Properties

Label 608.2.t.a.49.10
Level $608$
Weight $2$
Character 608.49
Analytic conductor $4.855$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [608,2,Mod(49,608)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(608, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("608.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 608.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.85490444289\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 152)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.10
Character \(\chi\) \(=\) 608.49
Dual form 608.2.t.a.273.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0638311 + 0.0368529i) q^{3} +(1.95840 + 1.13068i) q^{5} +4.70260 q^{7} +(-1.49728 - 2.59337i) q^{9} -1.98019i q^{11} +(-0.432449 + 0.249675i) q^{13} +(0.0833377 + 0.144345i) q^{15} +(0.371220 - 0.642972i) q^{17} +(1.13983 + 4.20723i) q^{19} +(0.300172 + 0.173304i) q^{21} +(-1.59672 - 2.76560i) q^{23} +(0.0568756 + 0.0985114i) q^{25} -0.441834i q^{27} +(-5.22471 + 3.01649i) q^{29} +5.44101 q^{31} +(0.0729758 - 0.126398i) q^{33} +(9.20955 + 5.31714i) q^{35} +10.3168i q^{37} -0.0368049 q^{39} +(2.77027 - 4.79824i) q^{41} +(-6.56065 - 3.78779i) q^{43} -6.77180i q^{45} +(0.782377 + 1.35512i) q^{47} +15.1145 q^{49} +(0.0473908 - 0.0273611i) q^{51} +(10.0885 - 5.82458i) q^{53} +(2.23896 - 3.87800i) q^{55} +(-0.0822924 + 0.310558i) q^{57} +(4.10945 + 2.37259i) q^{59} +(1.51215 - 0.873042i) q^{61} +(-7.04113 - 12.1956i) q^{63} -1.12921 q^{65} +(-9.42749 + 5.44296i) q^{67} -0.235375i q^{69} +(-5.42083 + 9.38916i) q^{71} +(-6.23576 + 10.8007i) q^{73} +0.00838412i q^{75} -9.31205i q^{77} +(-0.834855 + 1.44601i) q^{79} +(-4.47557 + 7.75191i) q^{81} -15.5733i q^{83} +(1.45399 - 0.839462i) q^{85} -0.444666 q^{87} +(-2.90236 - 5.02703i) q^{89} +(-2.03364 + 1.17412i) q^{91} +(0.347306 + 0.200517i) q^{93} +(-2.52480 + 9.52820i) q^{95} +(-0.605380 + 1.04855i) q^{97} +(-5.13537 + 2.96491i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 8 q^{7} + 12 q^{9} + 6 q^{15} - 2 q^{17} + 2 q^{23} + 8 q^{25} + 48 q^{31} + 12 q^{33} + 20 q^{39} + 2 q^{41} - 10 q^{47} - 12 q^{49} - 8 q^{55} - 6 q^{57} + 28 q^{63} - 28 q^{65} + 30 q^{71} - 10 q^{73}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/608\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0638311 + 0.0368529i 0.0368529 + 0.0212770i 0.518313 0.855191i \(-0.326560\pi\)
−0.481460 + 0.876468i \(0.659893\pi\)
\(4\) 0 0
\(5\) 1.95840 + 1.13068i 0.875821 + 0.505656i 0.869278 0.494323i \(-0.164584\pi\)
0.00654285 + 0.999979i \(0.497917\pi\)
\(6\) 0 0
\(7\) 4.70260 1.77742 0.888708 0.458474i \(-0.151604\pi\)
0.888708 + 0.458474i \(0.151604\pi\)
\(8\) 0 0
\(9\) −1.49728 2.59337i −0.499095 0.864457i
\(10\) 0 0
\(11\) 1.98019i 0.597050i −0.954402 0.298525i \(-0.903505\pi\)
0.954402 0.298525i \(-0.0964947\pi\)
\(12\) 0 0
\(13\) −0.432449 + 0.249675i −0.119940 + 0.0692473i −0.558770 0.829323i \(-0.688726\pi\)
0.438830 + 0.898570i \(0.355393\pi\)
\(14\) 0 0
\(15\) 0.0833377 + 0.144345i 0.0215177 + 0.0372698i
\(16\) 0 0
\(17\) 0.371220 0.642972i 0.0900341 0.155944i −0.817491 0.575941i \(-0.804636\pi\)
0.907525 + 0.419998i \(0.137969\pi\)
\(18\) 0 0
\(19\) 1.13983 + 4.20723i 0.261494 + 0.965205i
\(20\) 0 0
\(21\) 0.300172 + 0.173304i 0.0655029 + 0.0378181i
\(22\) 0 0
\(23\) −1.59672 2.76560i −0.332939 0.576668i 0.650147 0.759808i \(-0.274707\pi\)
−0.983087 + 0.183140i \(0.941374\pi\)
\(24\) 0 0
\(25\) 0.0568756 + 0.0985114i 0.0113751 + 0.0197023i
\(26\) 0 0
\(27\) 0.441834i 0.0850311i
\(28\) 0 0
\(29\) −5.22471 + 3.01649i −0.970205 + 0.560148i −0.899299 0.437335i \(-0.855922\pi\)
−0.0709062 + 0.997483i \(0.522589\pi\)
\(30\) 0 0
\(31\) 5.44101 0.977234 0.488617 0.872498i \(-0.337502\pi\)
0.488617 + 0.872498i \(0.337502\pi\)
\(32\) 0 0
\(33\) 0.0729758 0.126398i 0.0127035 0.0220030i
\(34\) 0 0
\(35\) 9.20955 + 5.31714i 1.55670 + 0.898760i
\(36\) 0 0
\(37\) 10.3168i 1.69608i 0.529932 + 0.848040i \(0.322217\pi\)
−0.529932 + 0.848040i \(0.677783\pi\)
\(38\) 0 0
\(39\) −0.0368049 −0.00589351
\(40\) 0 0
\(41\) 2.77027 4.79824i 0.432643 0.749359i −0.564457 0.825462i \(-0.690914\pi\)
0.997100 + 0.0761031i \(0.0242478\pi\)
\(42\) 0 0
\(43\) −6.56065 3.78779i −1.00049 0.577633i −0.0920962 0.995750i \(-0.529357\pi\)
−0.908393 + 0.418117i \(0.862690\pi\)
\(44\) 0 0
\(45\) 6.77180i 1.00948i
\(46\) 0 0
\(47\) 0.782377 + 1.35512i 0.114121 + 0.197664i 0.917428 0.397901i \(-0.130261\pi\)
−0.803307 + 0.595565i \(0.796928\pi\)
\(48\) 0 0
\(49\) 15.1145 2.15921
\(50\) 0 0
\(51\) 0.0473908 0.0273611i 0.00663604 0.00383132i
\(52\) 0 0
\(53\) 10.0885 5.82458i 1.38576 0.800068i 0.392925 0.919571i \(-0.371463\pi\)
0.992834 + 0.119503i \(0.0381300\pi\)
\(54\) 0 0
\(55\) 2.23896 3.87800i 0.301902 0.522909i
\(56\) 0 0
\(57\) −0.0822924 + 0.310558i −0.0108999 + 0.0411344i
\(58\) 0 0
\(59\) 4.10945 + 2.37259i 0.535005 + 0.308885i 0.743052 0.669233i \(-0.233377\pi\)
−0.208047 + 0.978119i \(0.566711\pi\)
\(60\) 0 0
\(61\) 1.51215 0.873042i 0.193611 0.111782i −0.400061 0.916489i \(-0.631011\pi\)
0.593672 + 0.804707i \(0.297678\pi\)
\(62\) 0 0
\(63\) −7.04113 12.1956i −0.887099 1.53650i
\(64\) 0 0
\(65\) −1.12921 −0.140061
\(66\) 0 0
\(67\) −9.42749 + 5.44296i −1.15175 + 0.664964i −0.949313 0.314332i \(-0.898220\pi\)
−0.202438 + 0.979295i \(0.564886\pi\)
\(68\) 0 0
\(69\) 0.235375i 0.0283359i
\(70\) 0 0
\(71\) −5.42083 + 9.38916i −0.643335 + 1.11429i 0.341349 + 0.939937i \(0.389116\pi\)
−0.984683 + 0.174352i \(0.944217\pi\)
\(72\) 0 0
\(73\) −6.23576 + 10.8007i −0.729841 + 1.26412i 0.227109 + 0.973869i \(0.427073\pi\)
−0.956950 + 0.290252i \(0.906261\pi\)
\(74\) 0 0
\(75\) 0.00838412i 0.000968115i
\(76\) 0 0
\(77\) 9.31205i 1.06121i
\(78\) 0 0
\(79\) −0.834855 + 1.44601i −0.0939285 + 0.162689i −0.909161 0.416445i \(-0.863276\pi\)
0.815232 + 0.579134i \(0.196609\pi\)
\(80\) 0 0
\(81\) −4.47557 + 7.75191i −0.497285 + 0.861324i
\(82\) 0 0
\(83\) 15.5733i 1.70939i −0.519130 0.854695i \(-0.673744\pi\)
0.519130 0.854695i \(-0.326256\pi\)
\(84\) 0 0
\(85\) 1.45399 0.839462i 0.157708 0.0910525i
\(86\) 0 0
\(87\) −0.444666 −0.0476732
\(88\) 0 0
\(89\) −2.90236 5.02703i −0.307649 0.532864i 0.670198 0.742182i \(-0.266209\pi\)
−0.977848 + 0.209318i \(0.932876\pi\)
\(90\) 0 0
\(91\) −2.03364 + 1.17412i −0.213183 + 0.123081i
\(92\) 0 0
\(93\) 0.347306 + 0.200517i 0.0360139 + 0.0207926i
\(94\) 0 0
\(95\) −2.52480 + 9.52820i −0.259040 + 0.977573i
\(96\) 0 0
\(97\) −0.605380 + 1.04855i −0.0614670 + 0.106464i −0.895121 0.445823i \(-0.852911\pi\)
0.833654 + 0.552287i \(0.186245\pi\)
\(98\) 0 0
\(99\) −5.13537 + 2.96491i −0.516124 + 0.297985i
\(100\) 0 0
\(101\) −12.9353 + 7.46822i −1.28711 + 0.743115i −0.978138 0.207955i \(-0.933319\pi\)
−0.308975 + 0.951070i \(0.599986\pi\)
\(102\) 0 0
\(103\) −11.6211 −1.14506 −0.572530 0.819884i \(-0.694038\pi\)
−0.572530 + 0.819884i \(0.694038\pi\)
\(104\) 0 0
\(105\) 0.391904 + 0.678798i 0.0382459 + 0.0662439i
\(106\) 0 0
\(107\) 7.66606i 0.741106i 0.928811 + 0.370553i \(0.120832\pi\)
−0.928811 + 0.370553i \(0.879168\pi\)
\(108\) 0 0
\(109\) −2.28507 1.31929i −0.218870 0.126365i 0.386557 0.922266i \(-0.373664\pi\)
−0.605427 + 0.795901i \(0.706998\pi\)
\(110\) 0 0
\(111\) −0.380206 + 0.658536i −0.0360875 + 0.0625055i
\(112\) 0 0
\(113\) −8.94264 −0.841253 −0.420627 0.907234i \(-0.638190\pi\)
−0.420627 + 0.907234i \(0.638190\pi\)
\(114\) 0 0
\(115\) 7.22153i 0.673411i
\(116\) 0 0
\(117\) 1.29500 + 0.747668i 0.119723 + 0.0691219i
\(118\) 0 0
\(119\) 1.74570 3.02364i 0.160028 0.277177i
\(120\) 0 0
\(121\) 7.07884 0.643531
\(122\) 0 0
\(123\) 0.353658 0.204185i 0.0318883 0.0184107i
\(124\) 0 0
\(125\) 11.0496i 0.988304i
\(126\) 0 0
\(127\) 2.38102 + 4.12405i 0.211281 + 0.365950i 0.952116 0.305738i \(-0.0989030\pi\)
−0.740834 + 0.671688i \(0.765570\pi\)
\(128\) 0 0
\(129\) −0.279182 0.483558i −0.0245806 0.0425749i
\(130\) 0 0
\(131\) −4.31780 2.49288i −0.377248 0.217804i 0.299372 0.954136i \(-0.403223\pi\)
−0.676620 + 0.736332i \(0.736556\pi\)
\(132\) 0 0
\(133\) 5.36014 + 19.7849i 0.464783 + 1.71557i
\(134\) 0 0
\(135\) 0.499573 0.865287i 0.0429964 0.0744720i
\(136\) 0 0
\(137\) −4.00007 6.92833i −0.341749 0.591927i 0.643008 0.765859i \(-0.277686\pi\)
−0.984758 + 0.173932i \(0.944353\pi\)
\(138\) 0 0
\(139\) 6.90837 3.98855i 0.585960 0.338304i −0.177538 0.984114i \(-0.556813\pi\)
0.763498 + 0.645810i \(0.223480\pi\)
\(140\) 0 0
\(141\) 0.115331i 0.00971266i
\(142\) 0 0
\(143\) 0.494404 + 0.856333i 0.0413441 + 0.0716101i
\(144\) 0 0
\(145\) −13.6427 −1.13297
\(146\) 0 0
\(147\) 0.964772 + 0.557012i 0.0795731 + 0.0459415i
\(148\) 0 0
\(149\) −4.57651 2.64225i −0.374922 0.216462i 0.300684 0.953724i \(-0.402785\pi\)
−0.675607 + 0.737262i \(0.736118\pi\)
\(150\) 0 0
\(151\) 3.63598 0.295892 0.147946 0.988995i \(-0.452734\pi\)
0.147946 + 0.988995i \(0.452734\pi\)
\(152\) 0 0
\(153\) −2.22329 −0.179742
\(154\) 0 0
\(155\) 10.6556 + 6.15204i 0.855882 + 0.494144i
\(156\) 0 0
\(157\) −16.5481 9.55404i −1.32068 0.762496i −0.336844 0.941561i \(-0.609359\pi\)
−0.983837 + 0.179065i \(0.942693\pi\)
\(158\) 0 0
\(159\) 0.858611 0.0680923
\(160\) 0 0
\(161\) −7.50874 13.0055i −0.591772 1.02498i
\(162\) 0 0
\(163\) 9.73237i 0.762298i −0.924514 0.381149i \(-0.875528\pi\)
0.924514 0.381149i \(-0.124472\pi\)
\(164\) 0 0
\(165\) 0.285831 0.165025i 0.0222519 0.0128472i
\(166\) 0 0
\(167\) 9.40182 + 16.2844i 0.727535 + 1.26013i 0.957922 + 0.287029i \(0.0926675\pi\)
−0.230387 + 0.973099i \(0.573999\pi\)
\(168\) 0 0
\(169\) −6.37533 + 11.0424i −0.490410 + 0.849414i
\(170\) 0 0
\(171\) 9.20427 9.25541i 0.703868 0.707779i
\(172\) 0 0
\(173\) −10.1721 5.87286i −0.773370 0.446505i 0.0607055 0.998156i \(-0.480665\pi\)
−0.834075 + 0.551650i \(0.813998\pi\)
\(174\) 0 0
\(175\) 0.267463 + 0.463260i 0.0202183 + 0.0350192i
\(176\) 0 0
\(177\) 0.174874 + 0.302890i 0.0131443 + 0.0227666i
\(178\) 0 0
\(179\) 11.1964i 0.836860i −0.908249 0.418430i \(-0.862580\pi\)
0.908249 0.418430i \(-0.137420\pi\)
\(180\) 0 0
\(181\) 10.2345 5.90892i 0.760728 0.439206i −0.0688293 0.997628i \(-0.521926\pi\)
0.829557 + 0.558422i \(0.188593\pi\)
\(182\) 0 0
\(183\) 0.128697 0.00951352
\(184\) 0 0
\(185\) −11.6651 + 20.2045i −0.857632 + 1.48546i
\(186\) 0 0
\(187\) −1.27321 0.735087i −0.0931062 0.0537549i
\(188\) 0 0
\(189\) 2.07777i 0.151136i
\(190\) 0 0
\(191\) −12.6474 −0.915135 −0.457568 0.889175i \(-0.651279\pi\)
−0.457568 + 0.889175i \(0.651279\pi\)
\(192\) 0 0
\(193\) −3.67277 + 6.36143i −0.264372 + 0.457906i −0.967399 0.253258i \(-0.918498\pi\)
0.703027 + 0.711163i \(0.251831\pi\)
\(194\) 0 0
\(195\) −0.0720786 0.0416146i −0.00516166 0.00298009i
\(196\) 0 0
\(197\) 12.1000i 0.862092i 0.902330 + 0.431046i \(0.141855\pi\)
−0.902330 + 0.431046i \(0.858145\pi\)
\(198\) 0 0
\(199\) 3.73560 + 6.47025i 0.264810 + 0.458664i 0.967514 0.252819i \(-0.0813576\pi\)
−0.702704 + 0.711482i \(0.748024\pi\)
\(200\) 0 0
\(201\) −0.802356 −0.0565938
\(202\) 0 0
\(203\) −24.5697 + 14.1853i −1.72446 + 0.995616i
\(204\) 0 0
\(205\) 10.8505 6.26457i 0.757835 0.437536i
\(206\) 0 0
\(207\) −4.78149 + 8.28178i −0.332337 + 0.575624i
\(208\) 0 0
\(209\) 8.33113 2.25707i 0.576276 0.156125i
\(210\) 0 0
\(211\) −5.04276 2.91144i −0.347158 0.200432i 0.316275 0.948668i \(-0.397568\pi\)
−0.663433 + 0.748236i \(0.730901\pi\)
\(212\) 0 0
\(213\) −0.692036 + 0.399547i −0.0474175 + 0.0273765i
\(214\) 0 0
\(215\) −8.56556 14.8360i −0.584166 1.01181i
\(216\) 0 0
\(217\) 25.5869 1.73695
\(218\) 0 0
\(219\) −0.796071 + 0.459612i −0.0537935 + 0.0310577i
\(220\) 0 0
\(221\) 0.370737i 0.0249385i
\(222\) 0 0
\(223\) 3.54133 6.13377i 0.237145 0.410748i −0.722749 0.691111i \(-0.757122\pi\)
0.959894 + 0.280363i \(0.0904549\pi\)
\(224\) 0 0
\(225\) 0.170318 0.294999i 0.0113545 0.0196666i
\(226\) 0 0
\(227\) 10.8506i 0.720179i −0.932918 0.360090i \(-0.882746\pi\)
0.932918 0.360090i \(-0.117254\pi\)
\(228\) 0 0
\(229\) 5.71559i 0.377697i −0.982006 0.188848i \(-0.939525\pi\)
0.982006 0.188848i \(-0.0604755\pi\)
\(230\) 0 0
\(231\) 0.343176 0.594399i 0.0225793 0.0391086i
\(232\) 0 0
\(233\) 11.6711 20.2149i 0.764598 1.32432i −0.175860 0.984415i \(-0.556271\pi\)
0.940459 0.339908i \(-0.110396\pi\)
\(234\) 0 0
\(235\) 3.53847i 0.230825i
\(236\) 0 0
\(237\) −0.106579 + 0.0615336i −0.00692307 + 0.00399704i
\(238\) 0 0
\(239\) 10.4517 0.676063 0.338032 0.941135i \(-0.390239\pi\)
0.338032 + 0.941135i \(0.390239\pi\)
\(240\) 0 0
\(241\) −10.3416 17.9122i −0.666160 1.15382i −0.978969 0.204007i \(-0.934603\pi\)
0.312809 0.949816i \(-0.398730\pi\)
\(242\) 0 0
\(243\) −1.71928 + 0.992627i −0.110292 + 0.0636770i
\(244\) 0 0
\(245\) 29.6001 + 17.0896i 1.89108 + 1.09182i
\(246\) 0 0
\(247\) −1.54336 1.53483i −0.0982014 0.0976588i
\(248\) 0 0
\(249\) 0.573921 0.994060i 0.0363708 0.0629960i
\(250\) 0 0
\(251\) 0.147363 0.0850803i 0.00930149 0.00537022i −0.495342 0.868698i \(-0.664957\pi\)
0.504644 + 0.863328i \(0.331624\pi\)
\(252\) 0 0
\(253\) −5.47643 + 3.16182i −0.344300 + 0.198782i
\(254\) 0 0
\(255\) 0.123747 0.00774931
\(256\) 0 0
\(257\) 7.27034 + 12.5926i 0.453511 + 0.785504i 0.998601 0.0528730i \(-0.0168379\pi\)
−0.545090 + 0.838378i \(0.683505\pi\)
\(258\) 0 0
\(259\) 48.5160i 3.01464i
\(260\) 0 0
\(261\) 15.6458 + 9.03308i 0.968448 + 0.559134i
\(262\) 0 0
\(263\) 7.54036 13.0603i 0.464959 0.805332i −0.534241 0.845332i \(-0.679402\pi\)
0.999200 + 0.0400000i \(0.0127358\pi\)
\(264\) 0 0
\(265\) 26.3430 1.61824
\(266\) 0 0
\(267\) 0.427841i 0.0261835i
\(268\) 0 0
\(269\) −6.34397 3.66269i −0.386799 0.223318i 0.293973 0.955814i \(-0.405022\pi\)
−0.680772 + 0.732495i \(0.738356\pi\)
\(270\) 0 0
\(271\) 4.12352 7.14215i 0.250486 0.433855i −0.713174 0.700987i \(-0.752743\pi\)
0.963660 + 0.267133i \(0.0860762\pi\)
\(272\) 0 0
\(273\) −0.173079 −0.0104752
\(274\) 0 0
\(275\) 0.195072 0.112625i 0.0117633 0.00679152i
\(276\) 0 0
\(277\) 17.2973i 1.03929i 0.854382 + 0.519646i \(0.173936\pi\)
−0.854382 + 0.519646i \(0.826064\pi\)
\(278\) 0 0
\(279\) −8.14673 14.1106i −0.487732 0.844777i
\(280\) 0 0
\(281\) −12.5105 21.6688i −0.746312 1.29265i −0.949579 0.313527i \(-0.898489\pi\)
0.203267 0.979123i \(-0.434844\pi\)
\(282\) 0 0
\(283\) 16.0653 + 9.27531i 0.954984 + 0.551360i 0.894626 0.446817i \(-0.147442\pi\)
0.0603582 + 0.998177i \(0.480776\pi\)
\(284\) 0 0
\(285\) −0.512303 + 0.515149i −0.0303462 + 0.0305148i
\(286\) 0 0
\(287\) 13.0275 22.5642i 0.768986 1.33192i
\(288\) 0 0
\(289\) 8.22439 + 14.2451i 0.483788 + 0.837945i
\(290\) 0 0
\(291\) −0.0772841 + 0.0446200i −0.00453048 + 0.00261567i
\(292\) 0 0
\(293\) 1.02282i 0.0597535i −0.999554 0.0298768i \(-0.990489\pi\)
0.999554 0.0298768i \(-0.00951149\pi\)
\(294\) 0 0
\(295\) 5.36529 + 9.29295i 0.312379 + 0.541057i
\(296\) 0 0
\(297\) −0.874917 −0.0507678
\(298\) 0 0
\(299\) 1.38100 + 0.797322i 0.0798654 + 0.0461103i
\(300\) 0 0
\(301\) −30.8521 17.8125i −1.77829 1.02669i
\(302\) 0 0
\(303\) −1.10090 −0.0632451
\(304\) 0 0
\(305\) 3.94853 0.226092
\(306\) 0 0
\(307\) 22.7524 + 13.1361i 1.29855 + 0.749717i 0.980153 0.198241i \(-0.0635227\pi\)
0.318395 + 0.947958i \(0.396856\pi\)
\(308\) 0 0
\(309\) −0.741787 0.428271i −0.0421988 0.0243635i
\(310\) 0 0
\(311\) −24.2028 −1.37241 −0.686207 0.727407i \(-0.740725\pi\)
−0.686207 + 0.727407i \(0.740725\pi\)
\(312\) 0 0
\(313\) 14.3528 + 24.8598i 0.811270 + 1.40516i 0.911976 + 0.410244i \(0.134557\pi\)
−0.100706 + 0.994916i \(0.532110\pi\)
\(314\) 0 0
\(315\) 31.8451i 1.79427i
\(316\) 0 0
\(317\) −8.87555 + 5.12430i −0.498501 + 0.287809i −0.728094 0.685477i \(-0.759594\pi\)
0.229594 + 0.973287i \(0.426260\pi\)
\(318\) 0 0
\(319\) 5.97323 + 10.3459i 0.334437 + 0.579261i
\(320\) 0 0
\(321\) −0.282517 + 0.489333i −0.0157685 + 0.0273119i
\(322\) 0 0
\(323\) 3.12826 + 0.828933i 0.174061 + 0.0461231i
\(324\) 0 0
\(325\) −0.0491916 0.0284008i −0.00272866 0.00157539i
\(326\) 0 0
\(327\) −0.0972391 0.168423i −0.00537733 0.00931381i
\(328\) 0 0
\(329\) 3.67921 + 6.37257i 0.202841 + 0.351331i
\(330\) 0 0
\(331\) 16.6930i 0.917528i 0.888558 + 0.458764i \(0.151708\pi\)
−0.888558 + 0.458764i \(0.848292\pi\)
\(332\) 0 0
\(333\) 26.7554 15.4473i 1.46619 0.846504i
\(334\) 0 0
\(335\) −24.6170 −1.34497
\(336\) 0 0
\(337\) 14.1278 24.4701i 0.769591 1.33297i −0.168194 0.985754i \(-0.553794\pi\)
0.937785 0.347216i \(-0.112873\pi\)
\(338\) 0 0
\(339\) −0.570819 0.329562i −0.0310026 0.0178994i
\(340\) 0 0
\(341\) 10.7742i 0.583458i
\(342\) 0 0
\(343\) 38.1591 2.06040
\(344\) 0 0
\(345\) 0.266134 0.460958i 0.0143282 0.0248171i
\(346\) 0 0
\(347\) −22.6793 13.0939i −1.21749 0.702918i −0.253110 0.967438i \(-0.581453\pi\)
−0.964380 + 0.264519i \(0.914787\pi\)
\(348\) 0 0
\(349\) 7.01947i 0.375743i −0.982194 0.187872i \(-0.939841\pi\)
0.982194 0.187872i \(-0.0601589\pi\)
\(350\) 0 0
\(351\) 0.110315 + 0.191071i 0.00588817 + 0.0101986i
\(352\) 0 0
\(353\) 13.7525 0.731969 0.365985 0.930621i \(-0.380732\pi\)
0.365985 + 0.930621i \(0.380732\pi\)
\(354\) 0 0
\(355\) −21.2323 + 12.2585i −1.12689 + 0.650612i
\(356\) 0 0
\(357\) 0.222860 0.128668i 0.0117950 0.00680984i
\(358\) 0 0
\(359\) −1.49285 + 2.58569i −0.0787895 + 0.136467i −0.902728 0.430212i \(-0.858439\pi\)
0.823938 + 0.566679i \(0.191772\pi\)
\(360\) 0 0
\(361\) −16.4016 + 9.59102i −0.863242 + 0.504790i
\(362\) 0 0
\(363\) 0.451850 + 0.260876i 0.0237160 + 0.0136924i
\(364\) 0 0
\(365\) −24.4242 + 14.1013i −1.27842 + 0.738096i
\(366\) 0 0
\(367\) 9.97261 + 17.2731i 0.520566 + 0.901647i 0.999714 + 0.0239129i \(0.00761244\pi\)
−0.479148 + 0.877734i \(0.659054\pi\)
\(368\) 0 0
\(369\) −16.5915 −0.863719
\(370\) 0 0
\(371\) 47.4421 27.3907i 2.46307 1.42205i
\(372\) 0 0
\(373\) 16.8878i 0.874416i 0.899360 + 0.437208i \(0.144033\pi\)
−0.899360 + 0.437208i \(0.855967\pi\)
\(374\) 0 0
\(375\) 0.407209 0.705306i 0.0210282 0.0364219i
\(376\) 0 0
\(377\) 1.50628 2.60896i 0.0775775 0.134368i
\(378\) 0 0
\(379\) 26.5474i 1.36365i −0.731517 0.681824i \(-0.761187\pi\)
0.731517 0.681824i \(-0.238813\pi\)
\(380\) 0 0
\(381\) 0.350990i 0.0179818i
\(382\) 0 0
\(383\) −2.38085 + 4.12375i −0.121656 + 0.210714i −0.920421 0.390929i \(-0.872154\pi\)
0.798765 + 0.601643i \(0.205487\pi\)
\(384\) 0 0
\(385\) 10.5290 18.2367i 0.536605 0.929428i
\(386\) 0 0
\(387\) 22.6856i 1.15317i
\(388\) 0 0
\(389\) 17.0129 9.82241i 0.862589 0.498016i −0.00228917 0.999997i \(-0.500729\pi\)
0.864879 + 0.501981i \(0.167395\pi\)
\(390\) 0 0
\(391\) −2.37094 −0.119904
\(392\) 0 0
\(393\) −0.183740 0.318247i −0.00926845 0.0160534i
\(394\) 0 0
\(395\) −3.26995 + 1.88791i −0.164529 + 0.0949909i
\(396\) 0 0
\(397\) 22.1285 + 12.7759i 1.11060 + 0.641203i 0.938984 0.343962i \(-0.111769\pi\)
0.171612 + 0.985165i \(0.445102\pi\)
\(398\) 0 0
\(399\) −0.386988 + 1.46043i −0.0193736 + 0.0731130i
\(400\) 0 0
\(401\) 4.14055 7.17165i 0.206769 0.358135i −0.743926 0.668262i \(-0.767038\pi\)
0.950695 + 0.310127i \(0.100372\pi\)
\(402\) 0 0
\(403\) −2.35296 + 1.35848i −0.117209 + 0.0676708i
\(404\) 0 0
\(405\) −17.5299 + 10.1209i −0.871066 + 0.502910i
\(406\) 0 0
\(407\) 20.4293 1.01265
\(408\) 0 0
\(409\) −8.00331 13.8621i −0.395738 0.685439i 0.597457 0.801901i \(-0.296178\pi\)
−0.993195 + 0.116462i \(0.962845\pi\)
\(410\) 0 0
\(411\) 0.589657i 0.0290856i
\(412\) 0 0
\(413\) 19.3251 + 11.1574i 0.950927 + 0.549018i
\(414\) 0 0
\(415\) 17.6084 30.4987i 0.864363 1.49712i
\(416\) 0 0
\(417\) 0.587958 0.0287924
\(418\) 0 0
\(419\) 24.4736i 1.19562i 0.801640 + 0.597808i \(0.203961\pi\)
−0.801640 + 0.597808i \(0.796039\pi\)
\(420\) 0 0
\(421\) 10.0033 + 5.77541i 0.487532 + 0.281476i 0.723550 0.690272i \(-0.242509\pi\)
−0.236018 + 0.971749i \(0.575843\pi\)
\(422\) 0 0
\(423\) 2.34288 4.05799i 0.113915 0.197306i
\(424\) 0 0
\(425\) 0.0844535 0.00409659
\(426\) 0 0
\(427\) 7.11106 4.10557i 0.344128 0.198682i
\(428\) 0 0
\(429\) 0.0728809i 0.00351872i
\(430\) 0 0
\(431\) −6.07769 10.5269i −0.292752 0.507061i 0.681707 0.731625i \(-0.261238\pi\)
−0.974459 + 0.224564i \(0.927904\pi\)
\(432\) 0 0
\(433\) 19.2219 + 33.2932i 0.923744 + 1.59997i 0.793570 + 0.608480i \(0.208220\pi\)
0.130174 + 0.991491i \(0.458446\pi\)
\(434\) 0 0
\(435\) −0.870831 0.502775i −0.0417532 0.0241062i
\(436\) 0 0
\(437\) 9.81555 9.87008i 0.469541 0.472150i
\(438\) 0 0
\(439\) −9.70327 + 16.8066i −0.463112 + 0.802133i −0.999114 0.0420834i \(-0.986600\pi\)
0.536002 + 0.844217i \(0.319934\pi\)
\(440\) 0 0
\(441\) −22.6306 39.1974i −1.07765 1.86654i
\(442\) 0 0
\(443\) −16.3666 + 9.44924i −0.777599 + 0.448947i −0.835579 0.549371i \(-0.814867\pi\)
0.0579798 + 0.998318i \(0.481534\pi\)
\(444\) 0 0
\(445\) 13.1266i 0.622259i
\(446\) 0 0
\(447\) −0.194749 0.337315i −0.00921132 0.0159545i
\(448\) 0 0
\(449\) −25.1997 −1.18925 −0.594624 0.804004i \(-0.702699\pi\)
−0.594624 + 0.804004i \(0.702699\pi\)
\(450\) 0 0
\(451\) −9.50144 5.48566i −0.447405 0.258310i
\(452\) 0 0
\(453\) 0.232088 + 0.133996i 0.0109045 + 0.00629570i
\(454\) 0 0
\(455\) −5.31022 −0.248947
\(456\) 0 0
\(457\) 6.45543 0.301972 0.150986 0.988536i \(-0.451755\pi\)
0.150986 + 0.988536i \(0.451755\pi\)
\(458\) 0 0
\(459\) −0.284087 0.164018i −0.0132601 0.00765570i
\(460\) 0 0
\(461\) 2.49112 + 1.43825i 0.116023 + 0.0669858i 0.556888 0.830587i \(-0.311995\pi\)
−0.440866 + 0.897573i \(0.645328\pi\)
\(462\) 0 0
\(463\) 29.6723 1.37899 0.689494 0.724292i \(-0.257833\pi\)
0.689494 + 0.724292i \(0.257833\pi\)
\(464\) 0 0
\(465\) 0.453441 + 0.785383i 0.0210278 + 0.0364213i
\(466\) 0 0
\(467\) 12.3400i 0.571026i −0.958375 0.285513i \(-0.907836\pi\)
0.958375 0.285513i \(-0.0921639\pi\)
\(468\) 0 0
\(469\) −44.3337 + 25.5961i −2.04714 + 1.18192i
\(470\) 0 0
\(471\) −0.704188 1.21969i −0.0324473 0.0562003i
\(472\) 0 0
\(473\) −7.50055 + 12.9913i −0.344876 + 0.597342i
\(474\) 0 0
\(475\) −0.349632 + 0.351575i −0.0160422 + 0.0161314i
\(476\) 0 0
\(477\) −30.2106 17.4421i −1.38325 0.798619i
\(478\) 0 0
\(479\) 3.99982 + 6.92789i 0.182756 + 0.316543i 0.942818 0.333307i \(-0.108165\pi\)
−0.760062 + 0.649851i \(0.774831\pi\)
\(480\) 0 0
\(481\) −2.57586 4.46151i −0.117449 0.203428i
\(482\) 0 0
\(483\) 1.10688i 0.0503646i
\(484\) 0 0
\(485\) −2.37115 + 1.36898i −0.107668 + 0.0621623i
\(486\) 0 0
\(487\) −11.3433 −0.514013 −0.257007 0.966410i \(-0.582736\pi\)
−0.257007 + 0.966410i \(0.582736\pi\)
\(488\) 0 0
\(489\) 0.358666 0.621228i 0.0162194 0.0280929i
\(490\) 0 0
\(491\) 20.0056 + 11.5502i 0.902840 + 0.521255i 0.878121 0.478439i \(-0.158797\pi\)
0.0247197 + 0.999694i \(0.492131\pi\)
\(492\) 0 0
\(493\) 4.47913i 0.201730i
\(494\) 0 0
\(495\) −13.4095 −0.602710
\(496\) 0 0
\(497\) −25.4920 + 44.1535i −1.14347 + 1.98055i
\(498\) 0 0
\(499\) −17.4946 10.1005i −0.783166 0.452161i 0.0543850 0.998520i \(-0.482680\pi\)
−0.837551 + 0.546359i \(0.816014\pi\)
\(500\) 0 0
\(501\) 1.38594i 0.0619191i
\(502\) 0 0
\(503\) 2.59755 + 4.49909i 0.115819 + 0.200604i 0.918107 0.396333i \(-0.129717\pi\)
−0.802288 + 0.596937i \(0.796384\pi\)
\(504\) 0 0
\(505\) −33.7767 −1.50304
\(506\) 0 0
\(507\) −0.813888 + 0.469898i −0.0361460 + 0.0208689i
\(508\) 0 0
\(509\) 26.5099 15.3055i 1.17503 0.678404i 0.220171 0.975461i \(-0.429338\pi\)
0.954860 + 0.297057i \(0.0960051\pi\)
\(510\) 0 0
\(511\) −29.3243 + 50.7912i −1.29723 + 2.24687i
\(512\) 0 0
\(513\) 1.85890 0.503614i 0.0820724 0.0222351i
\(514\) 0 0
\(515\) −22.7587 13.1397i −1.00287 0.579006i
\(516\) 0 0
\(517\) 2.68339 1.54926i 0.118015 0.0681363i
\(518\) 0 0
\(519\) −0.432864 0.749742i −0.0190006 0.0329100i
\(520\) 0 0
\(521\) −24.6215 −1.07869 −0.539343 0.842086i \(-0.681327\pi\)
−0.539343 + 0.842086i \(0.681327\pi\)
\(522\) 0 0
\(523\) −28.6708 + 16.5531i −1.25369 + 0.723816i −0.971840 0.235643i \(-0.924280\pi\)
−0.281847 + 0.959459i \(0.590947\pi\)
\(524\) 0 0
\(525\) 0.0394272i 0.00172074i
\(526\) 0 0
\(527\) 2.01981 3.49842i 0.0879844 0.152393i
\(528\) 0 0
\(529\) 6.40096 11.0868i 0.278303 0.482034i
\(530\) 0 0
\(531\) 14.2098i 0.616652i
\(532\) 0 0
\(533\) 2.76666i 0.119837i
\(534\) 0 0
\(535\) −8.66787 + 15.0132i −0.374745 + 0.649077i
\(536\) 0 0
\(537\) 0.412621 0.714680i 0.0178059 0.0308407i
\(538\) 0 0
\(539\) 29.9295i 1.28916i
\(540\) 0 0
\(541\) 15.7964 9.12004i 0.679139 0.392101i −0.120391 0.992727i \(-0.538415\pi\)
0.799531 + 0.600625i \(0.205082\pi\)
\(542\) 0 0
\(543\) 0.871043 0.0373800
\(544\) 0 0
\(545\) −2.98338 5.16737i −0.127794 0.221346i
\(546\) 0 0
\(547\) 18.9714 10.9532i 0.811160 0.468323i −0.0361988 0.999345i \(-0.511525\pi\)
0.847358 + 0.531021i \(0.178192\pi\)
\(548\) 0 0
\(549\) −4.52825 2.61438i −0.193261 0.111579i
\(550\) 0 0
\(551\) −18.6463 18.5433i −0.794360 0.789971i
\(552\) 0 0
\(553\) −3.92599 + 6.80001i −0.166950 + 0.289166i
\(554\) 0 0
\(555\) −1.48919 + 0.859782i −0.0632125 + 0.0364957i
\(556\) 0 0
\(557\) −24.5414 + 14.1690i −1.03985 + 0.600359i −0.919791 0.392408i \(-0.871642\pi\)
−0.120061 + 0.992767i \(0.538309\pi\)
\(558\) 0 0
\(559\) 3.78286 0.159998
\(560\) 0 0
\(561\) −0.0541802 0.0938428i −0.00228749 0.00396205i
\(562\) 0 0
\(563\) 5.98383i 0.252188i −0.992018 0.126094i \(-0.959756\pi\)
0.992018 0.126094i \(-0.0402442\pi\)
\(564\) 0 0
\(565\) −17.5132 10.1113i −0.736787 0.425384i
\(566\) 0 0
\(567\) −21.0468 + 36.4541i −0.883883 + 1.53093i
\(568\) 0 0
\(569\) 26.0900 1.09375 0.546875 0.837214i \(-0.315817\pi\)
0.546875 + 0.837214i \(0.315817\pi\)
\(570\) 0 0
\(571\) 17.5053i 0.732573i −0.930502 0.366287i \(-0.880629\pi\)
0.930502 0.366287i \(-0.119371\pi\)
\(572\) 0 0
\(573\) −0.807299 0.466094i −0.0337254 0.0194714i
\(574\) 0 0
\(575\) 0.181629 0.314591i 0.00757445 0.0131193i
\(576\) 0 0
\(577\) −4.31463 −0.179621 −0.0898103 0.995959i \(-0.528626\pi\)
−0.0898103 + 0.995959i \(0.528626\pi\)
\(578\) 0 0
\(579\) −0.468874 + 0.270705i −0.0194858 + 0.0112501i
\(580\) 0 0
\(581\) 73.2350i 3.03830i
\(582\) 0 0
\(583\) −11.5338 19.9771i −0.477681 0.827368i
\(584\) 0 0
\(585\) 1.69075 + 2.92846i 0.0699037 + 0.121077i
\(586\) 0 0
\(587\) 22.3055 + 12.8781i 0.920645 + 0.531535i 0.883841 0.467788i \(-0.154949\pi\)
0.0368044 + 0.999322i \(0.488282\pi\)
\(588\) 0 0
\(589\) 6.20180 + 22.8916i 0.255541 + 0.943231i
\(590\) 0 0
\(591\) −0.445922 + 0.772359i −0.0183428 + 0.0317706i
\(592\) 0 0
\(593\) 18.0229 + 31.2166i 0.740112 + 1.28191i 0.952444 + 0.304714i \(0.0985610\pi\)
−0.212331 + 0.977198i \(0.568106\pi\)
\(594\) 0 0
\(595\) 6.83754 3.94766i 0.280312 0.161838i
\(596\) 0 0
\(597\) 0.550671i 0.0225374i
\(598\) 0 0
\(599\) 6.14336 + 10.6406i 0.251011 + 0.434763i 0.963804 0.266610i \(-0.0859037\pi\)
−0.712794 + 0.701374i \(0.752570\pi\)
\(600\) 0 0
\(601\) −9.74846 −0.397648 −0.198824 0.980035i \(-0.563712\pi\)
−0.198824 + 0.980035i \(0.563712\pi\)
\(602\) 0 0
\(603\) 28.2312 + 16.2993i 1.14967 + 0.663760i
\(604\) 0 0
\(605\) 13.8632 + 8.00390i 0.563618 + 0.325405i
\(606\) 0 0
\(607\) −28.3299 −1.14988 −0.574938 0.818197i \(-0.694974\pi\)
−0.574938 + 0.818197i \(0.694974\pi\)
\(608\) 0 0
\(609\) −2.09108 −0.0847350
\(610\) 0 0
\(611\) −0.676677 0.390680i −0.0273754 0.0158052i
\(612\) 0 0
\(613\) −17.4855 10.0952i −0.706232 0.407743i 0.103433 0.994636i \(-0.467017\pi\)
−0.809664 + 0.586893i \(0.800351\pi\)
\(614\) 0 0
\(615\) 0.923470 0.0372379
\(616\) 0 0
\(617\) 6.87561 + 11.9089i 0.276801 + 0.479434i 0.970588 0.240746i \(-0.0773922\pi\)
−0.693787 + 0.720181i \(0.744059\pi\)
\(618\) 0 0
\(619\) 4.39271i 0.176558i −0.996096 0.0882791i \(-0.971863\pi\)
0.996096 0.0882791i \(-0.0281367\pi\)
\(620\) 0 0
\(621\) −1.22194 + 0.705487i −0.0490347 + 0.0283102i
\(622\) 0 0
\(623\) −13.6486 23.6401i −0.546821 0.947122i
\(624\) 0 0
\(625\) 12.7779 22.1320i 0.511116 0.885279i
\(626\) 0 0
\(627\) 0.614965 + 0.162955i 0.0245593 + 0.00650779i
\(628\) 0 0
\(629\) 6.63345 + 3.82982i 0.264493 + 0.152705i
\(630\) 0 0
\(631\) −13.8673 24.0188i −0.552047 0.956173i −0.998127 0.0611800i \(-0.980514\pi\)
0.446080 0.894993i \(-0.352820\pi\)
\(632\) 0 0
\(633\) −0.214590 0.371681i −0.00852919 0.0147730i
\(634\) 0 0
\(635\) 10.7687i 0.427343i
\(636\) 0 0
\(637\) −6.53623 + 3.77370i −0.258975 + 0.149519i
\(638\) 0 0
\(639\) 32.4661 1.28434
\(640\) 0 0
\(641\) 2.60078 4.50468i 0.102725 0.177924i −0.810082 0.586317i \(-0.800577\pi\)
0.912806 + 0.408393i \(0.133911\pi\)
\(642\) 0 0
\(643\) −9.12347 5.26744i −0.359794 0.207727i 0.309196 0.950998i \(-0.399940\pi\)
−0.668991 + 0.743271i \(0.733273\pi\)
\(644\) 0 0
\(645\) 1.26266i 0.0497173i
\(646\) 0 0
\(647\) 29.5690 1.16248 0.581239 0.813733i \(-0.302568\pi\)
0.581239 + 0.813733i \(0.302568\pi\)
\(648\) 0 0
\(649\) 4.69819 8.13750i 0.184420 0.319425i
\(650\) 0 0
\(651\) 1.63324 + 0.942951i 0.0640117 + 0.0369572i
\(652\) 0 0
\(653\) 5.92429i 0.231835i −0.993259 0.115918i \(-0.963019\pi\)
0.993259 0.115918i \(-0.0369809\pi\)
\(654\) 0 0
\(655\) −5.63730 9.76410i −0.220268 0.381515i
\(656\) 0 0
\(657\) 37.3468 1.45704
\(658\) 0 0
\(659\) −13.1894 + 7.61488i −0.513785 + 0.296634i −0.734388 0.678730i \(-0.762531\pi\)
0.220603 + 0.975364i \(0.429197\pi\)
\(660\) 0 0
\(661\) 7.12782 4.11525i 0.277240 0.160065i −0.354933 0.934892i \(-0.615496\pi\)
0.632173 + 0.774827i \(0.282163\pi\)
\(662\) 0 0
\(663\) −0.0136627 + 0.0236645i −0.000530617 + 0.000919055i
\(664\) 0 0
\(665\) −11.8731 + 44.8073i −0.460421 + 1.73755i
\(666\) 0 0
\(667\) 16.6848 + 9.63299i 0.646039 + 0.372991i
\(668\) 0 0
\(669\) 0.452094 0.261017i 0.0174790 0.0100915i
\(670\) 0 0
\(671\) −1.72879 2.99435i −0.0667393 0.115596i
\(672\) 0 0
\(673\) −5.85922 −0.225856 −0.112928 0.993603i \(-0.536023\pi\)
−0.112928 + 0.993603i \(0.536023\pi\)
\(674\) 0 0
\(675\) 0.0435257 0.0251296i 0.00167531 0.000967239i
\(676\) 0 0
\(677\) 2.54790i 0.0979236i −0.998801 0.0489618i \(-0.984409\pi\)
0.998801 0.0489618i \(-0.0155913\pi\)
\(678\) 0 0
\(679\) −2.84686 + 4.93091i −0.109252 + 0.189231i
\(680\) 0 0
\(681\) 0.399876 0.692605i 0.0153233 0.0265407i
\(682\) 0 0
\(683\) 24.9303i 0.953930i 0.878922 + 0.476965i \(0.158263\pi\)
−0.878922 + 0.476965i \(0.841737\pi\)
\(684\) 0 0
\(685\) 18.0912i 0.691230i
\(686\) 0 0
\(687\) 0.210636 0.364832i 0.00803627 0.0139192i
\(688\) 0 0
\(689\) −2.90850 + 5.03767i −0.110805 + 0.191920i
\(690\) 0 0
\(691\) 51.3756i 1.95442i −0.212277 0.977209i \(-0.568088\pi\)
0.212277 0.977209i \(-0.431912\pi\)
\(692\) 0 0
\(693\) −24.1496 + 13.9428i −0.917368 + 0.529643i
\(694\) 0 0
\(695\) 18.0391 0.684262
\(696\) 0 0
\(697\) −2.05676 3.56241i −0.0779052 0.134936i
\(698\) 0 0
\(699\) 1.48996 0.860227i 0.0563553 0.0325368i
\(700\) 0 0
\(701\) 10.9994 + 6.35049i 0.415441 + 0.239855i 0.693125 0.720818i \(-0.256234\pi\)
−0.277684 + 0.960672i \(0.589567\pi\)
\(702\) 0 0
\(703\) −43.4054 + 11.7594i −1.63706 + 0.443514i
\(704\) 0 0
\(705\) −0.130403 + 0.225865i −0.00491126 + 0.00850656i
\(706\) 0 0
\(707\) −60.8297 + 35.1200i −2.28774 + 1.32082i
\(708\) 0 0
\(709\) 10.6515 6.14967i 0.400027 0.230956i −0.286469 0.958090i \(-0.592481\pi\)
0.686496 + 0.727134i \(0.259148\pi\)
\(710\) 0 0
\(711\) 5.00006 0.187517
\(712\) 0 0
\(713\) −8.68778 15.0477i −0.325360 0.563540i
\(714\) 0 0
\(715\) 2.23605i 0.0836235i
\(716\) 0 0
\(717\) 0.667142 + 0.385175i 0.0249149 + 0.0143846i
\(718\) 0 0
\(719\) −17.5424 + 30.3843i −0.654222 + 1.13314i 0.327867 + 0.944724i \(0.393670\pi\)
−0.982088 + 0.188421i \(0.939663\pi\)
\(720\) 0 0
\(721\) −54.6494 −2.03525
\(722\) 0 0
\(723\) 1.52447i 0.0566957i
\(724\) 0 0
\(725\) −0.594317 0.343129i −0.0220724 0.0127435i
\(726\) 0 0
\(727\) 12.3695 21.4246i 0.458759 0.794593i −0.540137 0.841577i \(-0.681628\pi\)
0.998896 + 0.0469839i \(0.0149609\pi\)
\(728\) 0 0
\(729\) 26.7071 0.989151
\(730\) 0 0
\(731\) −4.87089 + 2.81221i −0.180156 + 0.104013i
\(732\) 0 0
\(733\) 20.0808i 0.741701i −0.928693 0.370851i \(-0.879066\pi\)
0.928693 0.370851i \(-0.120934\pi\)
\(734\) 0 0
\(735\) 1.25960 + 2.18170i 0.0464612 + 0.0804731i
\(736\) 0 0
\(737\) 10.7781 + 18.6682i 0.397017 + 0.687653i
\(738\) 0 0
\(739\) −1.16064 0.670093i −0.0426947 0.0246498i 0.478501 0.878087i \(-0.341180\pi\)
−0.521195 + 0.853437i \(0.674514\pi\)
\(740\) 0 0
\(741\) −0.0419512 0.154847i −0.00154112 0.00568844i
\(742\) 0 0
\(743\) −5.99092 + 10.3766i −0.219786 + 0.380680i −0.954742 0.297434i \(-0.903869\pi\)
0.734957 + 0.678114i \(0.237202\pi\)
\(744\) 0 0
\(745\) −5.97508 10.3491i −0.218910 0.379163i
\(746\) 0 0
\(747\) −40.3873 + 23.3176i −1.47770 + 0.853148i
\(748\) 0 0
\(749\) 36.0504i 1.31725i
\(750\) 0 0
\(751\) −9.58183 16.5962i −0.349646 0.605605i 0.636541 0.771243i \(-0.280365\pi\)
−0.986187 + 0.165639i \(0.947031\pi\)
\(752\) 0 0
\(753\) 0.0125418 0.000457049
\(754\) 0 0
\(755\) 7.12068 + 4.11113i 0.259148 + 0.149619i
\(756\) 0 0
\(757\) 35.7919 + 20.6645i 1.30088 + 0.751062i 0.980555 0.196246i \(-0.0628750\pi\)
0.320324 + 0.947308i \(0.396208\pi\)
\(758\) 0 0
\(759\) −0.466088 −0.0169179
\(760\) 0 0
\(761\) 30.3361 1.09968 0.549841 0.835269i \(-0.314688\pi\)
0.549841 + 0.835269i \(0.314688\pi\)
\(762\) 0 0
\(763\) −10.7458 6.20408i −0.389023 0.224603i
\(764\) 0 0
\(765\) −4.35408 2.51383i −0.157422 0.0908876i
\(766\) 0 0
\(767\) −2.36951 −0.0855579
\(768\) 0 0
\(769\) 7.68635 + 13.3131i 0.277177 + 0.480084i 0.970682 0.240367i \(-0.0772679\pi\)
−0.693505 + 0.720452i \(0.743935\pi\)
\(770\) 0 0
\(771\) 1.07173i 0.0385975i
\(772\) 0 0
\(773\) 14.3035 8.25814i 0.514462 0.297025i −0.220204 0.975454i \(-0.570672\pi\)
0.734666 + 0.678429i \(0.237339\pi\)
\(774\) 0 0
\(775\) 0.309461 + 0.536001i 0.0111162 + 0.0192537i
\(776\) 0 0
\(777\) −1.78796 + 3.09683i −0.0641426 + 0.111098i
\(778\) 0 0
\(779\) 23.3449 + 6.18599i 0.836419 + 0.221636i
\(780\) 0 0
\(781\) 18.5923 + 10.7343i 0.665286 + 0.384103i
\(782\) 0 0
\(783\) 1.33279 + 2.30846i 0.0476300 + 0.0824976i
\(784\) 0 0
\(785\) −21.6051 37.4212i −0.771120 1.33562i
\(786\) 0 0
\(787\) 45.6546i 1.62741i −0.581277 0.813705i \(-0.697447\pi\)
0.581277 0.813705i \(-0.302553\pi\)
\(788\) 0 0
\(789\) 0.962620 0.555769i 0.0342702 0.0197859i
\(790\) 0 0
\(791\) −42.0537 −1.49526
\(792\) 0 0
\(793\) −0.435953 + 0.755093i −0.0154811 + 0.0268141i
\(794\) 0 0
\(795\) 1.68150 + 0.970815i 0.0596367 + 0.0344312i
\(796\) 0 0
\(797\) 21.7112i 0.769052i 0.923114 + 0.384526i \(0.125635\pi\)
−0.923114 + 0.384526i \(0.874365\pi\)
\(798\) 0 0
\(799\) 1.16174 0.0410993
\(800\) 0 0
\(801\) −8.69131 + 15.0538i −0.307092 + 0.531900i
\(802\) 0 0
\(803\) 21.3874 + 12.3480i 0.754744 + 0.435752i
\(804\) 0 0
\(805\) 33.9600i 1.19693i
\(806\) 0 0
\(807\) −0.269962 0.467588i −0.00950310 0.0164599i
\(808\) 0 0
\(809\) 4.74208 0.166723 0.0833613 0.996519i \(-0.473434\pi\)
0.0833613 + 0.996519i \(0.473434\pi\)
\(810\) 0 0
\(811\) −17.1243 + 9.88671i −0.601315 + 0.347169i −0.769559 0.638576i \(-0.779524\pi\)
0.168244 + 0.985745i \(0.446190\pi\)
\(812\) 0 0
\(813\) 0.526418 0.303928i 0.0184623 0.0106592i
\(814\) 0 0
\(815\) 11.0042 19.0598i 0.385460 0.667637i
\(816\) 0 0
\(817\) 8.45812 31.9196i 0.295912 1.11672i
\(818\) 0 0
\(819\) 6.08986 + 3.51598i 0.212797 + 0.122858i
\(820\) 0 0
\(821\) −4.45174 + 2.57021i −0.155367 + 0.0897011i −0.575668 0.817684i \(-0.695258\pi\)
0.420301 + 0.907385i \(0.361925\pi\)
\(822\) 0 0
\(823\) 11.4962 + 19.9120i 0.400731 + 0.694087i 0.993814 0.111054i \(-0.0354228\pi\)
−0.593083 + 0.805141i \(0.702089\pi\)
\(824\) 0 0
\(825\) 0.0166022 0.000578014
\(826\) 0 0
\(827\) −12.7107 + 7.33853i −0.441994 + 0.255186i −0.704443 0.709760i \(-0.748803\pi\)
0.262449 + 0.964946i \(0.415470\pi\)
\(828\) 0 0
\(829\) 41.7030i 1.44840i 0.689588 + 0.724202i \(0.257792\pi\)
−0.689588 + 0.724202i \(0.742208\pi\)
\(830\) 0 0
\(831\) −0.637454 + 1.10410i −0.0221130 + 0.0383009i
\(832\) 0 0
\(833\) 5.61079 9.71817i 0.194402 0.336715i
\(834\) 0 0
\(835\) 42.5218i 1.47153i
\(836\) 0 0
\(837\) 2.40402i 0.0830952i
\(838\) 0 0
\(839\) 21.9878 38.0839i 0.759102 1.31480i −0.184208 0.982887i \(-0.558972\pi\)
0.943309 0.331915i \(-0.107695\pi\)
\(840\) 0 0
\(841\) 3.69842 6.40585i 0.127532 0.220891i
\(842\) 0 0
\(843\) 1.84419i 0.0635172i
\(844\) 0 0
\(845\) −24.9708 + 14.4169i −0.859022 + 0.495957i
\(846\) 0 0
\(847\) 33.2890 1.14382
\(848\) 0 0
\(849\) 0.683644 + 1.18411i 0.0234626 + 0.0406384i
\(850\) 0 0
\(851\) 28.5323 16.4731i 0.978075 0.564692i
\(852\) 0 0
\(853\) −35.8544 20.7005i −1.22763 0.708773i −0.261097 0.965313i \(-0.584084\pi\)
−0.966534 + 0.256540i \(0.917417\pi\)
\(854\) 0 0
\(855\) 28.4905 7.71867i 0.974355 0.263973i
\(856\) 0 0
\(857\) 11.4143 19.7701i 0.389903 0.675333i −0.602533 0.798094i \(-0.705842\pi\)
0.992436 + 0.122762i \(0.0391750\pi\)
\(858\) 0 0
\(859\) 41.9571 24.2239i 1.43156 0.826509i 0.434317 0.900760i \(-0.356990\pi\)
0.997240 + 0.0742508i \(0.0236565\pi\)
\(860\) 0 0
\(861\) 1.66311 0.960199i 0.0566787 0.0327235i
\(862\) 0 0
\(863\) 54.0511 1.83992 0.919960 0.392013i \(-0.128221\pi\)
0.919960 + 0.392013i \(0.128221\pi\)
\(864\) 0 0
\(865\) −13.2807 23.0028i −0.451556 0.782118i
\(866\) 0 0
\(867\) 1.21237i 0.0411743i
\(868\) 0 0
\(869\) 2.86338 + 1.65317i 0.0971335 + 0.0560800i
\(870\) 0 0
\(871\) 2.71794 4.70761i 0.0920939 0.159511i
\(872\) 0 0
\(873\) 3.62570 0.122711
\(874\) 0 0
\(875\) 51.9617i 1.75663i
\(876\) 0 0
\(877\) 21.3846 + 12.3464i 0.722106 + 0.416908i 0.815527 0.578718i \(-0.196447\pi\)
−0.0934212 + 0.995627i \(0.529780\pi\)
\(878\) 0 0
\(879\) 0.0376937 0.0652875i 0.00127138 0.00220209i
\(880\) 0 0
\(881\) 22.1718 0.746988 0.373494 0.927633i \(-0.378160\pi\)
0.373494 + 0.927633i \(0.378160\pi\)
\(882\) 0 0
\(883\) 37.4154 21.6018i 1.25913 0.726959i 0.286224 0.958163i \(-0.407600\pi\)
0.972905 + 0.231204i \(0.0742664\pi\)
\(884\) 0 0
\(885\) 0.790906i 0.0265860i
\(886\) 0 0
\(887\) 15.8289 + 27.4165i 0.531483 + 0.920556i 0.999325 + 0.0367436i \(0.0116985\pi\)
−0.467841 + 0.883812i \(0.654968\pi\)
\(888\) 0 0
\(889\) 11.1970 + 19.3938i 0.375535 + 0.650446i
\(890\) 0 0
\(891\) 15.3503 + 8.86249i 0.514254 + 0.296904i
\(892\) 0 0
\(893\) −4.80952 + 4.83624i −0.160944 + 0.161839i
\(894\) 0 0
\(895\) 12.6596 21.9270i 0.423163 0.732940i
\(896\) 0 0
\(897\) 0.0587673 + 0.101788i 0.00196218 + 0.00339860i
\(898\) 0 0
\(899\) −28.4277 + 16.4127i −0.948117 + 0.547396i
\(900\) 0 0
\(901\) 8.64881i 0.288134i
\(902\) 0 0
\(903\) −1.31288 2.27398i −0.0436900 0.0756733i
\(904\) 0 0
\(905\) 26.7244 0.888348
\(906\) 0 0
\(907\) 24.1186 + 13.9249i 0.800847 + 0.462369i 0.843767 0.536709i \(-0.180333\pi\)
−0.0429205 + 0.999078i \(0.513666\pi\)
\(908\) 0 0
\(909\) 38.7357 + 22.3641i 1.28478 + 0.741770i
\(910\) 0 0
\(911\) 45.6102 1.51113 0.755567 0.655071i \(-0.227361\pi\)
0.755567 + 0.655071i \(0.227361\pi\)
\(912\) 0 0
\(913\) −30.8381 −1.02059
\(914\) 0 0
\(915\) 0.252039 + 0.145515i 0.00833215 + 0.00481057i
\(916\) 0 0
\(917\) −20.3049 11.7230i −0.670526 0.387128i
\(918\) 0 0
\(919\) 41.3141 1.36283 0.681413 0.731899i \(-0.261366\pi\)
0.681413 + 0.731899i \(0.261366\pi\)
\(920\) 0 0
\(921\) 0.968208 + 1.67698i 0.0319035 + 0.0552585i
\(922\) 0 0
\(923\) 5.41378i 0.178197i
\(924\) 0 0
\(925\) −1.01633 + 0.586777i −0.0334166 + 0.0192931i
\(926\) 0 0
\(927\) 17.4001 + 30.1378i 0.571494 + 0.989856i
\(928\) 0 0
\(929\) 3.58663 6.21223i 0.117674 0.203817i −0.801172 0.598435i \(-0.795790\pi\)
0.918845 + 0.394618i \(0.129123\pi\)
\(930\) 0 0
\(931\) 17.2278 + 63.5900i 0.564620 + 2.08408i
\(932\) 0 0
\(933\) −1.54489 0.891942i −0.0505774 0.0292009i
\(934\) 0 0
\(935\) −1.66230 2.87918i −0.0543629 0.0941593i
\(936\) 0 0
\(937\) −10.0009 17.3221i −0.326716 0.565889i 0.655142 0.755506i \(-0.272609\pi\)
−0.981858 + 0.189616i \(0.939276\pi\)
\(938\) 0 0
\(939\) 2.11577i 0.0690457i
\(940\) 0 0
\(941\) −31.3632 + 18.1076i −1.02241 + 0.590289i −0.914801 0.403904i \(-0.867653\pi\)
−0.107610 + 0.994193i \(0.534320\pi\)
\(942\) 0 0
\(943\) −17.6934 −0.576175
\(944\) 0 0
\(945\) 2.34929 4.06910i 0.0764226 0.132368i
\(946\) 0 0
\(947\) 29.1318 + 16.8192i 0.946656 + 0.546552i 0.892041 0.451955i \(-0.149273\pi\)
0.0546155 + 0.998507i \(0.482607\pi\)
\(948\) 0 0
\(949\) 6.22765i 0.202158i
\(950\) 0 0
\(951\) −0.755381 −0.0244949
\(952\) 0 0
\(953\) 19.7258 34.1662i 0.638983 1.10675i −0.346674 0.937986i \(-0.612689\pi\)
0.985656 0.168765i \(-0.0539777\pi\)
\(954\) 0 0
\(955\) −24.7687 14.3002i −0.801495 0.462743i
\(956\) 0 0
\(957\) 0.880523i 0.0284633i
\(958\) 0 0
\(959\) −18.8107 32.5812i −0.607431 1.05210i
\(960\) 0 0
\(961\) −1.39543 −0.0450140
\(962\) 0 0
\(963\) 19.8810 11.4783i 0.640655 0.369882i
\(964\) 0 0
\(965\) −14.3855 + 8.30546i −0.463085 + 0.267362i
\(966\) 0 0
\(967\) 6.05042 10.4796i 0.194568 0.337002i −0.752191 0.658946i \(-0.771003\pi\)
0.946759 + 0.321943i \(0.104336\pi\)
\(968\) 0 0
\(969\) 0.169132 + 0.168197i 0.00543329 + 0.00540327i
\(970\) 0 0
\(971\) −24.1496 13.9428i −0.774997 0.447445i 0.0596571 0.998219i \(-0.480999\pi\)
−0.834654 + 0.550774i \(0.814333\pi\)
\(972\) 0 0
\(973\) 32.4873 18.7565i 1.04149 0.601307i
\(974\) 0 0
\(975\) −0.00209330 0.00362571i −6.70394e−5 0.000116116i
\(976\) 0 0
\(977\) 6.91747 0.221310 0.110655 0.993859i \(-0.464705\pi\)
0.110655 + 0.993859i \(0.464705\pi\)
\(978\) 0 0
\(979\) −9.95449 + 5.74723i −0.318147 + 0.183682i
\(980\) 0 0
\(981\) 7.90138i 0.252272i
\(982\) 0 0
\(983\) −20.4691 + 35.4536i −0.652864 + 1.13079i 0.329560 + 0.944135i \(0.393099\pi\)
−0.982425 + 0.186660i \(0.940234\pi\)
\(984\) 0 0
\(985\) −13.6813 + 23.6967i −0.435922 + 0.755039i
\(986\) 0 0
\(987\) 0.542358i 0.0172634i
\(988\) 0 0
\(989\) 24.1922i 0.769267i
\(990\) 0 0
\(991\) 0.898204 1.55573i 0.0285324 0.0494195i −0.851407 0.524506i \(-0.824250\pi\)
0.879939 + 0.475087i \(0.157583\pi\)
\(992\) 0 0
\(993\) −0.615184 + 1.06553i −0.0195223 + 0.0338136i
\(994\) 0 0
\(995\) 16.8951i 0.535610i
\(996\) 0 0
\(997\) −1.49295 + 0.861952i −0.0472821 + 0.0272983i −0.523455 0.852054i \(-0.675357\pi\)
0.476173 + 0.879352i \(0.342024\pi\)
\(998\) 0 0
\(999\) 4.55834 0.144219
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.2.t.a.49.10 36
4.3 odd 2 152.2.p.a.125.18 yes 36
8.3 odd 2 152.2.p.a.125.7 yes 36
8.5 even 2 inner 608.2.t.a.49.9 36
19.7 even 3 inner 608.2.t.a.273.9 36
76.7 odd 6 152.2.p.a.45.7 36
152.45 even 6 inner 608.2.t.a.273.10 36
152.83 odd 6 152.2.p.a.45.18 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.p.a.45.7 36 76.7 odd 6
152.2.p.a.45.18 yes 36 152.83 odd 6
152.2.p.a.125.7 yes 36 8.3 odd 2
152.2.p.a.125.18 yes 36 4.3 odd 2
608.2.t.a.49.9 36 8.5 even 2 inner
608.2.t.a.49.10 36 1.1 even 1 trivial
608.2.t.a.273.9 36 19.7 even 3 inner
608.2.t.a.273.10 36 152.45 even 6 inner