
\(570\) −580165. −0.0747936
\(571\) 9.81386e6 1.25965 0.629825 0.776737i \(-0.283127\pi\)
0.629825 + 0.776737i \(0.283127\pi\)
\(572\) −858678. −0.109734
\(573\) −179008. −0.0227765
\(574\) 5.73475e6 0.726498
\(575\) −5.40147e6 −0.681306
\(576\) −988496. −0.124142
\(577\) 6.82499e6 0.853419 0.426709 0.904389i \(-0.359673\pi\)
0.426709 + 0.904389i \(0.359673\pi\)
\(578\) −2.77506e6 −0.345504
\(579\) 314573. 0.0389965
\(580\) −5.99194e6 −0.739601
\(581\) 1.83468e7 2.25487
\(582\) 393327. 0.0481333
\(583\) −55452.9 −0.00675698
\(584\) −4.64466e6 −0.563536
\(585\) −2.74017e6 −0.331045
\(586\) 7.77204e6 0.934955
\(587\) 4.01700e6 0.481179 0.240589 0.970627i \(-0.422659\pi\)
0.240589 + 0.970627i \(0.422659\pi\)
\(588\) 440769. 0.0525736
\(589\) 1.64561e6 0.195452
\(590\) −1.13724e7 −1.34500
\(591\) 682245. 0.0803474
\(592\) −2.08257e6 −0.244228
\(593\) 5.65794e6 0.660727 0.330363 0.943854i \(-0.392829\pi\)
0.330363 + 0.943854i \(0.392829\pi\)
\(594\) −775601. −0.0901928
\(595\) −1.09134e7 −1.26377
\(596\) −4.25081e6 −0.490180
\(597\) −147656. −0.0169557
\(598\) 3.18044e6 0.363692
\(599\) 8.75561e6 0.997056 0.498528 0.866874i \(-0.333874\pi\)
0.498528 + 0.866874i \(0.333874\pi\)
\(600\) 97214.4 0.0110243
\(601\) −4.88494e6 −0.551662 −0.275831 0.961206i \(-0.588953\pi\)
−0.275831 + 0.961206i \(0.588953\pi\)
\(602\) −5.75800e6 −0.647561
\(603\) 7.91826e6 0.886823
\(604\) −595366. −0.0664036
\(605\) 4.26032e6 0.473210
\(606\) 267124. 0.0295483
\(607\) −1.43042e7 −1.57577 −0.787884 0.615823i \(-0.788824\pi\)
−0.787884 + 0.615823i \(0.788824\pi\)
\(608\) 1.75350e6 0.192374
\(609\) −1.44021e6 −0.157356
\(610\) −2.31091e6 −0.251454
\(611\) −990875. −0.107378
\(612\) 3.29026e6 0.355101
\(613\) −301354. −0.0323911 −0.0161956 0.999869i \(-0.505155\pi\)
−0.0161956 + 0.999869i \(0.505155\pi\)
\(614\) −5.25723e6 −0.562776
\(615\) 621822. 0.0662946
\(616\) −3.87431e6 −0.411379
\(617\) −7.57845e6 −0.801433 −0.400717 0.916202i \(-0.631239\pi\)
−0.400717 + 0.916202i \(0.631239\pi\)
\(618\) −740236. −0.0779649
\(619\) 3.84826e6 0.403681 0.201840 0.979418i \(-0.435308\pi\)
0.201840 + 0.979418i \(0.435308\pi\)
\(620\) −1.00840e6 −0.105355
\(621\) 2.87273e6 0.298927
\(622\) 6.15382e6 0.637777
\(623\) −5.15034e6 −0.531638
\(624\) −57240.9 −0.00588498
\(625\) −1.20577e7 −1.23471
\(626\) −1.09261e7 −1.11437
\(627\) 685551. 0.0696419
\(628\) 5.64237e6 0.570903
\(629\) 6.93195e6 0.698600
\(630\) −1.23635e7 −1.24105
\(631\) 6.96320e6 0.696202 0.348101 0.937457i \(-0.386827\pi\)
0.348101 + 0.937457i \(0.386827\pi\)
\(632\) −5.76702e6 −0.574326
\(633\) −262080. −0.0259971
\(634\) 6.30067e6 0.622535
\(635\) 1.78567e6 0.175738
\(636\) −3696.58 −0.000362374 0
\(637\) −3.69289e6 −0.360594
\(638\) 7.08037e6 0.688659
\(639\) 1.81360e7 1.75707
\(640\) −1.07451e6 −0.103696
\(641\) −4.32890e6 −0.416134 −0.208067 0.978115i \(-0.566717\pi\)
−0.208067 + 0.978115i \(0.566717\pi\)
\(642\) −497295. −0.0476186
\(643\) −1.45356e7 −1.38645 −0.693225 0.720721i \(-0.743811\pi\)
−0.693225 + 0.720721i \(0.743811\pi\)
\(644\) 1.43500e7 1.36344
\(645\) −624344. −0.0590914
\(646\) −5.83661e6 −0.550274
\(647\) −1.29585e7 −1.21701 −0.608504 0.793551i \(-0.708230\pi\)
−0.608504 + 0.793551i \(0.708230\pi\)
\(648\) 3.70149e6 0.346290
\(649\) 1.34382e7 1.25236
\(650\) −814491. −0.0756141
\(651\) −242378. −0.0224151
\(652\) −9.44692e6 −0.870305
\(653\) −1.48643e7 −1.36415 −0.682076 0.731281i \(-0.738923\pi\)
−0.682076 + 0.731281i \(0.738923\pi\)
\(654\) −499168. −0.0456354
\(655\) 650573. 0.0592506
\(656\) −1.87940e6 −0.170514
\(657\) 1.75142e7 1.58298
\(658\) −4.47077e6 −0.402548
\(659\) 1.37201e6 0.123067 0.0615336 0.998105i \(-0.480401\pi\)
0.0615336 + 0.998105i \(0.480401\pi\)
\(660\) −420094. −0.0375393
\(661\) 6.98650e6 0.621951 0.310975 0.950418i \(-0.399344\pi\)
0.310975 + 0.950418i \(0.399344\pi\)
\(662\) 4.69257e6 0.416165
\(663\) 190529. 0.0168336
\(664\) −6.01266e6 −0.529232
\(665\) 2.19316e7 1.92317
\(666\) 7.85298e6 0.686039
\(667\) −2.62248e7 −2.28243
\(668\) 1.09634e6 0.0950611
\(669\) 312120. 0.0269623
\(670\) 8.60729e6 0.740763
\(671\) 2.73068e6 0.234134
\(672\) −258268. −0.0220621
\(673\) −1.98838e7 −1.69224 −0.846118 0.532995i \(-0.821066\pi\)
−0.846118 + 0.532995i \(0.821066\pi\)
\(674\) 1.21141e7 1.02717
\(675\) −735689. −0.0621491
\(676\) −5.46111e6 −0.459636
\(677\) −1.56443e6 −0.131185 −0.0655925 0.997846i \(-0.520894\pi\)
−0.0655925 + 0.997846i \(0.520894\pi\)
\(678\) 1.16095e6 0.0969930
\(679\) −1.48687e7 −1.23765
\(680\) 3.57657e6 0.296616
\(681\) −277232. −0.0229074
\(682\) 1.19158e6 0.0980984
\(683\) −6.99860e6 −0.574063 −0.287032 0.957921i \(-0.592668\pi\)
−0.287032 + 0.957921i \(0.592668\pi\)
\(684\) −6.61211e6 −0.540380
\(685\) −2.01020e7 −1.63687
\(686\) −3.53332e6 −0.286664
\(687\) 1.24478e6 0.100624
\(688\) 1.88702e6 0.151987
\(689\) 30971.0 0.00248546
\(690\) 1.55598e6 0.124417
\(691\) −3.27317e6 −0.260779 −0.130390 0.991463i \(-0.541623\pi\)
−0.130390 + 0.991463i \(0.541623\pi\)
\(692\) 1.58416e6 0.125758
\(693\) 1.46093e7 1.15557
\(694\) 2.34216e6 0.184594
\(695\) −1.60096e7 −1.25724
\(696\) 471989. 0.0369325
\(697\) 6.25569e6 0.487745
\(698\) 2.73234e6 0.212274
\(699\) 1.94124e6 0.150275
\(700\) −3.67494e6 −0.283469
\(701\) −1.71951e7 −1.32163 −0.660815 0.750549i \(-0.729789\pi\)
−0.660815 + 0.750549i \(0.729789\pi\)
\(702\) 433181. 0.0331762
\(703\) −1.39304e7 −1.06311
\(704\) 1.26970e6 0.0965535
\(705\) −484769. −0.0367335
\(706\) −63256.4 −0.00477631
\(707\) −1.00979e7 −0.759774
\(708\) 895809. 0.0671633
\(709\) 326145. 0.0243666 0.0121833 0.999926i \(-0.496122\pi\)
0.0121833 + 0.999926i \(0.496122\pi\)
\(710\) 1.97142e7 1.46768
\(711\) 2.17464e7 1.61329
\(712\) 1.68788e6 0.124779
\(713\) −4.41346e6 −0.325129
\(714\) 859657. 0.0631073
\(715\) 3.51967e6 0.257476
\(716\) 868141. 0.0632860
\(717\) −647590. −0.0470438
\(718\) −1.12362e7 −0.813408
\(719\) 4.12077e6 0.297274 0.148637 0.988892i \(-0.452511\pi\)
0.148637 + 0.988892i \(0.452511\pi\)
\(720\) 4.05178e6 0.291283
\(721\) 2.79827e7 2.00471
\(722\) 1.82484e6 0.130281
\(723\) −1.65354e6 −0.117643
\(724\) −8.91981e6 −0.632425
\(725\) 6.71602e6 0.474534
\(726\) −335588. −0.0236301
\(727\) 2.06821e7 1.45130 0.725652 0.688062i \(-0.241538\pi\)
0.725652 + 0.688062i \(0.241538\pi\)
\(728\) 2.16384e6 0.151320
\(729\) −1.37613e7 −0.959051
\(730\) 1.90382e7 1.32226
\(731\) −6.28105e6 −0.434750
\(732\) 182031. 0.0125565
\(733\) 7.82914e6 0.538213 0.269106 0.963110i \(-0.413272\pi\)
0.269106 + 0.963110i \(0.413272\pi\)
\(734\) 4.87538e6 0.334017
\(735\) −1.80668e6 −0.123357
\(736\) −4.70280e6 −0.320009
\(737\) −1.01708e7 −0.689741
\(738\) 7.08687e6 0.478976
\(739\) 2.44001e7 1.64354 0.821770 0.569819i \(-0.192987\pi\)
0.821770 + 0.569819i \(0.192987\pi\)
\(740\) 8.53633e6 0.573049
\(741\) −382887. −0.0256168
\(742\) 139740. 0.00931772
\(743\) 4.47508e6 0.297392 0.148696 0.988883i \(-0.452492\pi\)
0.148696 + 0.988883i \(0.452492\pi\)
\(744\) 79432.6 0.00526098
\(745\) 1.74238e7 1.15014
\(746\) −1.66079e7 −1.09262
\(747\) 2.26726e7 1.48662
\(748\) −4.22625e6 −0.276186
\(749\) 1.87989e7 1.22441
\(750\) 660282. 0.0428624
\(751\) −2.22861e7 −1.44190 −0.720948 0.692990i \(-0.756293\pi\)
−0.720948 + 0.692990i \(0.756293\pi\)
\(752\) 1.46517e6 0.0944808
\(753\) 2.31818e6 0.148991
\(754\) −3.95446e6 −0.253314
\(755\) 2.44037e6 0.155807
\(756\) 1.95449e6 0.124374
\(757\) 4.47201e6 0.283637 0.141819 0.989893i \(-0.454705\pi\)
0.141819 + 0.989893i \(0.454705\pi\)
\(758\) 1.44722e7 0.914876
\(759\) −1.83862e6 −0.115848
\(760\) −7.18747e6 −0.451380
\(761\) 2.92597e7 1.83150 0.915752 0.401743i \(-0.131596\pi\)
0.915752 + 0.401743i \(0.131596\pi\)
\(762\) −140658. −0.00877560
\(763\) 1.88697e7 1.17342
\(764\) −2.21767e6 −0.137456
\(765\) −1.34866e7 −0.833198
\(766\) −8.27144e6 −0.509341
\(767\) −7.50535e6 −0.460662
\(768\) 84639.9 0.00517812
\(769\) −9.16244e6 −0.558721 −0.279361 0.960186i \(-0.590122\pi\)
−0.279361 + 0.960186i \(0.590122\pi\)
\(770\) 1.58805e7 0.965248
\(771\) −987298. −0.0598153
\(772\) 3.89714e6 0.235344
\(773\) 1.74646e7 1.05126 0.525630 0.850714i \(-0.323830\pi\)
0.525630 + 0.850714i \(0.323830\pi\)
\(774\) −7.11561e6 −0.426933
\(775\) 1.13026e6 0.0675966
\(776\) 4.87279e6 0.290485
\(777\) 2.05177e6 0.121921
\(778\) −2.21186e7 −1.31011
\(779\) −1.25714e7 −0.742234
\(780\) 234627. 0.0138083
\(781\) −2.32952e7 −1.36659
\(782\) 1.56535e7 0.915366
\(783\) −3.57186e6 −0.208205
\(784\) 5.46054e6 0.317282
\(785\) −2.31277e7 −1.33955
\(786\) −51246.0 −0.00295872
\(787\) 3.32773e7 1.91519 0.957595 0.288118i \(-0.0930296\pi\)
0.957595 + 0.288118i \(0.0930296\pi\)
\(788\) 8.45211e6 0.484897
\(789\) −249002. −0.0142400
\(790\) 2.36387e7 1.34758
\(791\) −4.38868e7 −2.49398
\(792\) −4.78778e6 −0.271220
\(793\) −1.52511e6 −0.0861230
\(794\) −236078. −0.0132894
\(795\) 15152.0 0.000850263 0
\(796\) −1.82927e6 −0.102328
\(797\) −3.67811e6 −0.205106 −0.102553 0.994728i \(-0.532701\pi\)
−0.102553 + 0.994728i \(0.532701\pi\)
\(798\) −1.72757e6 −0.0960345
\(799\) −4.87690e6 −0.270257
\(800\) 1.20436e6 0.0665320
\(801\) −6.36467e6 −0.350506
\(802\) 1.78379e7 0.979280
\(803\) −2.24964e7 −1.23119
\(804\) −678001. −0.0369905
\(805\) −5.88196e7 −3.19913
\(806\) −665510. −0.0360842
\(807\) 1.54464e6 0.0834917
\(808\) 3.30932e6 0.178324
\(809\) −1.05623e7 −0.567400 −0.283700 0.958913i \(-0.591562\pi\)
−0.283700 + 0.958913i \(0.591562\pi\)
\(810\) −1.51722e7 −0.812523
\(811\) 5.67117e6 0.302775 0.151388 0.988474i \(-0.451626\pi\)
0.151388 + 0.988474i \(0.451626\pi\)
\(812\) −1.78423e7 −0.949644
\(813\) 643200. 0.0341287
\(814\) −1.00869e7 −0.533578
\(815\) 3.87223e7 2.04206
\(816\) −281729. −0.0148117
\(817\) 1.26224e7 0.661587
\(818\) 1.77787e7 0.929003
\(819\) −8.15944e6 −0.425060
\(820\) 7.70355e6 0.400089
\(821\) −1.77771e7 −0.920458 −0.460229 0.887800i \(-0.652233\pi\)
−0.460229 + 0.887800i \(0.652233\pi\)
\(822\) 1.58345e6 0.0817380
\(823\) −1.91512e7 −0.985592 −0.492796 0.870145i \(-0.664025\pi\)
−0.492796 + 0.870145i \(0.664025\pi\)
\(824\) −9.17055e6 −0.470519
\(825\) 470859. 0.0240855
\(826\) −3.38637e7 −1.72697
\(827\) 1.30294e7 0.662463 0.331232 0.943549i \(-0.392536\pi\)
0.331232 + 0.943549i \(0.392536\pi\)
\(828\) 1.77334e7 0.898908
\(829\) 8.55334e6 0.432264 0.216132 0.976364i \(-0.430656\pi\)
0.216132 + 0.976364i \(0.430656\pi\)
\(830\) 2.46455e7 1.24177
\(831\) −253873. −0.0127530
\(832\) −709138. −0.0355159
\(833\) −1.81757e7 −0.907567
\(834\) 1.26109e6 0.0627813
\(835\) −4.49382e6 −0.223048
\(836\) 8.49306e6 0.420290
\(837\) −601121. −0.0296584
\(838\) −1.47722e7 −0.726666
\(839\) −3.93700e7 −1.93091 −0.965453 0.260579i \(-0.916087\pi\)
−0.965453 + 0.260579i \(0.916087\pi\)
\(840\) 1.05862e6 0.0517658
\(841\) 1.20960e7 0.589728
\(842\) −1.65838e7 −0.806127
\(843\) −1.95568e6 −0.0947828
\(844\) −3.24682e6 −0.156892
\(845\) 2.23847e7 1.07848
\(846\) −5.52488e6 −0.265398
\(847\) 1.26860e7 0.607599
\(848\) −45795.7 −0.00218693
\(849\) 239204. 0.0113894
\(850\) −4.00877e6 −0.190311
\(851\) 3.73608e7 1.76845
\(852\) −1.55290e6 −0.0732898
\(853\) 3.45441e7 1.62555 0.812777 0.582574i \(-0.197955\pi\)
0.812777 + 0.582574i \(0.197955\pi\)
\(854\) −6.88123e6 −0.322865
\(855\) 2.71026e7 1.26793
\(856\) −6.16082e6 −0.287378
\(857\) 1.99270e7 0.926810 0.463405 0.886147i \(-0.346628\pi\)
0.463405 + 0.886147i \(0.346628\pi\)
\(858\) −277246. −0.0128572
\(859\) −1.02562e7 −0.474248 −0.237124 0.971479i \(-0.576205\pi\)
−0.237124 + 0.971479i \(0.576205\pi\)
\(860\) −7.73479e6 −0.356617
\(861\) 1.85161e6 0.0851220
\(862\) −7.31226e6 −0.335184
\(863\) −2.78227e7 −1.27166 −0.635831 0.771828i \(-0.719343\pi\)
−0.635831 + 0.771828i \(0.719343\pi\)
\(864\) −640528. −0.0291913
\(865\) −6.49337e6 −0.295074
\(866\) −2.69739e7 −1.22222
\(867\) −896001. −0.0404819
\(868\) −3.00274e6 −0.135275
\(869\) −2.79326e7 −1.25476
\(870\) −1.93465e6 −0.0866572
\(871\) 5.68049e6 0.253712
\(872\) −6.18402e6 −0.275410
\(873\) −1.83744e7 −0.815976
\(874\) −3.14573e7 −1.39297
\(875\) −2.49602e7 −1.10212
\(876\) −1.49965e6 −0.0660282
\(877\) 1.05256e7 0.462112 0.231056 0.972940i \(-0.425782\pi\)
0.231056 + 0.972940i \(0.425782\pi\)
\(878\) 1.90437e6 0.0833708
\(879\) 2.50940e6 0.109546
\(880\) −5.20440e6 −0.226550
\(881\) −1.08572e7 −0.471280 −0.235640 0.971840i \(-0.575719\pi\)
−0.235640 + 0.971840i \(0.575719\pi\)
\(882\) −2.05907e7 −0.891249
\(883\) 2.05110e6 0.0885290 0.0442645 0.999020i \(-0.485906\pi\)
0.0442645 + 0.999020i \(0.485906\pi\)
\(884\) 2.36040e6 0.101591
\(885\) −3.67186e6 −0.157590
\(886\) 1.63174e7 0.698340
\(887\) 1.58350e7 0.675785 0.337892 0.941185i \(-0.390286\pi\)
0.337892 + 0.941185i \(0.390286\pi\)
\(888\) −672411. −0.0286156
\(889\) 5.31721e6 0.225647
\(890\) −6.91851e6 −0.292777
\(891\) 1.79282e7 0.756558
\(892\) 3.86675e6 0.162717
\(893\) 9.80061e6 0.411267
\(894\) −1.37248e6 −0.0574332
\(895\) −3.55846e6 −0.148492
\(896\) −3.19959e6 −0.133145
\(897\) 1.02689e6 0.0426129
\(898\) 2.95058e6 0.122100
\(899\) 5.48757e6 0.226454
\(900\) −4.54141e6 −0.186889
\(901\) 152433. 0.00625559
\(902\) −9.10289e6 −0.372531
\(903\) −1.85912e6 −0.0758730
\(904\) 1.43827e7 0.585353
\(905\) 3.65617e7 1.48390
\(906\) −192229. −0.00778034
\(907\) −1.39215e7 −0.561912 −0.280956 0.959721i \(-0.590652\pi\)
−0.280956 + 0.959721i \(0.590652\pi\)
\(908\) −3.43454e6 −0.138246
\(909\) −1.24788e7 −0.500914
\(910\) −8.86945e6 −0.355053
\(911\) −381409. −0.0152263 −0.00761316 0.999971i \(-0.502423\pi\)
−0.00761316 + 0.999971i \(0.502423\pi\)
\(912\) 566161. 0.0225400
\(913\) −2.91223e7 −1.15624
\(914\) 2.05268e7 0.812749
\(915\) −746136. −0.0294622
\(916\) 1.54212e7 0.607267
\(917\) 1.93722e6 0.0760775
\(918\) 2.13203e6 0.0835002
\(919\) −2.12996e7 −0.831922 −0.415961 0.909382i \(-0.636555\pi\)
−0.415961 + 0.909382i \(0.636555\pi\)
\(920\) 1.92765e7 0.750858
\(921\) −1.69743e6 −0.0659391
\(922\) −2.31794e7 −0.897998
\(923\) 1.30106e7 0.502682
\(924\) −1.25092e6 −0.0482003
\(925\) −9.56787e6 −0.367672
\(926\) −2.34592e7 −0.899054
\(927\) 3.45804e7 1.32169
\(928\) 5.84731e6 0.222888
\(929\) 1.77700e7 0.675534 0.337767 0.941230i \(-0.390328\pi\)
0.337767 + 0.941230i \(0.390328\pi\)
\(930\) −325589. −0.0123442
\(931\) 3.65259e7 1.38110
\(932\) 2.40494e7 0.906909
\(933\) 1.98692e6 0.0747267
\(934\) 2.72899e7 1.02361
\(935\) 1.73231e7 0.648033
\(936\) 2.67403e6 0.0997645
\(937\) 1.58592e7 0.590109 0.295054 0.955480i \(-0.404662\pi\)
0.295054 + 0.955480i \(0.404662\pi\)
\(938\) 2.56301e7 0.951136
\(939\) −3.52778e6 −0.130568
\(940\) −6.00564e6 −0.221687
\(941\) 3.83125e7 1.41048 0.705239 0.708970i \(-0.250840\pi\)
0.705239 + 0.708970i \(0.250840\pi\)
\(942\) 1.82178e6 0.0668913
\(943\) 3.37160e7 1.23469
\(944\) 1.10979e7 0.405331
\(945\) −8.01133e6 −0.291827
\(946\) 9.13980e6 0.332054
\(947\) −3.35059e7 −1.21408 −0.607039 0.794672i \(-0.707643\pi\)
−0.607039 + 0.794672i \(0.707643\pi\)
\(948\) −1.86203e6 −0.0672924
\(949\) 1.25645e7 0.452876
\(950\) 8.05602e6 0.289609
\(951\) 2.03433e6 0.0729409
\(952\) 1.06500e7 0.380853
\(953\) 1.08332e7 0.386388 0.193194 0.981161i \(-0.438115\pi\)
0.193194 + 0.981161i \(0.438115\pi\)
\(954\) 172687. 0.00614312
\(955\) 9.09011e6 0.322523
\(956\) −8.02277e6 −0.283909
\(957\) 2.28608e6 0.0806885
\(958\) 9.52852e6 0.335438
\(959\) −5.98581e7 −2.10173
\(960\) −346934. −0.0121498
\(961\) 923521. 0.0322581
\(962\) 5.63366e6 0.196270
\(963\) 2.32313e7 0.807249
\(964\) −2.04851e7 −0.709979
\(965\) −1.59741e7 −0.552204
\(966\) 4.63325e6 0.159751
\(967\) 5.10890e7 1.75696 0.878479 0.477781i \(-0.158559\pi\)
0.878479 + 0.477781i \(0.158559\pi\)
\(968\) −4.15749e6 −0.142608
\(969\) −1.88450e6 −0.0644742
\(970\) −1.99733e7 −0.681585
\(971\) 2.87512e7 0.978607 0.489304 0.872113i \(-0.337251\pi\)
0.489304 + 0.872113i \(0.337251\pi\)
\(972\) 3.62713e6 0.123139
\(973\) −4.76722e7 −1.61429
\(974\) −3.00572e7 −1.01520
\(975\) −262979. −0.00885952
\(976\) 2.25513e6 0.0757786
\(977\) 2.66635e6 0.0893676 0.0446838 0.999001i \(-0.485772\pi\)
0.0446838 + 0.999001i \(0.485772\pi\)
\(978\) −3.05018e6 −0.101971
\(979\) 8.17525e6 0.272612
\(980\) −2.23824e7 −0.744461
\(981\) 2.33188e7 0.773630
\(982\) −3.78721e7 −1.25326
\(983\) 1.08397e7 0.357794 0.178897 0.983868i \(-0.442747\pi\)
0.178897 + 0.983868i \(0.442747\pi\)
\(984\) −606813. −0.0199787
\(985\) −3.46447e7 −1.13775
\(986\) −1.94631e7 −0.637558
\(987\) −1.44350e6 −0.0471656
\(988\) −4.74347e6 −0.154598
\(989\) −3.38527e7 −1.10053
\(990\) 1.96248e7 0.636382
\(991\) 3.30389e7 1.06867 0.534333 0.845274i \(-0.320563\pi\)
0.534333 + 0.845274i \(0.320563\pi\)
\(992\) 984064. 0.0317500
\(993\) 1.51512e6 0.0487610
\(994\) 5.87032e7 1.88450
\(995\) 7.49805e6 0.240099
\(996\) −1.94134e6 −0.0620088
\(997\) −4.66511e7 −1.48636 −0.743181 0.669091i \(-0.766684\pi\)
−0.743181 + 0.669091i \(0.766684\pi\)
\(998\) −1.98480e7 −0.630799
\(999\) 5.08860e6 0.161319
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 62.6.a.b.1.2 2
3.2 odd 2 558.6.a.c.1.2 2
4.3 odd 2 496.6.a.a.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
62.6.a.b.1.2 2 1.1 even 1 trivial
496.6.a.a.1.1 2 4.3 odd 2
558.6.a.c.1.2 2 3.2 odd 2