Properties

Label 2-62-1.1-c5-0-11
Degree $2$
Conductor $62$
Sign $-1$
Analytic cond. $9.94379$
Root an. cond. $3.15337$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 1.29·3-s + 16·4-s − 65.5·5-s + 5.16·6-s − 195.·7-s + 64·8-s − 241.·9-s − 262.·10-s + 309.·11-s + 20.6·12-s − 173.·13-s − 781.·14-s − 84.7·15-s + 256·16-s − 852.·17-s − 965.·18-s + 1.71e3·19-s − 1.04e3·20-s − 252.·21-s + 1.23e3·22-s − 4.59e3·23-s + 82.6·24-s + 1.17e3·25-s − 692.·26-s − 625.·27-s − 3.12e3·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.0828·3-s + 0.5·4-s − 1.17·5-s + 0.0585·6-s − 1.50·7-s + 0.353·8-s − 0.993·9-s − 0.829·10-s + 0.772·11-s + 0.0414·12-s − 0.284·13-s − 1.06·14-s − 0.0971·15-s + 0.250·16-s − 0.715·17-s − 0.702·18-s + 1.08·19-s − 0.586·20-s − 0.124·21-s + 0.546·22-s − 1.81·23-s + 0.0292·24-s + 0.376·25-s − 0.200·26-s − 0.165·27-s − 0.753·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62\)    =    \(2 \cdot 31\)
Sign: $-1$
Analytic conductor: \(9.94379\)
Root analytic conductor: \(3.15337\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 62,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
31 \( 1 - 961T \)
good3 \( 1 - 1.29T + 243T^{2} \)
5 \( 1 + 65.5T + 3.12e3T^{2} \)
7 \( 1 + 195.T + 1.68e4T^{2} \)
11 \( 1 - 309.T + 1.61e5T^{2} \)
13 \( 1 + 173.T + 3.71e5T^{2} \)
17 \( 1 + 852.T + 1.41e6T^{2} \)
19 \( 1 - 1.71e3T + 2.47e6T^{2} \)
23 \( 1 + 4.59e3T + 6.43e6T^{2} \)
29 \( 1 - 5.71e3T + 2.05e7T^{2} \)
37 \( 1 + 8.13e3T + 6.93e7T^{2} \)
41 \( 1 + 7.34e3T + 1.15e8T^{2} \)
43 \( 1 - 7.37e3T + 1.47e8T^{2} \)
47 \( 1 - 5.72e3T + 2.29e8T^{2} \)
53 \( 1 + 178.T + 4.18e8T^{2} \)
59 \( 1 - 4.33e4T + 7.14e8T^{2} \)
61 \( 1 - 8.80e3T + 8.44e8T^{2} \)
67 \( 1 + 3.28e4T + 1.35e9T^{2} \)
71 \( 1 + 7.51e4T + 1.80e9T^{2} \)
73 \( 1 + 7.25e4T + 2.07e9T^{2} \)
79 \( 1 + 9.01e4T + 3.07e9T^{2} \)
83 \( 1 + 9.39e4T + 3.93e9T^{2} \)
89 \( 1 - 2.63e4T + 5.58e9T^{2} \)
97 \( 1 - 7.61e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.51873738458809780133211346402, −12.11276545870694558828264648794, −11.70338527769543751515613993861, −10.06147816545480840107811126991, −8.611998166266742566444613835899, −7.13686187589365638110081421081, −5.96774307107353619865578143588, −4.07251864933611745057777069066, −3.00455380786976297820571817674, 0, 3.00455380786976297820571817674, 4.07251864933611745057777069066, 5.96774307107353619865578143588, 7.13686187589365638110081421081, 8.611998166266742566444613835899, 10.06147816545480840107811126991, 11.70338527769543751515613993861, 12.11276545870694558828264648794, 13.51873738458809780133211346402

Graph of the $Z$-function along the critical line