Defining parameters
Level: | \( N \) | \(=\) | \( 62 = 2 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 62.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(62))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 42 | 12 | 30 |
Cusp forms | 38 | 12 | 26 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(31\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(8\) | \(2\) | \(6\) | \(7\) | \(2\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(13\) | \(4\) | \(9\) | \(12\) | \(4\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(10\) | \(4\) | \(6\) | \(9\) | \(4\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(11\) | \(2\) | \(9\) | \(10\) | \(2\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(19\) | \(4\) | \(15\) | \(17\) | \(4\) | \(13\) | \(2\) | \(0\) | \(2\) | ||||
Minus space | \(-\) | \(23\) | \(8\) | \(15\) | \(21\) | \(8\) | \(13\) | \(2\) | \(0\) | \(2\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(62))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 31 | |||||||
62.6.a.a | $2$ | $9.944$ | \(\Q(\sqrt{94}) \) | None | \(-8\) | \(-8\) | \(2\) | \(-50\) | $+$ | $+$ | \(q-4q^{2}+(-4+\beta )q^{3}+2^{4}q^{4}+(1-2\beta )q^{5}+\cdots\) | |
62.6.a.b | $2$ | $9.944$ | \(\Q(\sqrt{7}) \) | None | \(8\) | \(-8\) | \(-110\) | \(-126\) | $-$ | $-$ | \(q+4q^{2}+(-4+\beta )q^{3}+2^{4}q^{4}+(-55+\cdots)q^{5}+\cdots\) | |
62.6.a.c | $4$ | $9.944$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(-16\) | \(10\) | \(2\) | \(146\) | $+$ | $-$ | \(q-4q^{2}+(3+\beta _{2})q^{3}+2^{4}q^{4}+(1-\beta _{1}+\cdots)q^{5}+\cdots\) | |
62.6.a.d | $4$ | $9.944$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(16\) | \(28\) | \(-10\) | \(266\) | $-$ | $+$ | \(q+4q^{2}+(7-\beta _{1})q^{3}+2^{4}q^{4}+(-3+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(62))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(62)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 2}\)