Properties

Label 62.6.a.b
Level $62$
Weight $6$
Character orbit 62.a
Self dual yes
Analytic conductor $9.944$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [62,6,Mod(1,62)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(62, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("62.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 62 = 2 \cdot 31 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 62.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.94379682840\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{7}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + (\beta - 4) q^{3} + 16 q^{4} + ( - 2 \beta - 55) q^{5} + (4 \beta - 16) q^{6} + ( - 25 \beta - 63) q^{7} + 64 q^{8} + ( - 8 \beta - 199) q^{9} + ( - 8 \beta - 220) q^{10} + (96 \beta - 198) q^{11}+ \cdots + ( - 17520 \beta + 17898) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 8 q^{3} + 32 q^{4} - 110 q^{5} - 32 q^{6} - 126 q^{7} + 128 q^{8} - 398 q^{9} - 440 q^{10} - 396 q^{11} - 128 q^{12} - 632 q^{13} - 504 q^{14} + 328 q^{15} + 512 q^{16} - 720 q^{17} - 1592 q^{18}+ \cdots + 35796 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.64575
2.64575
4.00000 −9.29150 16.0000 −44.4170 −37.1660 69.2876 64.0000 −156.668 −177.668
1.2 4.00000 1.29150 16.0000 −65.5830 5.16601 −195.288 64.0000 −241.332 −262.332
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(31\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 62.6.a.b 2
3.b odd 2 1 558.6.a.c 2
4.b odd 2 1 496.6.a.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
62.6.a.b 2 1.a even 1 1 trivial
496.6.a.a 2 4.b odd 2 1
558.6.a.c 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 8T_{3} - 12 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(62))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 8T - 12 \) Copy content Toggle raw display
$5$ \( T^{2} + 110T + 2913 \) Copy content Toggle raw display
$7$ \( T^{2} + 126T - 13531 \) Copy content Toggle raw display
$11$ \( T^{2} + 396T - 218844 \) Copy content Toggle raw display
$13$ \( T^{2} + 632T + 79444 \) Copy content Toggle raw display
$17$ \( T^{2} + 720T - 112572 \) Copy content Toggle raw display
$19$ \( T^{2} + 438 T - 3682339 \) Copy content Toggle raw display
$23$ \( T^{2} + 560 T - 18519900 \) Copy content Toggle raw display
$29$ \( T^{2} - 4404 T - 7459128 \) Copy content Toggle raw display
$31$ \( (T - 961)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 8100 T - 285052 \) Copy content Toggle raw display
$41$ \( T^{2} - 1742 T - 66685071 \) Copy content Toggle raw display
$43$ \( T^{2} + 8572 T - 117520056 \) Copy content Toggle raw display
$47$ \( T^{2} - 26792 T + 120582816 \) Copy content Toggle raw display
$53$ \( T^{2} - 33656 T - 6052704 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 1468435731 \) Copy content Toggle raw display
$61$ \( T^{2} - 26328 T + 154325684 \) Copy content Toggle raw display
$67$ \( T^{2} + 60224 T + 899449744 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 5812100253 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 2882073900 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 6592993416 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 3417465444 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 1748038584 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 4956802759 \) Copy content Toggle raw display
show more
show less