Properties

Label 62.6.a
Level $62$
Weight $6$
Character orbit 62.a
Rep. character $\chi_{62}(1,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $4$
Sturm bound $48$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 62 = 2 \cdot 31 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 62.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(48\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(62))\).

Total New Old
Modular forms 42 12 30
Cusp forms 38 12 26
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(31\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(8\)\(2\)\(6\)\(7\)\(2\)\(5\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(13\)\(4\)\(9\)\(12\)\(4\)\(8\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(10\)\(4\)\(6\)\(9\)\(4\)\(5\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(11\)\(2\)\(9\)\(10\)\(2\)\(8\)\(1\)\(0\)\(1\)
Plus space\(+\)\(19\)\(4\)\(15\)\(17\)\(4\)\(13\)\(2\)\(0\)\(2\)
Minus space\(-\)\(23\)\(8\)\(15\)\(21\)\(8\)\(13\)\(2\)\(0\)\(2\)

Trace form

\( 12 q + 22 q^{3} + 192 q^{4} - 116 q^{5} + 72 q^{6} + 236 q^{7} + 772 q^{9} - 496 q^{10} + 598 q^{11} + 352 q^{12} - 114 q^{13} + 176 q^{14} + 332 q^{15} + 3072 q^{16} - 1372 q^{17} + 992 q^{18} + 3760 q^{19}+ \cdots + 66946 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(62))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 31
62.6.a.a 62.a 1.a $2$ $9.944$ \(\Q(\sqrt{94}) \) None 62.6.a.a \(-8\) \(-8\) \(2\) \(-50\) $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+(-4+\beta )q^{3}+2^{4}q^{4}+(1-2\beta )q^{5}+\cdots\)
62.6.a.b 62.a 1.a $2$ $9.944$ \(\Q(\sqrt{7}) \) None 62.6.a.b \(8\) \(-8\) \(-110\) \(-126\) $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+(-4+\beta )q^{3}+2^{4}q^{4}+(-55+\cdots)q^{5}+\cdots\)
62.6.a.c 62.a 1.a $4$ $9.944$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 62.6.a.c \(-16\) \(10\) \(2\) \(146\) $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+(3+\beta _{2})q^{3}+2^{4}q^{4}+(1-\beta _{1}+\cdots)q^{5}+\cdots\)
62.6.a.d 62.a 1.a $4$ $9.944$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 62.6.a.d \(16\) \(28\) \(-10\) \(266\) $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+(7-\beta _{1})q^{3}+2^{4}q^{4}+(-3+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(62))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(62)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 2}\)