Properties

Label 152.2.p.a.125.7
Level $152$
Weight $2$
Character 152.125
Analytic conductor $1.214$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [152,2,Mod(45,152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(152, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("152.45"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 152.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.21372611072\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 125.7
Character \(\chi\) \(=\) 152.125
Dual form 152.2.p.a.45.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.669488 - 1.24571i) q^{2} +(0.0638311 + 0.0368529i) q^{3} +(-1.10357 + 1.66797i) q^{4} +(-1.95840 - 1.13068i) q^{5} +(0.00317378 - 0.104187i) q^{6} -4.70260 q^{7} +(2.81663 + 0.258041i) q^{8} +(-1.49728 - 2.59337i) q^{9} +(-0.0973743 + 3.19656i) q^{10} -1.98019i q^{11} +(-0.131912 + 0.0657986i) q^{12} +(0.432449 - 0.249675i) q^{13} +(3.14833 + 5.85806i) q^{14} +(-0.0833377 - 0.144345i) q^{15} +(-1.56426 - 3.68145i) q^{16} +(0.371220 - 0.642972i) q^{17} +(-2.22817 + 3.60141i) q^{18} +(1.13983 + 4.20723i) q^{19} +(4.04717 - 2.01876i) q^{20} +(-0.300172 - 0.173304i) q^{21} +(-2.46674 + 1.32571i) q^{22} +(1.59672 + 2.76560i) q^{23} +(0.170279 + 0.120272i) q^{24} +(0.0568756 + 0.0985114i) q^{25} +(-0.600541 - 0.371551i) q^{26} -0.441834i q^{27} +(5.18966 - 7.84380i) q^{28} +(5.22471 - 3.01649i) q^{29} +(-0.124018 + 0.200452i) q^{30} -5.44101 q^{31} +(-3.53876 + 4.41329i) q^{32} +(0.0729758 - 0.126398i) q^{33} +(-1.04948 - 0.0319695i) q^{34} +(9.20955 + 5.31714i) q^{35} +(5.97803 + 0.364546i) q^{36} -10.3168i q^{37} +(4.47788 - 4.23658i) q^{38} +0.0368049 q^{39} +(-5.22432 - 3.69006i) q^{40} +(2.77027 - 4.79824i) q^{41} +(-0.0149250 + 0.489952i) q^{42} +(-6.56065 - 3.78779i) q^{43} +(3.30290 + 2.18528i) q^{44} +6.77180i q^{45} +(2.37615 - 3.84058i) q^{46} +(-0.782377 - 1.35512i) q^{47} +(0.0358240 - 0.292639i) q^{48} +15.1145 q^{49} +(0.0846389 - 0.136803i) q^{50} +(0.0473908 - 0.0273611i) q^{51} +(-0.0607887 + 0.996847i) q^{52} +(-10.0885 + 5.82458i) q^{53} +(-0.550396 + 0.295803i) q^{54} +(-2.23896 + 3.87800i) q^{55} +(-13.2455 - 1.21346i) q^{56} +(-0.0822924 + 0.310558i) q^{57} +(-7.25554 - 4.48896i) q^{58} +(4.10945 + 2.37259i) q^{59} +(0.332733 + 0.0202904i) q^{60} +(-1.51215 + 0.873042i) q^{61} +(3.64269 + 6.77790i) q^{62} +(7.04113 + 12.1956i) q^{63} +(7.86683 + 1.45361i) q^{64} -1.12921 q^{65} +(-0.206311 - 0.00628469i) q^{66} +(-9.42749 + 5.44296i) q^{67} +(0.662791 + 1.32875i) q^{68} +0.235375i q^{69} +(0.457913 - 15.0322i) q^{70} +(5.42083 - 9.38916i) q^{71} +(-3.54810 - 7.69093i) q^{72} +(-6.23576 + 10.8007i) q^{73} +(-12.8518 + 6.90701i) q^{74} +0.00838412i q^{75} +(-8.27542 - 2.74179i) q^{76} +9.31205i q^{77} +(-0.0246405 - 0.0458482i) q^{78} +(0.834855 - 1.44601i) q^{79} +(-1.09911 + 8.97842i) q^{80} +(-4.47557 + 7.75191i) q^{81} +(-7.83186 - 0.238576i) q^{82} -15.5733i q^{83} +(0.620329 - 0.309425i) q^{84} +(-1.45399 + 0.839462i) q^{85} +(-0.326205 + 10.7085i) q^{86} +0.444666 q^{87} +(0.510971 - 5.57747i) q^{88} +(-2.90236 - 5.02703i) q^{89} +(8.43567 - 4.53364i) q^{90} +(-2.03364 + 1.17412i) q^{91} +(-6.37504 - 0.388756i) q^{92} +(-0.347306 - 0.200517i) q^{93} +(-1.16429 + 1.88185i) q^{94} +(2.52480 - 9.52820i) q^{95} +(-0.388526 + 0.151292i) q^{96} +(-0.605380 + 1.04855i) q^{97} +(-10.1189 - 18.8282i) q^{98} +(-5.13537 + 2.96491i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - q^{2} + q^{4} - 3 q^{6} - 8 q^{7} + 2 q^{8} + 12 q^{9} - 10 q^{10} - 10 q^{12} - 6 q^{15} - 3 q^{16} - 2 q^{17} - 20 q^{18} + 16 q^{20} - 9 q^{22} - 2 q^{23} + 21 q^{24} + 8 q^{25} - 24 q^{26}+ \cdots + 39 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/152\mathbb{Z}\right)^\times\).

\(n\) \(39\) \(77\) \(97\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.669488 1.24571i −0.473399 0.880848i
\(3\) 0.0638311 + 0.0368529i 0.0368529 + 0.0212770i 0.518313 0.855191i \(-0.326560\pi\)
−0.481460 + 0.876468i \(0.659893\pi\)
\(4\) −1.10357 + 1.66797i −0.551786 + 0.833986i
\(5\) −1.95840 1.13068i −0.875821 0.505656i −0.00654285 0.999979i \(-0.502083\pi\)
−0.869278 + 0.494323i \(0.835416\pi\)
\(6\) 0.00317378 0.104187i 0.00129569 0.0425343i
\(7\) −4.70260 −1.77742 −0.888708 0.458474i \(-0.848396\pi\)
−0.888708 + 0.458474i \(0.848396\pi\)
\(8\) 2.81663 + 0.258041i 0.995830 + 0.0912313i
\(9\) −1.49728 2.59337i −0.499095 0.864457i
\(10\) −0.0973743 + 3.19656i −0.0307925 + 1.01084i
\(11\) 1.98019i 0.597050i −0.954402 0.298525i \(-0.903505\pi\)
0.954402 0.298525i \(-0.0964947\pi\)
\(12\) −0.131912 + 0.0657986i −0.0380797 + 0.0189944i
\(13\) 0.432449 0.249675i 0.119940 0.0692473i −0.438830 0.898570i \(-0.644607\pi\)
0.558770 + 0.829323i \(0.311274\pi\)
\(14\) 3.14833 + 5.85806i 0.841428 + 1.56563i
\(15\) −0.0833377 0.144345i −0.0215177 0.0372698i
\(16\) −1.56426 3.68145i −0.391064 0.920363i
\(17\) 0.371220 0.642972i 0.0900341 0.155944i −0.817491 0.575941i \(-0.804636\pi\)
0.907525 + 0.419998i \(0.137969\pi\)
\(18\) −2.22817 + 3.60141i −0.525184 + 0.848860i
\(19\) 1.13983 + 4.20723i 0.261494 + 0.965205i
\(20\) 4.04717 2.01876i 0.904975 0.451409i
\(21\) −0.300172 0.173304i −0.0655029 0.0378181i
\(22\) −2.46674 + 1.32571i −0.525911 + 0.282643i
\(23\) 1.59672 + 2.76560i 0.332939 + 0.576668i 0.983087 0.183140i \(-0.0586262\pi\)
−0.650147 + 0.759808i \(0.725293\pi\)
\(24\) 0.170279 + 0.120272i 0.0347581 + 0.0245504i
\(25\) 0.0568756 + 0.0985114i 0.0113751 + 0.0197023i
\(26\) −0.600541 0.371551i −0.117776 0.0728671i
\(27\) 0.441834i 0.0850311i
\(28\) 5.18966 7.84380i 0.980753 1.48234i
\(29\) 5.22471 3.01649i 0.970205 0.560148i 0.0709062 0.997483i \(-0.477411\pi\)
0.899299 + 0.437335i \(0.144078\pi\)
\(30\) −0.124018 + 0.200452i −0.0226425 + 0.0365973i
\(31\) −5.44101 −0.977234 −0.488617 0.872498i \(-0.662498\pi\)
−0.488617 + 0.872498i \(0.662498\pi\)
\(32\) −3.53876 + 4.41329i −0.625571 + 0.780168i
\(33\) 0.0729758 0.126398i 0.0127035 0.0220030i
\(34\) −1.04948 0.0319695i −0.179985 0.00548273i
\(35\) 9.20955 + 5.31714i 1.55670 + 0.898760i
\(36\) 5.97803 + 0.364546i 0.996338 + 0.0607577i
\(37\) 10.3168i 1.69608i −0.529932 0.848040i \(-0.677783\pi\)
0.529932 0.848040i \(-0.322217\pi\)
\(38\) 4.47788 4.23658i 0.726408 0.687264i
\(39\) 0.0368049 0.00589351
\(40\) −5.22432 3.69006i −0.826037 0.583449i
\(41\) 2.77027 4.79824i 0.432643 0.749359i −0.564457 0.825462i \(-0.690914\pi\)
0.997100 + 0.0761031i \(0.0242478\pi\)
\(42\) −0.0149250 + 0.489952i −0.00230298 + 0.0756012i
\(43\) −6.56065 3.78779i −1.00049 0.577633i −0.0920962 0.995750i \(-0.529357\pi\)
−0.908393 + 0.418117i \(0.862690\pi\)
\(44\) 3.30290 + 2.18528i 0.497932 + 0.329444i
\(45\) 6.77180i 1.00948i
\(46\) 2.37615 3.84058i 0.350344 0.566263i
\(47\) −0.782377 1.35512i −0.114121 0.197664i 0.803307 0.595565i \(-0.203072\pi\)
−0.917428 + 0.397901i \(0.869739\pi\)
\(48\) 0.0358240 0.292639i 0.00517075 0.0422387i
\(49\) 15.1145 2.15921
\(50\) 0.0846389 0.136803i 0.0119697 0.0193468i
\(51\) 0.0473908 0.0273611i 0.00663604 0.00383132i
\(52\) −0.0607887 + 0.996847i −0.00842987 + 0.138238i
\(53\) −10.0885 + 5.82458i −1.38576 + 0.800068i −0.992834 0.119503i \(-0.961870\pi\)
−0.392925 + 0.919571i \(0.628537\pi\)
\(54\) −0.550396 + 0.295803i −0.0748994 + 0.0402537i
\(55\) −2.23896 + 3.87800i −0.301902 + 0.522909i
\(56\) −13.2455 1.21346i −1.77000 0.162156i
\(57\) −0.0822924 + 0.310558i −0.0108999 + 0.0411344i
\(58\) −7.25554 4.48896i −0.952700 0.589429i
\(59\) 4.10945 + 2.37259i 0.535005 + 0.308885i 0.743052 0.669233i \(-0.233377\pi\)
−0.208047 + 0.978119i \(0.566711\pi\)
\(60\) 0.332733 + 0.0202904i 0.0429556 + 0.00261947i
\(61\) −1.51215 + 0.873042i −0.193611 + 0.111782i −0.593672 0.804707i \(-0.702322\pi\)
0.400061 + 0.916489i \(0.368989\pi\)
\(62\) 3.64269 + 6.77790i 0.462622 + 0.860794i
\(63\) 7.04113 + 12.1956i 0.887099 + 1.53650i
\(64\) 7.86683 + 1.45361i 0.983354 + 0.181702i
\(65\) −1.12921 −0.140061
\(66\) −0.206311 0.00628469i −0.0253951 0.000773591i
\(67\) −9.42749 + 5.44296i −1.15175 + 0.664964i −0.949313 0.314332i \(-0.898220\pi\)
−0.202438 + 0.979295i \(0.564886\pi\)
\(68\) 0.662791 + 1.32875i 0.0803752 + 0.161135i
\(69\) 0.235375i 0.0283359i
\(70\) 0.457913 15.0322i 0.0547310 1.79669i
\(71\) 5.42083 9.38916i 0.643335 1.11429i −0.341349 0.939937i \(-0.610884\pi\)
0.984683 0.174352i \(-0.0557829\pi\)
\(72\) −3.54810 7.69093i −0.418148 0.906385i
\(73\) −6.23576 + 10.8007i −0.729841 + 1.26412i 0.227109 + 0.973869i \(0.427073\pi\)
−0.956950 + 0.290252i \(0.906261\pi\)
\(74\) −12.8518 + 6.90701i −1.49399 + 0.802923i
\(75\) 0.00838412i 0.000968115i
\(76\) −8.27542 2.74179i −0.949256 0.314505i
\(77\) 9.31205i 1.06121i
\(78\) −0.0246405 0.0458482i −0.00278998 0.00519128i
\(79\) 0.834855 1.44601i 0.0939285 0.162689i −0.815232 0.579134i \(-0.803391\pi\)
0.909161 + 0.416445i \(0.136724\pi\)
\(80\) −1.09911 + 8.97842i −0.122884 + 1.00382i
\(81\) −4.47557 + 7.75191i −0.497285 + 0.861324i
\(82\) −7.83186 0.238576i −0.864884 0.0263463i
\(83\) 15.5733i 1.70939i −0.519130 0.854695i \(-0.673744\pi\)
0.519130 0.854695i \(-0.326256\pi\)
\(84\) 0.620329 0.309425i 0.0676834 0.0337610i
\(85\) −1.45399 + 0.839462i −0.157708 + 0.0910525i
\(86\) −0.326205 + 10.7085i −0.0351756 + 1.15473i
\(87\) 0.444666 0.0476732
\(88\) 0.510971 5.57747i 0.0544697 0.594561i
\(89\) −2.90236 5.02703i −0.307649 0.532864i 0.670198 0.742182i \(-0.266209\pi\)
−0.977848 + 0.209318i \(0.932876\pi\)
\(90\) 8.43567 4.53364i 0.889198 0.477887i
\(91\) −2.03364 + 1.17412i −0.213183 + 0.123081i
\(92\) −6.37504 0.388756i −0.664644 0.0405306i
\(93\) −0.347306 0.200517i −0.0360139 0.0207926i
\(94\) −1.16429 + 1.88185i −0.120087 + 0.194098i
\(95\) 2.52480 9.52820i 0.259040 0.977573i
\(96\) −0.388526 + 0.151292i −0.0396537 + 0.0154412i
\(97\) −0.605380 + 1.04855i −0.0614670 + 0.106464i −0.895121 0.445823i \(-0.852911\pi\)
0.833654 + 0.552287i \(0.186245\pi\)
\(98\) −10.1189 18.8282i −1.02217 1.90193i
\(99\) −5.13537 + 2.96491i −0.516124 + 0.297985i
\(100\) −0.227081 0.0138476i −0.0227081 0.00138476i
\(101\) 12.9353 7.46822i 1.28711 0.743115i 0.308975 0.951070i \(-0.400014\pi\)
0.978138 + 0.207955i \(0.0666807\pi\)
\(102\) −0.0658114 0.0407171i −0.00651630 0.00403159i
\(103\) 11.6211 1.14506 0.572530 0.819884i \(-0.305962\pi\)
0.572530 + 0.819884i \(0.305962\pi\)
\(104\) 1.28248 0.591652i 0.125757 0.0580163i
\(105\) 0.391904 + 0.678798i 0.0382459 + 0.0662439i
\(106\) 14.0098 + 8.66780i 1.36076 + 0.841891i
\(107\) 7.66606i 0.741106i 0.928811 + 0.370553i \(0.120832\pi\)
−0.928811 + 0.370553i \(0.879168\pi\)
\(108\) 0.736967 + 0.487596i 0.0709147 + 0.0469190i
\(109\) 2.28507 + 1.31929i 0.218870 + 0.126365i 0.605427 0.795901i \(-0.293002\pi\)
−0.386557 + 0.922266i \(0.626336\pi\)
\(110\) 6.32981 + 0.192820i 0.603524 + 0.0183847i
\(111\) 0.380206 0.658536i 0.0360875 0.0625055i
\(112\) 7.35608 + 17.3124i 0.695084 + 1.63587i
\(113\) −8.94264 −0.841253 −0.420627 0.907234i \(-0.638190\pi\)
−0.420627 + 0.907234i \(0.638190\pi\)
\(114\) 0.441958 0.105403i 0.0413932 0.00987186i
\(115\) 7.22153i 0.673411i
\(116\) −0.734429 + 12.0436i −0.0681900 + 1.11822i
\(117\) −1.29500 0.747668i −0.119723 0.0691219i
\(118\) 0.204328 6.70760i 0.0188099 0.617484i
\(119\) −1.74570 + 3.02364i −0.160028 + 0.277177i
\(120\) −0.197485 0.428072i −0.0180278 0.0390774i
\(121\) 7.07884 0.643531
\(122\) 2.09992 + 1.29921i 0.190118 + 0.117625i
\(123\) 0.353658 0.204185i 0.0318883 0.0184107i
\(124\) 6.00454 9.07545i 0.539224 0.814999i
\(125\) 11.0496i 0.988304i
\(126\) 10.4782 16.9360i 0.933471 1.50878i
\(127\) −2.38102 4.12405i −0.211281 0.365950i 0.740834 0.671688i \(-0.234430\pi\)
−0.952116 + 0.305738i \(0.901097\pi\)
\(128\) −3.45597 10.7729i −0.305468 0.952202i
\(129\) −0.279182 0.483558i −0.0245806 0.0425749i
\(130\) 0.755992 + 1.40666i 0.0663048 + 0.123373i
\(131\) −4.31780 2.49288i −0.377248 0.217804i 0.299372 0.954136i \(-0.403223\pi\)
−0.676620 + 0.736332i \(0.736556\pi\)
\(132\) 0.130294 + 0.261211i 0.0113406 + 0.0227355i
\(133\) −5.36014 19.7849i −0.464783 1.71557i
\(134\) 13.0919 + 8.09989i 1.13097 + 0.699724i
\(135\) −0.499573 + 0.865287i −0.0429964 + 0.0744720i
\(136\) 1.21150 1.71523i 0.103886 0.147079i
\(137\) −4.00007 6.92833i −0.341749 0.591927i 0.643008 0.765859i \(-0.277686\pi\)
−0.984758 + 0.173932i \(0.944353\pi\)
\(138\) 0.293209 0.157581i 0.0249596 0.0134142i
\(139\) 6.90837 3.98855i 0.585960 0.338304i −0.177538 0.984114i \(-0.556813\pi\)
0.763498 + 0.645810i \(0.223480\pi\)
\(140\) −19.0322 + 9.49343i −1.60852 + 0.802341i
\(141\) 0.115331i 0.00971266i
\(142\) −15.3253 0.466843i −1.28607 0.0391766i
\(143\) −0.494404 0.856333i −0.0413441 0.0716101i
\(144\) −7.20524 + 9.56888i −0.600437 + 0.797407i
\(145\) −13.6427 −1.13297
\(146\) 17.6292 + 0.537025i 1.45901 + 0.0444445i
\(147\) 0.964772 + 0.557012i 0.0795731 + 0.0459415i
\(148\) 17.2082 + 11.3854i 1.41451 + 0.935873i
\(149\) 4.57651 + 2.64225i 0.374922 + 0.216462i 0.675607 0.737262i \(-0.263882\pi\)
−0.300684 + 0.953724i \(0.597215\pi\)
\(150\) 0.0104442 0.00561307i 0.000852762 0.000458305i
\(151\) −3.63598 −0.295892 −0.147946 0.988995i \(-0.547266\pi\)
−0.147946 + 0.988995i \(0.547266\pi\)
\(152\) 2.12483 + 12.1443i 0.172346 + 0.985036i
\(153\) −2.22329 −0.179742
\(154\) 11.6001 6.23431i 0.934762 0.502375i
\(155\) 10.6556 + 6.15204i 0.855882 + 0.494144i
\(156\) −0.0406169 + 0.0613896i −0.00325196 + 0.00491510i
\(157\) 16.5481 + 9.55404i 1.32068 + 0.762496i 0.983837 0.179065i \(-0.0573073\pi\)
0.336844 + 0.941561i \(0.390641\pi\)
\(158\) −2.36023 0.0718978i −0.187770 0.00571988i
\(159\) −0.858611 −0.0680923
\(160\) 11.9203 4.64177i 0.942384 0.366964i
\(161\) −7.50874 13.0055i −0.591772 1.02498i
\(162\) 12.6529 + 0.385436i 0.994110 + 0.0302827i
\(163\) 9.73237i 0.762298i −0.924514 0.381149i \(-0.875528\pi\)
0.924514 0.381149i \(-0.124472\pi\)
\(164\) 4.94614 + 9.91593i 0.386229 + 0.774304i
\(165\) −0.285831 + 0.165025i −0.0222519 + 0.0128472i
\(166\) −19.3998 + 10.4261i −1.50571 + 0.809225i
\(167\) −9.40182 16.2844i −0.727535 1.26013i −0.957922 0.287029i \(-0.907333\pi\)
0.230387 0.973099i \(-0.426001\pi\)
\(168\) −0.800755 0.565592i −0.0617796 0.0436363i
\(169\) −6.37533 + 11.0424i −0.490410 + 0.849414i
\(170\) 2.01915 + 1.24924i 0.154862 + 0.0958122i
\(171\) 9.20427 9.25541i 0.703868 0.707779i
\(172\) 13.5581 6.76287i 1.03379 0.515664i
\(173\) 10.1721 + 5.87286i 0.773370 + 0.446505i 0.834075 0.551650i \(-0.186002\pi\)
−0.0607055 + 0.998156i \(0.519335\pi\)
\(174\) −0.297698 0.553923i −0.0225684 0.0419928i
\(175\) −0.267463 0.463260i −0.0202183 0.0350192i
\(176\) −7.28999 + 3.09753i −0.549503 + 0.233485i
\(177\) 0.174874 + 0.302890i 0.0131443 + 0.0227666i
\(178\) −4.31912 + 6.98103i −0.323731 + 0.523250i
\(179\) 11.1964i 0.836860i −0.908249 0.418430i \(-0.862580\pi\)
0.908249 0.418430i \(-0.137420\pi\)
\(180\) −11.2952 7.47317i −0.841892 0.557017i
\(181\) −10.2345 + 5.90892i −0.760728 + 0.439206i −0.829557 0.558422i \(-0.811407\pi\)
0.0688293 + 0.997628i \(0.478074\pi\)
\(182\) 2.82410 + 1.74726i 0.209337 + 0.129515i
\(183\) −0.128697 −0.00951352
\(184\) 3.78374 + 8.20171i 0.278941 + 0.604638i
\(185\) −11.6651 + 20.2045i −0.857632 + 1.48546i
\(186\) −0.0172685 + 0.566885i −0.00126619 + 0.0415660i
\(187\) −1.27321 0.735087i −0.0931062 0.0537549i
\(188\) 3.12371 + 0.190487i 0.227820 + 0.0138927i
\(189\) 2.07777i 0.151136i
\(190\) −13.5597 + 3.23385i −0.983722 + 0.234608i
\(191\) 12.6474 0.915135 0.457568 0.889175i \(-0.348721\pi\)
0.457568 + 0.889175i \(0.348721\pi\)
\(192\) 0.448579 + 0.382701i 0.0323734 + 0.0276191i
\(193\) −3.67277 + 6.36143i −0.264372 + 0.457906i −0.967399 0.253258i \(-0.918498\pi\)
0.703027 + 0.711163i \(0.251831\pi\)
\(194\) 1.71148 + 0.0521354i 0.122877 + 0.00374310i
\(195\) −0.0720786 0.0416146i −0.00516166 0.00298009i
\(196\) −16.6799 + 25.2105i −1.19142 + 1.80075i
\(197\) 12.1000i 0.862092i −0.902330 0.431046i \(-0.858145\pi\)
0.902330 0.431046i \(-0.141855\pi\)
\(198\) 7.13148 + 4.41220i 0.506812 + 0.313561i
\(199\) −3.73560 6.47025i −0.264810 0.458664i 0.702704 0.711482i \(-0.251976\pi\)
−0.967514 + 0.252819i \(0.918642\pi\)
\(200\) 0.134778 + 0.292147i 0.00953022 + 0.0206579i
\(201\) −0.802356 −0.0565938
\(202\) −17.9633 11.1138i −1.26389 0.781961i
\(203\) −24.5697 + 14.1853i −1.72446 + 0.995616i
\(204\) −0.00666164 + 0.109241i −0.000466408 + 0.00764843i
\(205\) −10.8505 + 6.26457i −0.757835 + 0.437536i
\(206\) −7.78018 14.4765i −0.542071 1.00862i
\(207\) 4.78149 8.28178i 0.332337 0.575624i
\(208\) −1.59563 1.20149i −0.110637 0.0833081i
\(209\) 8.33113 2.25707i 0.576276 0.156125i
\(210\) 0.583208 0.942644i 0.0402452 0.0650486i
\(211\) −5.04276 2.91144i −0.347158 0.200432i 0.316275 0.948668i \(-0.397568\pi\)
−0.663433 + 0.748236i \(0.730901\pi\)
\(212\) 1.41812 23.2551i 0.0973969 1.59717i
\(213\) 0.692036 0.399547i 0.0474175 0.0273765i
\(214\) 9.54967 5.13234i 0.652802 0.350839i
\(215\) 8.56556 + 14.8360i 0.584166 + 1.01181i
\(216\) 0.114011 1.24448i 0.00775749 0.0846765i
\(217\) 25.5869 1.73695
\(218\) 0.113617 3.72978i 0.00769512 0.252612i
\(219\) −0.796071 + 0.459612i −0.0537935 + 0.0310577i
\(220\) −3.99753 8.01418i −0.269514 0.540316i
\(221\) 0.370737i 0.0249385i
\(222\) −1.07489 0.0327434i −0.0721416 0.00219759i
\(223\) −3.54133 + 6.13377i −0.237145 + 0.410748i −0.959894 0.280363i \(-0.909545\pi\)
0.722749 + 0.691111i \(0.242878\pi\)
\(224\) 16.6414 20.7540i 1.11190 1.38668i
\(225\) 0.170318 0.294999i 0.0113545 0.0196666i
\(226\) 5.98699 + 11.1399i 0.398249 + 0.741016i
\(227\) 10.8506i 0.720179i −0.932918 0.360090i \(-0.882746\pi\)
0.932918 0.360090i \(-0.117254\pi\)
\(228\) −0.427186 0.479985i −0.0282911 0.0317878i
\(229\) 5.71559i 0.377697i 0.982006 + 0.188848i \(0.0604755\pi\)
−0.982006 + 0.188848i \(0.939525\pi\)
\(230\) −8.99591 + 4.83472i −0.593173 + 0.318792i
\(231\) −0.343176 + 0.594399i −0.0225793 + 0.0391086i
\(232\) 15.4945 7.14815i 1.01726 0.469299i
\(233\) 11.6711 20.2149i 0.764598 1.32432i −0.175860 0.984415i \(-0.556271\pi\)
0.940459 0.339908i \(-0.110396\pi\)
\(234\) −0.0643892 + 2.11374i −0.00420925 + 0.138180i
\(235\) 3.53847i 0.230825i
\(236\) −8.49249 + 4.23612i −0.552814 + 0.275748i
\(237\) 0.106579 0.0615336i 0.00692307 0.00399704i
\(238\) 4.93530 + 0.150340i 0.319908 + 0.00974509i
\(239\) −10.4517 −0.676063 −0.338032 0.941135i \(-0.609761\pi\)
−0.338032 + 0.941135i \(0.609761\pi\)
\(240\) −0.401038 + 0.532597i −0.0258869 + 0.0343790i
\(241\) −10.3416 17.9122i −0.666160 1.15382i −0.978969 0.204007i \(-0.934603\pi\)
0.312809 0.949816i \(-0.398730\pi\)
\(242\) −4.73920 8.81816i −0.304647 0.566853i
\(243\) −1.71928 + 0.992627i −0.110292 + 0.0636770i
\(244\) 0.212561 3.48569i 0.0136078 0.223149i
\(245\) −29.6001 17.0896i −1.89108 1.09182i
\(246\) −0.491124 0.303855i −0.0313129 0.0193731i
\(247\) 1.54336 + 1.53483i 0.0982014 + 0.0976588i
\(248\) −15.3253 1.40400i −0.973159 0.0891543i
\(249\) 0.573921 0.994060i 0.0363708 0.0629960i
\(250\) 13.7645 7.39755i 0.870545 0.467862i
\(251\) 0.147363 0.0850803i 0.00930149 0.00537022i −0.495342 0.868698i \(-0.664957\pi\)
0.504644 + 0.863328i \(0.331624\pi\)
\(252\) −28.1123 1.71431i −1.77091 0.107992i
\(253\) 5.47643 3.16182i 0.344300 0.198782i
\(254\) −3.54329 + 5.72706i −0.222326 + 0.359347i
\(255\) −0.123747 −0.00774931
\(256\) −11.1062 + 11.5175i −0.694137 + 0.719843i
\(257\) 7.27034 + 12.5926i 0.453511 + 0.785504i 0.998601 0.0528730i \(-0.0168379\pi\)
−0.545090 + 0.838378i \(0.683505\pi\)
\(258\) −0.415462 + 0.671515i −0.0258655 + 0.0418067i
\(259\) 48.5160i 3.01464i
\(260\) 1.24616 1.88349i 0.0772838 0.116809i
\(261\) −15.6458 9.03308i −0.968448 0.559134i
\(262\) −0.214687 + 7.04766i −0.0132634 + 0.435406i
\(263\) −7.54036 + 13.0603i −0.464959 + 0.805332i −0.999200 0.0400000i \(-0.987264\pi\)
0.534241 + 0.845332i \(0.320598\pi\)
\(264\) 0.238162 0.337185i 0.0146578 0.0207523i
\(265\) 26.3430 1.61824
\(266\) −21.0577 + 19.9229i −1.29113 + 1.22155i
\(267\) 0.427841i 0.0261835i
\(268\) 1.32521 21.7315i 0.0809499 1.32746i
\(269\) 6.34397 + 3.66269i 0.386799 + 0.223318i 0.680772 0.732495i \(-0.261644\pi\)
−0.293973 + 0.955814i \(0.594978\pi\)
\(270\) 1.41235 + 0.0430233i 0.0859530 + 0.00261832i
\(271\) −4.12352 + 7.14215i −0.250486 + 0.433855i −0.963660 0.267133i \(-0.913924\pi\)
0.713174 + 0.700987i \(0.247257\pi\)
\(272\) −2.94776 0.360856i −0.178734 0.0218801i
\(273\) −0.173079 −0.0104752
\(274\) −5.95267 + 9.62135i −0.359614 + 0.581247i
\(275\) 0.195072 0.112625i 0.0117633 0.00679152i
\(276\) −0.392599 0.259754i −0.0236317 0.0156353i
\(277\) 17.2973i 1.03929i −0.854382 0.519646i \(-0.826064\pi\)
0.854382 0.519646i \(-0.173936\pi\)
\(278\) −9.59363 5.93552i −0.575388 0.355989i
\(279\) 8.14673 + 14.1106i 0.487732 + 0.844777i
\(280\) 24.5679 + 17.3529i 1.46821 + 1.03703i
\(281\) −12.5105 21.6688i −0.746312 1.29265i −0.949579 0.313527i \(-0.898489\pi\)
0.203267 0.979123i \(-0.434844\pi\)
\(282\) −0.143669 + 0.0772130i −0.00855538 + 0.00459797i
\(283\) 16.0653 + 9.27531i 0.954984 + 0.551360i 0.894626 0.446817i \(-0.147442\pi\)
0.0603582 + 0.998177i \(0.480776\pi\)
\(284\) 9.67857 + 19.4034i 0.574317 + 1.15138i
\(285\) 0.512303 0.515149i 0.0303462 0.0305148i
\(286\) −0.735742 + 1.18919i −0.0435053 + 0.0703181i
\(287\) −13.0275 + 22.5642i −0.768986 + 1.33192i
\(288\) 16.7438 + 2.56937i 0.986640 + 0.151401i
\(289\) 8.22439 + 14.2451i 0.483788 + 0.837945i
\(290\) 9.13365 + 16.9949i 0.536346 + 0.997972i
\(291\) −0.0772841 + 0.0446200i −0.00453048 + 0.00261567i
\(292\) −11.1336 22.3204i −0.651543 1.30620i
\(293\) 1.02282i 0.0597535i 0.999554 + 0.0298768i \(0.00951149\pi\)
−0.999554 + 0.0298768i \(0.990489\pi\)
\(294\) 0.0479699 1.57474i 0.00279766 0.0918405i
\(295\) −5.36529 9.29295i −0.312379 0.541057i
\(296\) 2.66217 29.0588i 0.154735 1.68901i
\(297\) −0.874917 −0.0507678
\(298\) 0.227551 7.46995i 0.0131817 0.432722i
\(299\) 1.38100 + 0.797322i 0.0798654 + 0.0461103i
\(300\) −0.0139845 0.00925248i −0.000807394 0.000534192i
\(301\) 30.8521 + 17.8125i 1.77829 + 1.02669i
\(302\) 2.43424 + 4.52936i 0.140075 + 0.260636i
\(303\) 1.10090 0.0632451
\(304\) 13.7057 10.7774i 0.786079 0.618127i
\(305\) 3.94853 0.226092
\(306\) 1.48846 + 2.76956i 0.0850898 + 0.158325i
\(307\) 22.7524 + 13.1361i 1.29855 + 0.749717i 0.980153 0.198241i \(-0.0635227\pi\)
0.318395 + 0.947958i \(0.396856\pi\)
\(308\) −15.5322 10.2765i −0.885031 0.585559i
\(309\) 0.741787 + 0.428271i 0.0421988 + 0.0243635i
\(310\) 0.529814 17.3925i 0.0300914 0.987829i
\(311\) 24.2028 1.37241 0.686207 0.727407i \(-0.259275\pi\)
0.686207 + 0.727407i \(0.259275\pi\)
\(312\) 0.103666 + 0.00949718i 0.00586893 + 0.000537672i
\(313\) 14.3528 + 24.8598i 0.811270 + 1.40516i 0.911976 + 0.410244i \(0.134557\pi\)
−0.100706 + 0.994916i \(0.532110\pi\)
\(314\) 0.822795 27.0104i 0.0464330 1.52428i
\(315\) 31.8451i 1.79427i
\(316\) 1.49058 + 2.98829i 0.0838518 + 0.168104i
\(317\) 8.87555 5.12430i 0.498501 0.287809i −0.229594 0.973287i \(-0.573740\pi\)
0.728094 + 0.685477i \(0.240406\pi\)
\(318\) 0.574830 + 1.06958i 0.0322348 + 0.0599790i
\(319\) −5.97323 10.3459i −0.334437 0.579261i
\(320\) −13.7628 11.7416i −0.769364 0.656376i
\(321\) −0.282517 + 0.489333i −0.0157685 + 0.0273119i
\(322\) −11.1741 + 18.0607i −0.622706 + 1.00649i
\(323\) 3.12826 + 0.828933i 0.174061 + 0.0461231i
\(324\) −7.99085 16.0199i −0.443936 0.889995i
\(325\) 0.0491916 + 0.0284008i 0.00272866 + 0.00157539i
\(326\) −12.1237 + 6.51570i −0.671469 + 0.360871i
\(327\) 0.0972391 + 0.168423i 0.00537733 + 0.00931381i
\(328\) 9.04096 12.8000i 0.499203 0.706764i
\(329\) 3.67921 + 6.37257i 0.202841 + 0.351331i
\(330\) 0.396933 + 0.245580i 0.0218504 + 0.0135187i
\(331\) 16.6930i 0.917528i 0.888558 + 0.458764i \(0.151708\pi\)
−0.888558 + 0.458764i \(0.848292\pi\)
\(332\) 25.9758 + 17.1863i 1.42561 + 0.943218i
\(333\) −26.7554 + 15.4473i −1.46619 + 0.846504i
\(334\) −13.9912 + 22.6142i −0.765566 + 1.23739i
\(335\) 24.6170 1.34497
\(336\) −0.168466 + 1.37616i −0.00919057 + 0.0750758i
\(337\) 14.1278 24.4701i 0.769591 1.33297i −0.168194 0.985754i \(-0.553794\pi\)
0.937785 0.347216i \(-0.112873\pi\)
\(338\) 18.0238 + 0.549044i 0.980364 + 0.0298640i
\(339\) −0.570819 0.329562i −0.0310026 0.0178994i
\(340\) 0.204385 3.35162i 0.0110843 0.181767i
\(341\) 10.7742i 0.583458i
\(342\) −17.6917 5.26944i −0.956656 0.284939i
\(343\) −38.1591 −2.06040
\(344\) −17.5015 12.3617i −0.943619 0.666500i
\(345\) 0.266134 0.460958i 0.0143282 0.0248171i
\(346\) 0.505771 16.6033i 0.0271904 0.892597i
\(347\) −22.6793 13.0939i −1.21749 0.702918i −0.253110 0.967438i \(-0.581453\pi\)
−0.964380 + 0.264519i \(0.914787\pi\)
\(348\) −0.490721 + 0.741689i −0.0263054 + 0.0397587i
\(349\) 7.01947i 0.375743i 0.982194 + 0.187872i \(0.0601589\pi\)
−0.982194 + 0.187872i \(0.939841\pi\)
\(350\) −0.398023 + 0.643328i −0.0212752 + 0.0343873i
\(351\) −0.110315 0.191071i −0.00588817 0.0101986i
\(352\) 8.73917 + 7.00743i 0.465799 + 0.373497i
\(353\) 13.7525 0.731969 0.365985 0.930621i \(-0.380732\pi\)
0.365985 + 0.930621i \(0.380732\pi\)
\(354\) 0.260237 0.420623i 0.0138314 0.0223559i
\(355\) −21.2323 + 12.2585i −1.12689 + 0.650612i
\(356\) 11.5879 + 0.706642i 0.614158 + 0.0374519i
\(357\) −0.222860 + 0.128668i −0.0117950 + 0.00680984i
\(358\) −13.9475 + 7.49587i −0.737147 + 0.396169i
\(359\) 1.49285 2.58569i 0.0787895 0.136467i −0.823938 0.566679i \(-0.808228\pi\)
0.902728 + 0.430212i \(0.141561\pi\)
\(360\) −1.74740 + 19.0737i −0.0920961 + 1.00527i
\(361\) −16.4016 + 9.59102i −0.863242 + 0.504790i
\(362\) 14.2127 + 8.79329i 0.747002 + 0.462165i
\(363\) 0.451850 + 0.260876i 0.0237160 + 0.0136924i
\(364\) 0.285865 4.68777i 0.0149834 0.245706i
\(365\) 24.4242 14.1013i 1.27842 0.738096i
\(366\) 0.0861608 + 0.160318i 0.00450370 + 0.00837997i
\(367\) −9.97261 17.2731i −0.520566 0.901647i −0.999714 0.0239129i \(-0.992388\pi\)
0.479148 0.877734i \(-0.340946\pi\)
\(368\) 7.68376 10.2044i 0.400543 0.531940i
\(369\) −16.5915 −0.863719
\(370\) 32.9785 + 1.00460i 1.71447 + 0.0522265i
\(371\) 47.4421 27.3907i 2.46307 1.42205i
\(372\) 0.717733 0.358011i 0.0372127 0.0185620i
\(373\) 16.8878i 0.874416i −0.899360 0.437208i \(-0.855967\pi\)
0.899360 0.437208i \(-0.144033\pi\)
\(374\) −0.0633058 + 2.07818i −0.00327346 + 0.107460i
\(375\) −0.407209 + 0.705306i −0.0210282 + 0.0364219i
\(376\) −1.85399 4.01875i −0.0956124 0.207251i
\(377\) 1.50628 2.60896i 0.0775775 0.134368i
\(378\) 2.58829 1.39104i 0.133127 0.0715475i
\(379\) 26.5474i 1.36365i −0.731517 0.681824i \(-0.761187\pi\)
0.731517 0.681824i \(-0.238813\pi\)
\(380\) 13.1065 + 14.7264i 0.672347 + 0.755446i
\(381\) 0.350990i 0.0179818i
\(382\) −8.46729 15.7550i −0.433224 0.806095i
\(383\) 2.38085 4.12375i 0.121656 0.210714i −0.798765 0.601643i \(-0.794513\pi\)
0.920421 + 0.390929i \(0.127846\pi\)
\(384\) 0.176416 0.815011i 0.00900268 0.0415909i
\(385\) 10.5290 18.2367i 0.536605 0.929428i
\(386\) 10.3834 + 0.316300i 0.528499 + 0.0160992i
\(387\) 22.6856i 1.15317i
\(388\) −1.08087 2.16691i −0.0548728 0.110008i
\(389\) −17.0129 + 9.82241i −0.862589 + 0.498016i −0.864879 0.501981i \(-0.832605\pi\)
0.00228917 + 0.999997i \(0.499271\pi\)
\(390\) −0.00358386 + 0.117649i −0.000181476 + 0.00595741i
\(391\) 2.37094 0.119904
\(392\) 42.5719 + 3.90015i 2.15020 + 0.196987i
\(393\) −0.183740 0.318247i −0.00926845 0.0160534i
\(394\) −15.0731 + 8.10083i −0.759372 + 0.408114i
\(395\) −3.26995 + 1.88791i −0.164529 + 0.0949909i
\(396\) 0.721871 11.8376i 0.0362754 0.594864i
\(397\) −22.1285 12.7759i −1.11060 0.641203i −0.171612 0.985165i \(-0.554898\pi\)
−0.938984 + 0.343962i \(0.888231\pi\)
\(398\) −5.55909 + 8.98521i −0.278652 + 0.450388i
\(399\) 0.386988 1.46043i 0.0193736 0.0731130i
\(400\) 0.273697 0.363482i 0.0136849 0.0181741i
\(401\) 4.14055 7.17165i 0.206769 0.358135i −0.743926 0.668262i \(-0.767038\pi\)
0.950695 + 0.310127i \(0.100372\pi\)
\(402\) 0.537167 + 0.999500i 0.0267915 + 0.0498505i
\(403\) −2.35296 + 1.35848i −0.117209 + 0.0676708i
\(404\) −1.81830 + 29.8175i −0.0904637 + 1.48347i
\(405\) 17.5299 10.1209i 0.871066 0.502910i
\(406\) 34.1199 + 21.1098i 1.69334 + 1.04766i
\(407\) −20.4293 −1.01265
\(408\) 0.140543 0.0648373i 0.00695790 0.00320993i
\(409\) −8.00331 13.8621i −0.395738 0.685439i 0.597457 0.801901i \(-0.296178\pi\)
−0.993195 + 0.116462i \(0.962845\pi\)
\(410\) 15.0681 + 9.32255i 0.744162 + 0.460408i
\(411\) 0.589657i 0.0290856i
\(412\) −12.8247 + 19.3837i −0.631828 + 0.954964i
\(413\) −19.3251 11.1574i −0.950927 0.549018i
\(414\) −13.5178 0.411783i −0.664365 0.0202380i
\(415\) −17.6084 + 30.4987i −0.864363 + 1.49712i
\(416\) −0.428447 + 2.79206i −0.0210063 + 0.136892i
\(417\) 0.587958 0.0287924
\(418\) −8.38924 8.86706i −0.410331 0.433702i
\(419\) 24.4736i 1.19562i 0.801640 + 0.597808i \(0.203961\pi\)
−0.801640 + 0.597808i \(0.796039\pi\)
\(420\) −1.56471 0.0954174i −0.0763500 0.00465589i
\(421\) −10.0033 5.77541i −0.487532 0.281476i 0.236018 0.971749i \(-0.424157\pi\)
−0.723550 + 0.690272i \(0.757491\pi\)
\(422\) −0.250733 + 8.23098i −0.0122055 + 0.400678i
\(423\) −2.34288 + 4.05799i −0.113915 + 0.197306i
\(424\) −29.9185 + 13.8025i −1.45297 + 0.670307i
\(425\) 0.0844535 0.00409659
\(426\) −0.961028 0.594582i −0.0465620 0.0288076i
\(427\) 7.11106 4.10557i 0.344128 0.198682i
\(428\) −12.7868 8.46006i −0.618072 0.408932i
\(429\) 0.0728809i 0.00351872i
\(430\) 12.7468 20.6027i 0.614703 0.993550i
\(431\) 6.07769 + 10.5269i 0.292752 + 0.507061i 0.974459 0.224564i \(-0.0720956\pi\)
−0.681707 + 0.731625i \(0.738762\pi\)
\(432\) −1.62659 + 0.691143i −0.0782595 + 0.0332526i
\(433\) 19.2219 + 33.2932i 0.923744 + 1.59997i 0.793570 + 0.608480i \(0.208220\pi\)
0.130174 + 0.991491i \(0.458446\pi\)
\(434\) −17.1301 31.8738i −0.822272 1.52999i
\(435\) −0.870831 0.502775i −0.0417532 0.0241062i
\(436\) −4.72227 + 2.35551i −0.226156 + 0.112808i
\(437\) −9.81555 + 9.87008i −0.469541 + 0.472150i
\(438\) 1.10550 + 0.683967i 0.0528229 + 0.0326812i
\(439\) 9.70327 16.8066i 0.463112 0.802133i −0.536002 0.844217i \(-0.680066\pi\)
0.999114 + 0.0420834i \(0.0133995\pi\)
\(440\) −7.30702 + 10.3452i −0.348349 + 0.493186i
\(441\) −22.6306 39.1974i −1.07765 1.86654i
\(442\) −0.461830 + 0.248204i −0.0219670 + 0.0118059i
\(443\) −16.3666 + 9.44924i −0.777599 + 0.448947i −0.835579 0.549371i \(-0.814867\pi\)
0.0579798 + 0.998318i \(0.481534\pi\)
\(444\) 0.678834 + 1.36091i 0.0322161 + 0.0645861i
\(445\) 13.1266i 0.622259i
\(446\) 10.0118 + 0.304980i 0.474071 + 0.0144412i
\(447\) 0.194749 + 0.337315i 0.00921132 + 0.0159545i
\(448\) −36.9946 6.83576i −1.74783 0.322959i
\(449\) −25.1997 −1.18925 −0.594624 0.804004i \(-0.702699\pi\)
−0.594624 + 0.804004i \(0.702699\pi\)
\(450\) −0.481508 0.0146678i −0.0226985 0.000691446i
\(451\) −9.50144 5.48566i −0.447405 0.258310i
\(452\) 9.86885 14.9161i 0.464192 0.701593i
\(453\) −0.232088 0.133996i −0.0109045 0.00629570i
\(454\) −13.5167 + 7.26434i −0.634368 + 0.340932i
\(455\) 5.31022 0.248947
\(456\) −0.311924 + 0.853493i −0.0146072 + 0.0399685i
\(457\) 6.45543 0.301972 0.150986 0.988536i \(-0.451755\pi\)
0.150986 + 0.988536i \(0.451755\pi\)
\(458\) 7.11995 3.82652i 0.332694 0.178801i
\(459\) −0.284087 0.164018i −0.0132601 0.00765570i
\(460\) 12.0453 + 7.96948i 0.561615 + 0.371579i
\(461\) −2.49112 1.43825i −0.116023 0.0669858i 0.440866 0.897573i \(-0.354672\pi\)
−0.556888 + 0.830587i \(0.688005\pi\)
\(462\) 0.970199 + 0.0295544i 0.0451377 + 0.00137499i
\(463\) −29.6723 −1.37899 −0.689494 0.724292i \(-0.742167\pi\)
−0.689494 + 0.724292i \(0.742167\pi\)
\(464\) −19.2779 14.5160i −0.894952 0.673887i
\(465\) 0.453441 + 0.785383i 0.0210278 + 0.0364213i
\(466\) −32.9955 1.00512i −1.52849 0.0465611i
\(467\) 12.3400i 0.571026i −0.958375 0.285513i \(-0.907836\pi\)
0.958375 0.285513i \(-0.0921639\pi\)
\(468\) 2.67621 1.33492i 0.123708 0.0617065i
\(469\) 44.3337 25.5961i 2.04714 1.18192i
\(470\) 4.40790 2.36897i 0.203321 0.109272i
\(471\) 0.704188 + 1.21969i 0.0324473 + 0.0562003i
\(472\) 10.9626 + 7.74313i 0.504594 + 0.356406i
\(473\) −7.50055 + 12.9913i −0.344876 + 0.597342i
\(474\) −0.148006 0.0915707i −0.00679816 0.00420598i
\(475\) −0.349632 + 0.351575i −0.0160422 + 0.0161314i
\(476\) −3.11684 6.24858i −0.142860 0.286403i
\(477\) 30.2106 + 17.4421i 1.38325 + 0.798619i
\(478\) 6.99727 + 13.0197i 0.320048 + 0.595509i
\(479\) −3.99982 6.92789i −0.182756 0.316543i 0.760062 0.649851i \(-0.225169\pi\)
−0.942818 + 0.333307i \(0.891835\pi\)
\(480\) 0.931950 + 0.143009i 0.0425375 + 0.00652744i
\(481\) −2.57586 4.46151i −0.117449 0.203428i
\(482\) −15.3897 + 24.8746i −0.700983 + 1.13301i
\(483\) 1.10688i 0.0503646i
\(484\) −7.81201 + 11.8073i −0.355091 + 0.536696i
\(485\) 2.37115 1.36898i 0.107668 0.0621623i
\(486\) 2.38756 + 1.47717i 0.108302 + 0.0670057i
\(487\) 11.3433 0.514013 0.257007 0.966410i \(-0.417264\pi\)
0.257007 + 0.966410i \(0.417264\pi\)
\(488\) −4.48446 + 2.06884i −0.203002 + 0.0936520i
\(489\) 0.358666 0.621228i 0.0162194 0.0280929i
\(490\) −1.47176 + 48.3143i −0.0664873 + 2.18262i
\(491\) 20.0056 + 11.5502i 0.902840 + 0.521255i 0.878121 0.478439i \(-0.158797\pi\)
0.0247197 + 0.999694i \(0.492131\pi\)
\(492\) −0.0497131 + 0.815224i −0.00224124 + 0.0367531i
\(493\) 4.47913i 0.201730i
\(494\) 0.878689 2.95012i 0.0395341 0.132732i
\(495\) 13.4095 0.602710
\(496\) 8.51114 + 20.0308i 0.382161 + 0.899410i
\(497\) −25.4920 + 44.1535i −1.14347 + 1.98055i
\(498\) −1.62254 0.0494261i −0.0727078 0.00221484i
\(499\) −17.4946 10.1005i −0.783166 0.452161i 0.0543850 0.998520i \(-0.482680\pi\)
−0.837551 + 0.546359i \(0.816014\pi\)
\(500\) −18.4304 12.1940i −0.824231 0.545332i
\(501\) 1.38594i 0.0619191i
\(502\) −0.204643 0.126611i −0.00913367 0.00565094i
\(503\) −2.59755 4.49909i −0.115819 0.200604i 0.802288 0.596937i \(-0.203616\pi\)
−0.918107 + 0.396333i \(0.870283\pi\)
\(504\) 16.6853 + 36.1674i 0.743222 + 1.61102i
\(505\) −33.7767 −1.50304
\(506\) −7.60510 4.70522i −0.338088 0.209173i
\(507\) −0.813888 + 0.469898i −0.0361460 + 0.0208689i
\(508\) 9.50643 + 0.579711i 0.421779 + 0.0257205i
\(509\) −26.5099 + 15.3055i −1.17503 + 0.678404i −0.954860 0.297057i \(-0.903995\pi\)
−0.220171 + 0.975461i \(0.570662\pi\)
\(510\) 0.0828468 + 0.154152i 0.00366852 + 0.00682596i
\(511\) 29.3243 50.7912i 1.29723 2.24687i
\(512\) 21.7829 + 6.12426i 0.962676 + 0.270656i
\(513\) 1.85890 0.503614i 0.0820724 0.0222351i
\(514\) 10.8193 17.4873i 0.477218 0.771332i
\(515\) −22.7587 13.1397i −1.00287 0.579006i
\(516\) 1.11466 + 0.0679729i 0.0490701 + 0.00299234i
\(517\) −2.68339 + 1.54926i −0.118015 + 0.0681363i
\(518\) 60.4368 32.4809i 2.65544 1.42713i
\(519\) 0.432864 + 0.749742i 0.0190006 + 0.0329100i
\(520\) −3.18057 0.291382i −0.139477 0.0127780i
\(521\) −24.6215 −1.07869 −0.539343 0.842086i \(-0.681327\pi\)
−0.539343 + 0.842086i \(0.681327\pi\)
\(522\) −0.777930 + 25.5376i −0.0340491 + 1.11775i
\(523\) −28.6708 + 16.5531i −1.25369 + 0.723816i −0.971840 0.235643i \(-0.924280\pi\)
−0.281847 + 0.959459i \(0.590947\pi\)
\(524\) 8.92305 4.45089i 0.389805 0.194438i
\(525\) 0.0394272i 0.00172074i
\(526\) 21.3175 + 0.649377i 0.929486 + 0.0283142i
\(527\) −2.01981 + 3.49842i −0.0879844 + 0.152393i
\(528\) −0.579481 0.0709384i −0.0252187 0.00308720i
\(529\) 6.40096 11.0868i 0.278303 0.482034i
\(530\) −17.6363 32.8156i −0.766072 1.42542i
\(531\) 14.2098i 0.616652i
\(532\) 38.9160 + 12.8935i 1.68722 + 0.559006i
\(533\) 2.76666i 0.119837i
\(534\) −0.532965 + 0.286435i −0.0230637 + 0.0123952i
\(535\) 8.66787 15.0132i 0.374745 0.649077i
\(536\) −27.9583 + 12.8981i −1.20761 + 0.557115i
\(537\) 0.412621 0.714680i 0.0178059 0.0308407i
\(538\) 0.315432 10.3549i 0.0135992 0.446430i
\(539\) 29.9295i 1.28916i
\(540\) −0.891958 1.78818i −0.0383838 0.0769510i
\(541\) −15.7964 + 9.12004i −0.679139 + 0.392101i −0.799531 0.600625i \(-0.794918\pi\)
0.120391 + 0.992727i \(0.461585\pi\)
\(542\) 11.6577 + 0.355118i 0.500740 + 0.0152536i
\(543\) −0.871043 −0.0373800
\(544\) 1.52397 + 3.91363i 0.0653395 + 0.167795i
\(545\) −2.98338 5.16737i −0.127794 0.221346i
\(546\) 0.115874 + 0.215606i 0.00495896 + 0.00922707i
\(547\) 18.9714 10.9532i 0.811160 0.468323i −0.0361988 0.999345i \(-0.511525\pi\)
0.847358 + 0.531021i \(0.178192\pi\)
\(548\) 15.9706 + 0.973904i 0.682231 + 0.0416031i
\(549\) 4.52825 + 2.61438i 0.193261 + 0.111579i
\(550\) −0.270895 0.167601i −0.0115510 0.00714654i
\(551\) 18.6463 + 18.5433i 0.794360 + 0.789971i
\(552\) −0.0607365 + 0.662966i −0.00258512 + 0.0282177i
\(553\) −3.92599 + 6.80001i −0.166950 + 0.289166i
\(554\) −21.5473 + 11.5803i −0.915458 + 0.492000i
\(555\) −1.48919 + 0.859782i −0.0632125 + 0.0364957i
\(556\) −0.971098 + 15.9246i −0.0411837 + 0.675354i
\(557\) 24.5414 14.1690i 1.03985 0.600359i 0.120061 0.992767i \(-0.461691\pi\)
0.919791 + 0.392408i \(0.128358\pi\)
\(558\) 12.1235 19.5953i 0.513228 0.829535i
\(559\) −3.78286 −0.159998
\(560\) 5.16869 42.2219i 0.218417 1.78420i
\(561\) −0.0541802 0.0938428i −0.00228749 0.00396205i
\(562\) −18.6173 + 30.0914i −0.785325 + 1.26933i
\(563\) 5.98383i 0.252188i −0.992018 0.126094i \(-0.959756\pi\)
0.992018 0.126094i \(-0.0402442\pi\)
\(564\) 0.192370 + 0.127277i 0.00810022 + 0.00535931i
\(565\) 17.5132 + 10.1113i 0.736787 + 0.425384i
\(566\) 0.798791 26.2224i 0.0335757 1.10221i
\(567\) 21.0468 36.4541i 0.883883 1.53093i
\(568\) 17.6913 25.0470i 0.742310 1.05095i
\(569\) 26.0900 1.09375 0.546875 0.837214i \(-0.315817\pi\)
0.546875 + 0.837214i \(0.315817\pi\)
\(570\) −0.984706 0.293293i −0.0412448 0.0122847i
\(571\) 17.5053i 0.732573i −0.930502 0.366287i \(-0.880629\pi\)
0.930502 0.366287i \(-0.119371\pi\)
\(572\) 1.97395 + 0.120373i 0.0825349 + 0.00503306i
\(573\) 0.807299 + 0.466094i 0.0337254 + 0.0194714i
\(574\) 36.8301 + 1.12193i 1.53726 + 0.0468283i
\(575\) −0.181629 + 0.314591i −0.00757445 + 0.0131193i
\(576\) −8.00912 22.5781i −0.333713 0.940753i
\(577\) −4.31463 −0.179621 −0.0898103 0.995959i \(-0.528626\pi\)
−0.0898103 + 0.995959i \(0.528626\pi\)
\(578\) 12.2390 19.7821i 0.509077 0.822826i
\(579\) −0.468874 + 0.270705i −0.0194858 + 0.0112501i
\(580\) 15.0557 22.7557i 0.625156 0.944879i
\(581\) 73.2350i 3.03830i
\(582\) 0.107324 + 0.0664008i 0.00444873 + 0.00275240i
\(583\) 11.5338 + 19.9771i 0.477681 + 0.827368i
\(584\) −20.3509 + 28.8124i −0.842125 + 1.19227i
\(585\) 1.69075 + 2.92846i 0.0699037 + 0.121077i
\(586\) 1.27413 0.684763i 0.0526338 0.0282873i
\(587\) 22.3055 + 12.8781i 0.920645 + 0.531535i 0.883841 0.467788i \(-0.154949\pi\)
0.0368044 + 0.999322i \(0.488282\pi\)
\(588\) −1.99378 + 0.994510i −0.0822219 + 0.0410129i
\(589\) −6.20180 22.8916i −0.255541 0.943231i
\(590\) −7.98430 + 12.9051i −0.328708 + 0.531294i
\(591\) 0.445922 0.772359i 0.0183428 0.0317706i
\(592\) −37.9810 + 16.1382i −1.56101 + 0.663276i
\(593\) 18.0229 + 31.2166i 0.740112 + 1.28191i 0.952444 + 0.304714i \(0.0985610\pi\)
−0.212331 + 0.977198i \(0.568106\pi\)
\(594\) 0.585746 + 1.08989i 0.0240335 + 0.0447187i
\(595\) 6.83754 3.94766i 0.280312 0.161838i
\(596\) −9.45771 + 4.71758i −0.387403 + 0.193239i
\(597\) 0.550671i 0.0225374i
\(598\) 0.0686654 2.25412i 0.00280794 0.0921779i
\(599\) −6.14336 10.6406i −0.251011 0.434763i 0.712794 0.701374i \(-0.247430\pi\)
−0.963804 + 0.266610i \(0.914096\pi\)
\(600\) −0.00216345 + 0.0236150i −8.83224e−5 + 0.000964078i
\(601\) −9.74846 −0.397648 −0.198824 0.980035i \(-0.563712\pi\)
−0.198824 + 0.980035i \(0.563712\pi\)
\(602\) 1.53401 50.3579i 0.0625217 2.05244i
\(603\) 28.2312 + 16.2993i 1.14967 + 0.663760i
\(604\) 4.01256 6.06471i 0.163269 0.246769i
\(605\) −13.8632 8.00390i −0.563618 0.325405i
\(606\) −0.737040 1.37140i −0.0299402 0.0557094i
\(607\) 28.3299 1.14988 0.574938 0.818197i \(-0.305026\pi\)
0.574938 + 0.818197i \(0.305026\pi\)
\(608\) −22.6013 9.85800i −0.916605 0.399795i
\(609\) −2.09108 −0.0847350
\(610\) −2.64349 4.91871i −0.107032 0.199153i
\(611\) −0.676677 0.390680i −0.0273754 0.0158052i
\(612\) 2.45356 3.70838i 0.0991792 0.149902i
\(613\) 17.4855 + 10.0952i 0.706232 + 0.407743i 0.809664 0.586893i \(-0.199649\pi\)
−0.103433 + 0.994636i \(0.532983\pi\)
\(614\) 1.13128 37.1373i 0.0456549 1.49874i
\(615\) −0.923470 −0.0372379
\(616\) −2.40289 + 26.2286i −0.0968153 + 1.05678i
\(617\) 6.87561 + 11.9089i 0.276801 + 0.479434i 0.970588 0.240746i \(-0.0773922\pi\)
−0.693787 + 0.720181i \(0.744059\pi\)
\(618\) 0.0368828 1.21077i 0.00148364 0.0487044i
\(619\) 4.39271i 0.176558i −0.996096 0.0882791i \(-0.971863\pi\)
0.996096 0.0882791i \(-0.0281367\pi\)
\(620\) −22.0207 + 10.9841i −0.884373 + 0.441132i
\(621\) 1.22194 0.705487i 0.0490347 0.0283102i
\(622\) −16.2035 30.1496i −0.649699 1.20889i
\(623\) 13.6486 + 23.6401i 0.546821 + 0.947122i
\(624\) −0.0575724 0.135496i −0.00230474 0.00542417i
\(625\) 12.7779 22.1320i 0.511116 0.885279i
\(626\) 21.3590 34.5228i 0.853678 1.37981i
\(627\) 0.614965 + 0.162955i 0.0245593 + 0.00650779i
\(628\) −34.1979 + 17.0582i −1.36464 + 0.680695i
\(629\) −6.63345 3.82982i −0.264493 0.152705i
\(630\) −39.6696 + 21.3199i −1.58048 + 0.849404i
\(631\) 13.8673 + 24.0188i 0.552047 + 0.956173i 0.998127 + 0.0611800i \(0.0194864\pi\)
−0.446080 + 0.894993i \(0.647180\pi\)
\(632\) 2.72461 3.85745i 0.108379 0.153441i
\(633\) −0.214590 0.371681i −0.00852919 0.0147730i
\(634\) −12.3255 7.62568i −0.489506 0.302854i
\(635\) 10.7687i 0.427343i
\(636\) 0.947539 1.43214i 0.0375724 0.0567880i
\(637\) 6.53623 3.77370i 0.258975 0.149519i
\(638\) −8.88900 + 14.3674i −0.351919 + 0.568810i
\(639\) −32.4661 −1.28434
\(640\) −5.41259 + 25.0053i −0.213952 + 0.988420i
\(641\) 2.60078 4.50468i 0.102725 0.177924i −0.810082 0.586317i \(-0.800577\pi\)
0.912806 + 0.408393i \(0.133911\pi\)
\(642\) 0.798707 + 0.0243304i 0.0315225 + 0.000960243i
\(643\) −9.12347 5.26744i −0.359794 0.207727i 0.309196 0.950998i \(-0.399940\pi\)
−0.668991 + 0.743271i \(0.733273\pi\)
\(644\) 29.9793 + 1.82817i 1.18135 + 0.0720398i
\(645\) 1.26266i 0.0497173i
\(646\) −1.06172 4.45185i −0.0417729 0.175156i
\(647\) −29.5690 −1.16248 −0.581239 0.813733i \(-0.697432\pi\)
−0.581239 + 0.813733i \(0.697432\pi\)
\(648\) −14.6063 + 20.6794i −0.573791 + 0.812364i
\(649\) 4.69819 8.13750i 0.184420 0.319425i
\(650\) 0.00244588 0.0802923i 9.59353e−5 0.00314932i
\(651\) 1.63324 + 0.942951i 0.0640117 + 0.0369572i
\(652\) 16.2333 + 10.7404i 0.635746 + 0.420625i
\(653\) 5.92429i 0.231835i 0.993259 + 0.115918i \(0.0369809\pi\)
−0.993259 + 0.115918i \(0.963019\pi\)
\(654\) 0.144705 0.233889i 0.00565843 0.00914577i
\(655\) 5.63730 + 9.76410i 0.220268 + 0.381515i
\(656\) −21.9979 2.69292i −0.858874 0.105141i
\(657\) 37.3468 1.45704
\(658\) 5.47518 8.84958i 0.213445 0.344992i
\(659\) −13.1894 + 7.61488i −0.513785 + 0.296634i −0.734388 0.678730i \(-0.762531\pi\)
0.220603 + 0.975364i \(0.429197\pi\)
\(660\) 0.0401788 0.658875i 0.00156396 0.0256467i
\(661\) −7.12782 + 4.11525i −0.277240 + 0.160065i −0.632173 0.774827i \(-0.717837\pi\)
0.354933 + 0.934892i \(0.384504\pi\)
\(662\) 20.7945 11.1757i 0.808202 0.434357i
\(663\) 0.0136627 0.0236645i 0.000530617 0.000919055i
\(664\) 4.01855 43.8642i 0.155950 1.70226i
\(665\) −11.8731 + 44.8073i −0.460421 + 1.73755i
\(666\) 37.1552 + 22.9877i 1.43973 + 0.890754i
\(667\) 16.6848 + 9.63299i 0.646039 + 0.372991i
\(668\) 37.5376 + 2.28908i 1.45237 + 0.0885670i
\(669\) −0.452094 + 0.261017i −0.0174790 + 0.0100915i
\(670\) −16.4808 30.6656i −0.636708 1.18471i
\(671\) 1.72879 + 2.99435i 0.0667393 + 0.115596i
\(672\) 1.82708 0.711465i 0.0704812 0.0274454i
\(673\) −5.85922 −0.225856 −0.112928 0.993603i \(-0.536023\pi\)
−0.112928 + 0.993603i \(0.536023\pi\)
\(674\) −39.9409 1.21669i −1.53847 0.0468651i
\(675\) 0.0435257 0.0251296i 0.00167531 0.000967239i
\(676\) −11.3828 22.8199i −0.437798 0.877690i
\(677\) 2.54790i 0.0979236i 0.998801 + 0.0489618i \(0.0155913\pi\)
−0.998801 + 0.0489618i \(0.984409\pi\)
\(678\) −0.0283819 + 0.931711i −0.00109000 + 0.0357821i
\(679\) 2.84686 4.93091i 0.109252 0.189231i
\(680\) −4.31197 + 1.98927i −0.165357 + 0.0762849i
\(681\) 0.399876 0.692605i 0.0153233 0.0265407i
\(682\) 13.4215 7.21322i 0.513938 0.276209i
\(683\) 24.9303i 0.953930i 0.878922 + 0.476965i \(0.158263\pi\)
−0.878922 + 0.476965i \(0.841737\pi\)
\(684\) 5.28018 + 25.5665i 0.201893 + 0.977559i
\(685\) 18.0912i 0.691230i
\(686\) 25.5470 + 47.5350i 0.975390 + 1.81489i
\(687\) −0.210636 + 0.364832i −0.00803627 + 0.0139192i
\(688\) −3.68204 + 30.0778i −0.140376 + 1.14671i
\(689\) −2.90850 + 5.03767i −0.110805 + 0.191920i
\(690\) −0.752392 0.0229195i −0.0286431 0.000872531i
\(691\) 51.3756i 1.95442i −0.212277 0.977209i \(-0.568088\pi\)
0.212277 0.977209i \(-0.431912\pi\)
\(692\) −21.0214 + 10.4856i −0.799114 + 0.398604i
\(693\) 24.1496 13.9428i 0.917368 0.529643i
\(694\) −1.12765 + 37.0180i −0.0428050 + 1.40519i
\(695\) −18.0391 −0.684262
\(696\) 1.25246 + 0.114742i 0.0474743 + 0.00434928i
\(697\) −2.05676 3.56241i −0.0779052 0.134936i
\(698\) 8.74420 4.69945i 0.330973 0.177877i
\(699\) 1.48996 0.860227i 0.0563553 0.0325368i
\(700\) 1.06787 + 0.0651197i 0.0403617 + 0.00246129i
\(701\) −10.9994 6.35049i −0.415441 0.239855i 0.277684 0.960672i \(-0.410433\pi\)
−0.693125 + 0.720818i \(0.743766\pi\)
\(702\) −0.164164 + 0.265340i −0.00619597 + 0.0100146i
\(703\) 43.4054 11.7594i 1.63706 0.443514i
\(704\) 2.87843 15.5778i 0.108485 0.587112i
\(705\) −0.130403 + 0.225865i −0.00491126 + 0.00850656i
\(706\) −9.20710 17.1315i −0.346514 0.644754i
\(707\) −60.8297 + 35.1200i −2.28774 + 1.32082i
\(708\) −0.698199 0.0425768i −0.0262399 0.00160013i
\(709\) −10.6515 + 6.14967i −0.400027 + 0.230956i −0.686496 0.727134i \(-0.740852\pi\)
0.286469 + 0.958090i \(0.407519\pi\)
\(710\) 29.4852 + 18.2423i 1.10656 + 0.684622i
\(711\) −5.00006 −0.187517
\(712\) −6.87770 14.9082i −0.257753 0.558710i
\(713\) −8.68778 15.0477i −0.325360 0.563540i
\(714\) 0.309485 + 0.191476i 0.0115822 + 0.00716582i
\(715\) 2.23605i 0.0836235i
\(716\) 18.6753 + 12.3561i 0.697930 + 0.461768i
\(717\) −0.667142 0.385175i −0.0249149 0.0143846i
\(718\) −4.22045 0.128564i −0.157506 0.00479797i
\(719\) 17.5424 30.3843i 0.654222 1.13314i −0.327867 0.944724i \(-0.606330\pi\)
0.982088 0.188421i \(-0.0603369\pi\)
\(720\) 24.9301 10.5928i 0.929088 0.394772i
\(721\) −54.6494 −2.03525
\(722\) 22.9283 + 14.0105i 0.853302 + 0.521417i
\(723\) 1.52447i 0.0566957i
\(724\) 1.43865 23.5918i 0.0534671 0.876784i
\(725\) 0.594317 + 0.343129i 0.0220724 + 0.0127435i
\(726\) 0.0224666 0.737526i 0.000833816 0.0273722i
\(727\) −12.3695 + 21.4246i −0.458759 + 0.794593i −0.998896 0.0469839i \(-0.985039\pi\)
0.540137 + 0.841577i \(0.318372\pi\)
\(728\) −6.03098 + 2.78230i −0.223523 + 0.103119i
\(729\) 26.7071 0.989151
\(730\) −33.9178 20.9847i −1.25535 0.776679i
\(731\) −4.87089 + 2.81221i −0.180156 + 0.104013i
\(732\) 0.142026 0.214662i 0.00524943 0.00793414i
\(733\) 20.0808i 0.741701i 0.928693 + 0.370851i \(0.120934\pi\)
−0.928693 + 0.370851i \(0.879066\pi\)
\(734\) −14.8406 + 23.9871i −0.547778 + 0.885379i
\(735\) −1.25960 2.18170i −0.0464612 0.0804731i
\(736\) −17.8558 2.74001i −0.658175 0.100998i
\(737\) 10.7781 + 18.6682i 0.397017 + 0.687653i
\(738\) 11.1078 + 20.6681i 0.408884 + 0.760805i
\(739\) −1.16064 0.670093i −0.0426947 0.0246498i 0.478501 0.878087i \(-0.341180\pi\)
−0.521195 + 0.853437i \(0.674514\pi\)
\(740\) −20.8273 41.7541i −0.765625 1.53491i
\(741\) 0.0419512 + 0.154847i 0.00154112 + 0.00568844i
\(742\) −65.8827 40.7612i −2.41863 1.49639i
\(743\) 5.99092 10.3766i 0.219786 0.380680i −0.734957 0.678114i \(-0.762798\pi\)
0.954742 + 0.297434i \(0.0961309\pi\)
\(744\) −0.926490 0.654401i −0.0339668 0.0239915i
\(745\) −5.97508 10.3491i −0.218910 0.379163i
\(746\) −21.0372 + 11.3062i −0.770227 + 0.413948i
\(747\) −40.3873 + 23.3176i −1.47770 + 0.853148i
\(748\) 2.63118 1.31245i 0.0962055 0.0479880i
\(749\) 36.0504i 1.31725i
\(750\) 1.15123 + 0.0350689i 0.0420368 + 0.00128053i
\(751\) 9.58183 + 16.5962i 0.349646 + 0.605605i 0.986187 0.165639i \(-0.0529686\pi\)
−0.636541 + 0.771243i \(0.719635\pi\)
\(752\) −3.76496 + 5.00004i −0.137294 + 0.182333i
\(753\) 0.0125418 0.000457049
\(754\) −4.25843 0.129721i −0.155083 0.00472417i
\(755\) 7.12068 + 4.11113i 0.259148 + 0.149619i
\(756\) −3.46566 2.29297i −0.126045 0.0833945i
\(757\) −35.7919 20.6645i −1.30088 0.751062i −0.320324 0.947308i \(-0.603792\pi\)
−0.980555 + 0.196246i \(0.937125\pi\)
\(758\) −33.0703 + 17.7731i −1.20117 + 0.645550i
\(759\) 0.466088 0.0169179
\(760\) 9.57011 26.1859i 0.347144 0.949864i
\(761\) 30.3361 1.09968 0.549841 0.835269i \(-0.314688\pi\)
0.549841 + 0.835269i \(0.314688\pi\)
\(762\) −0.437231 + 0.234984i −0.0158392 + 0.00851256i
\(763\) −10.7458 6.20408i −0.389023 0.224603i
\(764\) −13.9573 + 21.0955i −0.504959 + 0.763210i
\(765\) 4.35408 + 2.51383i 0.157422 + 0.0908876i
\(766\) −6.73093 0.205039i −0.243198 0.00740835i
\(767\) 2.36951 0.0855579
\(768\) −1.13337 + 0.325878i −0.0408971 + 0.0117591i
\(769\) 7.68635 + 13.3131i 0.277177 + 0.480084i 0.970682 0.240367i \(-0.0772679\pi\)
−0.693505 + 0.720452i \(0.743935\pi\)
\(770\) −29.7666 0.906755i −1.07271 0.0326772i
\(771\) 1.07173i 0.0385975i
\(772\) −6.55751 13.1464i −0.236010 0.473149i
\(773\) −14.3035 + 8.25814i −0.514462 + 0.297025i −0.734666 0.678429i \(-0.762661\pi\)
0.220204 + 0.975454i \(0.429328\pi\)
\(774\) 28.2596 15.1877i 1.01577 0.545912i
\(775\) −0.309461 0.536001i −0.0111162 0.0192537i
\(776\) −1.97570 + 2.79716i −0.0709235 + 0.100412i
\(777\) −1.78796 + 3.09683i −0.0641426 + 0.111098i
\(778\) 23.6258 + 14.6171i 0.847026 + 0.524049i
\(779\) 23.3449 + 6.18599i 0.836419 + 0.221636i
\(780\) 0.148956 0.0743004i 0.00533348 0.00266038i
\(781\) −18.5923 10.7343i −0.665286 0.384103i
\(782\) −1.58732 2.95350i −0.0567623 0.105617i
\(783\) −1.33279 2.30846i −0.0476300 0.0824976i
\(784\) −23.6429 55.6432i −0.844389 1.98726i
\(785\) −21.6051 37.4212i −0.771120 1.33562i
\(786\) −0.273431 + 0.441948i −0.00975295 + 0.0157638i
\(787\) 45.6546i 1.62741i −0.581277 0.813705i \(-0.697447\pi\)
0.581277 0.813705i \(-0.302553\pi\)
\(788\) 20.1825 + 13.3533i 0.718973 + 0.475691i
\(789\) −0.962620 + 0.555769i −0.0342702 + 0.0197859i
\(790\) 4.54097 + 2.80947i 0.161561 + 0.0999565i
\(791\) 42.0537 1.49526
\(792\) −15.2295 + 7.02592i −0.541158 + 0.249655i
\(793\) −0.435953 + 0.755093i −0.0154811 + 0.0268141i
\(794\) −1.10026 + 36.1189i −0.0390468 + 1.28181i
\(795\) 1.68150 + 0.970815i 0.0596367 + 0.0344312i
\(796\) 14.9147 + 0.909512i 0.528637 + 0.0322368i
\(797\) 21.7112i 0.769052i −0.923114 0.384526i \(-0.874365\pi\)
0.923114 0.384526i \(-0.125635\pi\)
\(798\) −2.07835 + 0.495667i −0.0735729 + 0.0175464i
\(799\) −1.16174 −0.0410993
\(800\) −0.636029 0.0975996i −0.0224870 0.00345067i
\(801\) −8.69131 + 15.0538i −0.307092 + 0.531900i
\(802\) −11.7058 0.356585i −0.413347 0.0125914i
\(803\) 21.3874 + 12.3480i 0.754744 + 0.435752i
\(804\) 0.885457 1.33831i 0.0312277 0.0471984i
\(805\) 33.9600i 1.19693i
\(806\) 3.26755 + 2.02161i 0.115094 + 0.0712082i
\(807\) 0.269962 + 0.467588i 0.00950310 + 0.0164599i
\(808\) 38.3612 17.6974i 1.34954 0.622591i
\(809\) 4.74208 0.166723 0.0833613 0.996519i \(-0.473434\pi\)
0.0833613 + 0.996519i \(0.473434\pi\)
\(810\) −24.3437 15.0613i −0.855350 0.529199i
\(811\) −17.1243 + 9.88671i −0.601315 + 0.347169i −0.769559 0.638576i \(-0.779524\pi\)
0.168244 + 0.985745i \(0.446190\pi\)
\(812\) 3.45373 56.6362i 0.121202 1.98754i
\(813\) −0.526418 + 0.303928i −0.0184623 + 0.0106592i
\(814\) 13.6772 + 25.4490i 0.479386 + 0.891986i
\(815\) −11.0042 + 19.0598i −0.385460 + 0.667637i
\(816\) −0.174860 0.131667i −0.00612132 0.00460927i
\(817\) 8.45812 31.9196i 0.295912 1.11672i
\(818\) −11.9100 + 19.2503i −0.416425 + 0.673072i
\(819\) 6.08986 + 3.51598i 0.212797 + 0.122858i
\(820\) 1.52524 25.0118i 0.0532638 0.873450i
\(821\) 4.45174 2.57021i 0.155367 0.0897011i −0.420301 0.907385i \(-0.638075\pi\)
0.575668 + 0.817684i \(0.304742\pi\)
\(822\) −0.734540 + 0.394768i −0.0256200 + 0.0137691i
\(823\) −11.4962 19.9120i −0.400731 0.694087i 0.593083 0.805141i \(-0.297911\pi\)
−0.993814 + 0.111054i \(0.964577\pi\)
\(824\) 32.7323 + 2.99872i 1.14029 + 0.104465i
\(825\) 0.0166022 0.000578014
\(826\) −0.960873 + 31.5431i −0.0334330 + 1.09753i
\(827\) −12.7107 + 7.33853i −0.441994 + 0.255186i −0.704443 0.709760i \(-0.748803\pi\)
0.262449 + 0.964946i \(0.415470\pi\)
\(828\) 8.53706 + 17.1149i 0.296683 + 0.594785i
\(829\) 41.7030i 1.44840i −0.689588 0.724202i \(-0.742208\pi\)
0.689588 0.724202i \(-0.257792\pi\)
\(830\) 49.7810 + 1.51644i 1.72792 + 0.0526363i
\(831\) 0.637454 1.10410i 0.0221130 0.0383009i
\(832\) 3.76493 1.33553i 0.130526 0.0463013i
\(833\) 5.61079 9.71817i 0.194402 0.336715i
\(834\) −0.393631 0.732424i −0.0136303 0.0253618i
\(835\) 42.5218i 1.47153i
\(836\) −5.42927 + 16.3869i −0.187775 + 0.566754i
\(837\) 2.40402i 0.0830952i
\(838\) 30.4870 16.3848i 1.05316 0.566003i
\(839\) −21.9878 + 38.0839i −0.759102 + 1.31480i 0.184208 + 0.982887i \(0.441028\pi\)
−0.943309 + 0.331915i \(0.892305\pi\)
\(840\) 0.928692 + 2.01305i 0.0320429 + 0.0694568i
\(841\) 3.69842 6.40585i 0.127532 0.220891i
\(842\) −0.497379 + 16.3278i −0.0171408 + 0.562692i
\(843\) 1.84419i 0.0635172i
\(844\) 10.4212 5.19820i 0.358714 0.178929i
\(845\) 24.9708 14.4169i 0.859022 0.495957i
\(846\) 6.62360 + 0.201769i 0.227724 + 0.00693697i
\(847\) −33.2890 −1.14382
\(848\) 37.2239 + 28.0291i 1.27827 + 0.962523i
\(849\) 0.683644 + 1.18411i 0.0234626 + 0.0406384i
\(850\) −0.0565406 0.105204i −0.00193933 0.00360848i
\(851\) 28.5323 16.4731i 0.978075 0.564692i
\(852\) −0.0972783 + 1.59522i −0.00333270 + 0.0546515i
\(853\) 35.8544 + 20.7005i 1.22763 + 0.708773i 0.966534 0.256540i \(-0.0825826\pi\)
0.261097 + 0.965313i \(0.415916\pi\)
\(854\) −9.87510 6.10966i −0.337919 0.209068i
\(855\) −28.4905 + 7.71867i −0.974355 + 0.263973i
\(856\) −1.97816 + 21.5925i −0.0676121 + 0.738016i
\(857\) 11.4143 19.7701i 0.389903 0.675333i −0.602533 0.798094i \(-0.705842\pi\)
0.992436 + 0.122762i \(0.0391750\pi\)
\(858\) −0.0907882 + 0.0487929i −0.00309946 + 0.00166576i
\(859\) 41.9571 24.2239i 1.43156 0.826509i 0.434317 0.900760i \(-0.356990\pi\)
0.997240 + 0.0742508i \(0.0236565\pi\)
\(860\) −34.1987 2.08547i −1.16617 0.0711139i
\(861\) −1.66311 + 0.960199i −0.0566787 + 0.0327235i
\(862\) 9.04445 14.6186i 0.308055 0.497912i
\(863\) −54.0511 −1.83992 −0.919960 0.392013i \(-0.871779\pi\)
−0.919960 + 0.392013i \(0.871779\pi\)
\(864\) 1.94995 + 1.56355i 0.0663385 + 0.0531929i
\(865\) −13.2807 23.0028i −0.451556 0.782118i
\(866\) 28.6048 46.2342i 0.972031 1.57110i
\(867\) 1.21237i 0.0411743i
\(868\) −28.2370 + 42.6782i −0.958425 + 1.44859i
\(869\) −2.86338 1.65317i −0.0971335 0.0560800i
\(870\) −0.0432990 + 1.42140i −0.00146797 + 0.0481900i
\(871\) −2.71794 + 4.70761i −0.0920939 + 0.159511i
\(872\) 6.09577 + 4.30559i 0.206429 + 0.145806i
\(873\) 3.62570 0.122711
\(874\) 18.8666 + 5.61940i 0.638173 + 0.190079i
\(875\) 51.9617i 1.75663i
\(876\) 0.111902 1.83504i 0.00378083 0.0620002i
\(877\) −21.3846 12.3464i −0.722106 0.416908i 0.0934212 0.995627i \(-0.470220\pi\)
−0.815527 + 0.578718i \(0.803553\pi\)
\(878\) −27.4323 0.835647i −0.925794 0.0282017i
\(879\) −0.0376937 + 0.0652875i −0.00127138 + 0.00220209i
\(880\) 17.7790 + 2.17645i 0.599330 + 0.0733682i
\(881\) 22.1718 0.746988 0.373494 0.927633i \(-0.378160\pi\)
0.373494 + 0.927633i \(0.378160\pi\)
\(882\) −33.6775 + 54.4333i −1.13398 + 1.83287i
\(883\) 37.4154 21.6018i 1.25913 0.726959i 0.286224 0.958163i \(-0.407600\pi\)
0.972905 + 0.231204i \(0.0742664\pi\)
\(884\) 0.618379 + 0.409135i 0.0207983 + 0.0137607i
\(885\) 0.790906i 0.0265860i
\(886\) 22.7282 + 14.0618i 0.763569 + 0.472415i
\(887\) −15.8289 27.4165i −0.531483 0.920556i −0.999325 0.0367436i \(-0.988302\pi\)
0.467841 0.883812i \(-0.345032\pi\)
\(888\) 1.24083 1.75674i 0.0416395 0.0589525i
\(889\) 11.1970 + 19.3938i 0.375535 + 0.650446i
\(890\) 16.3518 8.78807i 0.548115 0.294577i
\(891\) 15.3503 + 8.86249i 0.514254 + 0.296904i
\(892\) −6.32284 12.6759i −0.211704 0.424421i
\(893\) 4.80952 4.83624i 0.160944 0.161839i
\(894\) 0.289814 0.468429i 0.00969283 0.0156666i
\(895\) −12.6596 + 21.9270i −0.423163 + 0.732940i
\(896\) 16.2521 + 50.6608i 0.542943 + 1.69246i
\(897\) 0.0587673 + 0.101788i 0.00196218 + 0.00339860i
\(898\) 16.8709 + 31.3914i 0.562989 + 1.04755i
\(899\) −28.4277 + 16.4127i −0.948117 + 0.547396i
\(900\) 0.304092 + 0.609638i 0.0101364 + 0.0203213i
\(901\) 8.64881i 0.288134i
\(902\) −0.472425 + 15.5086i −0.0157300 + 0.516379i
\(903\) 1.31288 + 2.27398i 0.0436900 + 0.0756733i
\(904\) −25.1881 2.30757i −0.837745 0.0767486i
\(905\) 26.7244 0.888348
\(906\) −0.0115398 + 0.378823i −0.000383383 + 0.0125856i
\(907\) 24.1186 + 13.9249i 0.800847 + 0.462369i 0.843767 0.536709i \(-0.180333\pi\)
−0.0429205 + 0.999078i \(0.513666\pi\)
\(908\) 18.0985 + 11.9744i 0.600619 + 0.397385i
\(909\) −38.7357 22.3641i −1.28478 0.741770i
\(910\) −3.55513 6.61498i −0.117851 0.219284i
\(911\) −45.6102 −1.51113 −0.755567 0.655071i \(-0.772639\pi\)
−0.755567 + 0.655071i \(0.772639\pi\)
\(912\) 1.27203 0.182837i 0.0421212 0.00605434i
\(913\) −30.8381 −1.02059
\(914\) −4.32183 8.04157i −0.142953 0.265992i
\(915\) 0.252039 + 0.145515i 0.00833215 + 0.00481057i
\(916\) −9.53344 6.30757i −0.314994 0.208408i
\(917\) 20.3049 + 11.7230i 0.670526 + 0.387128i
\(918\) −0.0141252 + 0.463697i −0.000466202 + 0.0153043i
\(919\) −41.3141 −1.36283 −0.681413 0.731899i \(-0.738634\pi\)
−0.681413 + 0.731899i \(0.738634\pi\)
\(920\) 1.86345 20.3404i 0.0614361 0.670603i
\(921\) 0.968208 + 1.67698i 0.0319035 + 0.0552585i
\(922\) −0.123862 + 4.06609i −0.00407918 + 0.133910i
\(923\) 5.41378i 0.178197i
\(924\) −0.612720 1.22837i −0.0201570 0.0404104i
\(925\) 1.01633 0.586777i 0.0334166 0.0192931i
\(926\) 19.8652 + 36.9630i 0.652812 + 1.21468i
\(927\) −17.4001 30.1378i −0.571494 0.989856i
\(928\) −5.17636 + 33.7328i −0.169922 + 1.10733i
\(929\) 3.58663 6.21223i 0.117674 0.203817i −0.801172 0.598435i \(-0.795790\pi\)
0.918845 + 0.394618i \(0.129123\pi\)
\(930\) 0.674784 1.09066i 0.0221270 0.0357641i
\(931\) 17.2278 + 63.5900i 0.564620 + 2.08408i
\(932\) 20.8380 + 41.7757i 0.682572 + 1.36841i
\(933\) 1.54489 + 0.891942i 0.0505774 + 0.0292009i
\(934\) −15.3720 + 8.26146i −0.502987 + 0.270323i
\(935\) 1.66230 + 2.87918i 0.0543629 + 0.0941593i
\(936\) −3.45460 2.44007i −0.112917 0.0797561i
\(937\) −10.0009 17.3221i −0.326716 0.565889i 0.655142 0.755506i \(-0.272609\pi\)
−0.981858 + 0.189616i \(0.939276\pi\)
\(938\) −61.5661 38.0906i −2.01020 1.24370i
\(939\) 2.11577i 0.0690457i
\(940\) −5.90207 3.90496i −0.192504 0.127366i
\(941\) 31.3632 18.1076i 1.02241 0.590289i 0.107610 0.994193i \(-0.465680\pi\)
0.914801 + 0.403904i \(0.132347\pi\)
\(942\) 1.04793 1.69378i 0.0341434 0.0551863i
\(943\) 17.6934 0.576175
\(944\) 2.30635 18.8401i 0.0750653 0.613193i
\(945\) 2.34929 4.06910i 0.0764226 0.132368i
\(946\) 21.2049 + 0.645949i 0.689432 + 0.0210016i
\(947\) 29.1318 + 16.8192i 0.946656 + 0.546552i 0.892041 0.451955i \(-0.149273\pi\)
0.0546155 + 0.998507i \(0.482607\pi\)
\(948\) −0.0149817 + 0.245678i −0.000486583 + 0.00797925i
\(949\) 6.22765i 0.202158i
\(950\) 0.672033 + 0.200164i 0.0218036 + 0.00649419i
\(951\) 0.755381 0.0244949
\(952\) −5.69722 + 8.06602i −0.184648 + 0.261421i
\(953\) 19.7258 34.1662i 0.638983 1.10675i −0.346674 0.937986i \(-0.612689\pi\)
0.985656 0.168765i \(-0.0539777\pi\)
\(954\) 1.50212 49.3109i 0.0486328 1.59650i
\(955\) −24.7687 14.3002i −0.801495 0.462743i
\(956\) 11.5342 17.4331i 0.373042 0.563827i
\(957\) 0.880523i 0.0284633i
\(958\) −5.95229 + 9.62074i −0.192310 + 0.310832i
\(959\) 18.8107 + 32.5812i 0.607431 + 1.05210i
\(960\) −0.445782 1.25668i −0.0143875 0.0405591i
\(961\) −1.39543 −0.0450140
\(962\) −3.83323 + 6.19569i −0.123588 + 0.199757i
\(963\) 19.8810 11.4783i 0.640655 0.369882i
\(964\) 41.2897 + 2.51788i 1.32985 + 0.0810955i
\(965\) 14.3855 8.30546i 0.463085 0.267362i
\(966\) −1.37884 + 0.741040i −0.0443636 + 0.0238426i
\(967\) −6.05042 + 10.4796i −0.194568 + 0.337002i −0.946759 0.321943i \(-0.895664\pi\)
0.752191 + 0.658946i \(0.228997\pi\)
\(968\) 19.9385 + 1.82663i 0.640847 + 0.0587101i
\(969\) 0.169132 + 0.168197i 0.00543329 + 0.00540327i
\(970\) −3.29280 2.03724i −0.105726 0.0654117i
\(971\) −24.1496 13.9428i −0.774997 0.447445i 0.0596571 0.998219i \(-0.480999\pi\)
−0.834654 + 0.550774i \(0.814333\pi\)
\(972\) 0.241676 3.96315i 0.00775177 0.127118i
\(973\) −32.4873 + 18.7565i −1.04149 + 0.601307i
\(974\) −7.59419 14.1304i −0.243333 0.452767i
\(975\) 0.00209330 + 0.00362571i 6.70394e−5 + 0.000116116i
\(976\) 5.57946 + 4.20126i 0.178594 + 0.134479i
\(977\) 6.91747 0.221310 0.110655 0.993859i \(-0.464705\pi\)
0.110655 + 0.993859i \(0.464705\pi\)
\(978\) −1.01399 0.0308884i −0.0324238 0.000987701i
\(979\) −9.95449 + 5.74723i −0.318147 + 0.183682i
\(980\) 61.1708 30.5125i 1.95403 0.974685i
\(981\) 7.90138i 0.252272i
\(982\) 0.994708 32.6539i 0.0317424 1.04203i
\(983\) 20.4691 35.4536i 0.652864 1.13079i −0.329560 0.944135i \(-0.606901\pi\)
0.982425 0.186660i \(-0.0597661\pi\)
\(984\) 1.04881 0.483855i 0.0334349 0.0154247i
\(985\) −13.6813 + 23.6967i −0.435922 + 0.755039i
\(986\) −5.57968 + 2.99872i −0.177693 + 0.0954987i
\(987\) 0.542358i 0.0172634i
\(988\) −4.26325 + 0.880479i −0.135632 + 0.0280118i
\(989\) 24.1922i 0.769267i
\(990\) −8.97747 16.7043i −0.285323 0.530896i
\(991\) −0.898204 + 1.55573i −0.0285324 + 0.0494195i −0.879939 0.475087i \(-0.842417\pi\)
0.851407 + 0.524506i \(0.175750\pi\)
\(992\) 19.2544 24.0128i 0.611329 0.762406i
\(993\) −0.615184 + 1.06553i −0.0195223 + 0.0338136i
\(994\) 72.0689 + 2.19538i 2.28589 + 0.0696331i
\(995\) 16.8951i 0.535610i
\(996\) 1.02470 + 2.05430i 0.0324689 + 0.0650930i
\(997\) 1.49295 0.861952i 0.0472821 0.0272983i −0.476173 0.879352i \(-0.657976\pi\)
0.523455 + 0.852054i \(0.324643\pi\)
\(998\) −0.869858 + 28.5553i −0.0275349 + 0.903903i
\(999\) −4.55834 −0.144219
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.2.p.a.125.7 yes 36
4.3 odd 2 608.2.t.a.49.9 36
8.3 odd 2 608.2.t.a.49.10 36
8.5 even 2 inner 152.2.p.a.125.18 yes 36
19.7 even 3 inner 152.2.p.a.45.18 yes 36
76.7 odd 6 608.2.t.a.273.10 36
152.45 even 6 inner 152.2.p.a.45.7 36
152.83 odd 6 608.2.t.a.273.9 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.p.a.45.7 36 152.45 even 6 inner
152.2.p.a.45.18 yes 36 19.7 even 3 inner
152.2.p.a.125.7 yes 36 1.1 even 1 trivial
152.2.p.a.125.18 yes 36 8.5 even 2 inner
608.2.t.a.49.9 36 4.3 odd 2
608.2.t.a.49.10 36 8.3 odd 2
608.2.t.a.273.9 36 152.83 odd 6
608.2.t.a.273.10 36 76.7 odd 6