L(s) = 1 | + (0.0638 + 0.0368i)3-s + (1.95 + 1.13i)5-s + 4.70·7-s + (−1.49 − 2.59i)9-s − 1.98i·11-s + (−0.432 + 0.249i)13-s + (0.0833 + 0.144i)15-s + (0.371 − 0.642i)17-s + (1.13 + 4.20i)19-s + (0.300 + 0.173i)21-s + (−1.59 − 2.76i)23-s + (0.0568 + 0.0985i)25-s − 0.441i·27-s + (−5.22 + 3.01i)29-s + 5.44·31-s + ⋯ |
L(s) = 1 | + (0.0368 + 0.0212i)3-s + (0.875 + 0.505i)5-s + 1.77·7-s + (−0.499 − 0.864i)9-s − 0.597i·11-s + (−0.119 + 0.0692i)13-s + (0.0215 + 0.0372i)15-s + (0.0900 − 0.155i)17-s + (0.261 + 0.965i)19-s + (0.0655 + 0.0378i)21-s + (−0.332 − 0.576i)23-s + (0.0113 + 0.0197i)25-s − 0.0850i·27-s + (−0.970 + 0.560i)29-s + 0.977·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0157i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0157i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.97964 - 0.0155634i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.97964 - 0.0155634i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (-1.13 - 4.20i)T \) |
good | 3 | \( 1 + (-0.0638 - 0.0368i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.95 - 1.13i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 - 4.70T + 7T^{2} \) |
| 11 | \( 1 + 1.98iT - 11T^{2} \) |
| 13 | \( 1 + (0.432 - 0.249i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.371 + 0.642i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (1.59 + 2.76i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (5.22 - 3.01i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 5.44T + 31T^{2} \) |
| 37 | \( 1 - 10.3iT - 37T^{2} \) |
| 41 | \( 1 + (-2.77 + 4.79i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (6.56 + 3.78i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.782 - 1.35i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-10.0 + 5.82i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.10 - 2.37i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.51 + 0.873i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (9.42 - 5.44i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (5.42 - 9.38i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (6.23 - 10.8i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.834 - 1.44i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 15.5iT - 83T^{2} \) |
| 89 | \( 1 + (2.90 + 5.02i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.605 - 1.04i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.56411231445790500641297134581, −9.936037163118143740058876883576, −8.719524735872180758487035424554, −8.213801721162016425239393099751, −7.03878882424877238753747179835, −5.97491435215526241682845814987, −5.29941986456109000242305917282, −4.02291427910883212946596920941, −2.66687551075617953114679783872, −1.42482647055923326336084893263,
1.56157591871142744956513173528, 2.40108165341430700488514239978, 4.37650812885521724126843140344, 5.14989347408941968072324310698, 5.77438339921965059973648339211, 7.35958577443295710526865871475, 7.989584122676605978575369995830, 8.882718864139182557164294723116, 9.718392462746269254803061690157, 10.77384421883740355171400464297