Properties

Label 605.3.c.a.241.2
Level $605$
Weight $3$
Character 605.241
Analytic conductor $16.485$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [605,3,Mod(241,605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(605, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("605.241"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 605.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.4850559938\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 241.2
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 605.241
Dual form 605.3.c.a.241.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.726543i q^{2} -4.00000 q^{3} +3.47214 q^{4} -2.23607 q^{5} +2.90617i q^{6} -0.277515i q^{7} -5.42882i q^{8} +7.00000 q^{9} +1.62460i q^{10} -13.8885 q^{12} +11.3067i q^{13} -0.201626 q^{14} +8.94427 q^{15} +9.94427 q^{16} +20.2622i q^{17} -5.08580i q^{18} -28.8747i q^{19} -7.76393 q^{20} +1.11006i q^{21} -27.6180 q^{23} +21.7153i q^{24} +5.00000 q^{25} +8.21478 q^{26} +8.00000 q^{27} -0.963568i q^{28} +17.3560i q^{29} -6.49839i q^{30} +34.3607 q^{31} -28.9402i q^{32} +14.7214 q^{34} +0.620541i q^{35} +24.3050 q^{36} +13.2705 q^{37} -20.9787 q^{38} -45.2267i q^{39} +12.1392i q^{40} +18.0576i q^{41} +0.806504 q^{42} +34.7931i q^{43} -15.6525 q^{45} +20.0657i q^{46} +47.4934 q^{47} -39.7771 q^{48} +48.9230 q^{49} -3.63271i q^{50} -81.0489i q^{51} +39.2583i q^{52} +41.5755 q^{53} -5.81234i q^{54} -1.50658 q^{56} +115.499i q^{57} +12.6099 q^{58} +101.743 q^{59} +31.0557 q^{60} -50.9080i q^{61} -24.9645i q^{62} -1.94260i q^{63} +18.7508 q^{64} -25.2825i q^{65} +40.1803 q^{67} +70.3532i q^{68} +110.472 q^{69} +0.450850 q^{70} +28.1803 q^{71} -38.0018i q^{72} -99.8079i q^{73} -9.64159i q^{74} -20.0000 q^{75} -100.257i q^{76} -32.8591 q^{78} -131.614i q^{79} -22.2361 q^{80} -95.0000 q^{81} +13.1196 q^{82} +125.408i q^{83} +3.85427i q^{84} -45.3077i q^{85} +25.2786 q^{86} -69.4242i q^{87} +88.9493 q^{89} +11.3722i q^{90} +3.13777 q^{91} -95.8936 q^{92} -137.443 q^{93} -34.5060i q^{94} +64.5658i q^{95} +115.761i q^{96} +48.3181 q^{97} -35.5446i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{3} - 4 q^{4} + 28 q^{9} + 16 q^{12} - 50 q^{14} + 4 q^{16} - 40 q^{20} - 106 q^{23} + 20 q^{25} - 70 q^{26} + 32 q^{27} + 48 q^{31} - 120 q^{34} - 28 q^{36} - 14 q^{37} + 10 q^{38} + 200 q^{42}+ \cdots - 84 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.726543i − 0.363271i −0.983366 0.181636i \(-0.941861\pi\)
0.983366 0.181636i \(-0.0581391\pi\)
\(3\) −4.00000 −1.33333 −0.666667 0.745356i \(-0.732280\pi\)
−0.666667 + 0.745356i \(0.732280\pi\)
\(4\) 3.47214 0.868034
\(5\) −2.23607 −0.447214
\(6\) 2.90617i 0.484362i
\(7\) − 0.277515i − 0.0396449i −0.999804 0.0198225i \(-0.993690\pi\)
0.999804 0.0198225i \(-0.00631010\pi\)
\(8\) − 5.42882i − 0.678603i
\(9\) 7.00000 0.777778
\(10\) 1.62460i 0.162460i
\(11\) 0 0
\(12\) −13.8885 −1.15738
\(13\) 11.3067i 0.869744i 0.900492 + 0.434872i \(0.143206\pi\)
−0.900492 + 0.434872i \(0.856794\pi\)
\(14\) −0.201626 −0.0144019
\(15\) 8.94427 0.596285
\(16\) 9.94427 0.621517
\(17\) 20.2622i 1.19189i 0.803023 + 0.595947i \(0.203223\pi\)
−0.803023 + 0.595947i \(0.796777\pi\)
\(18\) − 5.08580i − 0.282544i
\(19\) − 28.8747i − 1.51972i −0.650085 0.759861i \(-0.725267\pi\)
0.650085 0.759861i \(-0.274733\pi\)
\(20\) −7.76393 −0.388197
\(21\) 1.11006i 0.0528599i
\(22\) 0 0
\(23\) −27.6180 −1.20078 −0.600392 0.799706i \(-0.704989\pi\)
−0.600392 + 0.799706i \(0.704989\pi\)
\(24\) 21.7153i 0.904804i
\(25\) 5.00000 0.200000
\(26\) 8.21478 0.315953
\(27\) 8.00000 0.296296
\(28\) − 0.963568i − 0.0344132i
\(29\) 17.3560i 0.598484i 0.954177 + 0.299242i \(0.0967338\pi\)
−0.954177 + 0.299242i \(0.903266\pi\)
\(30\) − 6.49839i − 0.216613i
\(31\) 34.3607 1.10841 0.554205 0.832381i \(-0.313023\pi\)
0.554205 + 0.832381i \(0.313023\pi\)
\(32\) − 28.9402i − 0.904382i
\(33\) 0 0
\(34\) 14.7214 0.432981
\(35\) 0.620541i 0.0177298i
\(36\) 24.3050 0.675138
\(37\) 13.2705 0.358662 0.179331 0.983789i \(-0.442607\pi\)
0.179331 + 0.983789i \(0.442607\pi\)
\(38\) −20.9787 −0.552071
\(39\) − 45.2267i − 1.15966i
\(40\) 12.1392i 0.303481i
\(41\) 18.0576i 0.440428i 0.975452 + 0.220214i \(0.0706756\pi\)
−0.975452 + 0.220214i \(0.929324\pi\)
\(42\) 0.806504 0.0192025
\(43\) 34.7931i 0.809141i 0.914507 + 0.404571i \(0.132579\pi\)
−0.914507 + 0.404571i \(0.867421\pi\)
\(44\) 0 0
\(45\) −15.6525 −0.347833
\(46\) 20.0657i 0.436210i
\(47\) 47.4934 1.01050 0.505249 0.862974i \(-0.331401\pi\)
0.505249 + 0.862974i \(0.331401\pi\)
\(48\) −39.7771 −0.828689
\(49\) 48.9230 0.998428
\(50\) − 3.63271i − 0.0726543i
\(51\) − 81.0489i − 1.58919i
\(52\) 39.2583i 0.754968i
\(53\) 41.5755 0.784443 0.392221 0.919871i \(-0.371707\pi\)
0.392221 + 0.919871i \(0.371707\pi\)
\(54\) − 5.81234i − 0.107636i
\(55\) 0 0
\(56\) −1.50658 −0.0269032
\(57\) 115.499i 2.02630i
\(58\) 12.6099 0.217412
\(59\) 101.743 1.72445 0.862226 0.506524i \(-0.169070\pi\)
0.862226 + 0.506524i \(0.169070\pi\)
\(60\) 31.0557 0.517595
\(61\) − 50.9080i − 0.834558i −0.908778 0.417279i \(-0.862984\pi\)
0.908778 0.417279i \(-0.137016\pi\)
\(62\) − 24.9645i − 0.402653i
\(63\) − 1.94260i − 0.0308350i
\(64\) 18.7508 0.292981
\(65\) − 25.2825i − 0.388962i
\(66\) 0 0
\(67\) 40.1803 0.599707 0.299853 0.953985i \(-0.403062\pi\)
0.299853 + 0.953985i \(0.403062\pi\)
\(68\) 70.3532i 1.03461i
\(69\) 110.472 1.60105
\(70\) 0.450850 0.00644071
\(71\) 28.1803 0.396906 0.198453 0.980110i \(-0.436408\pi\)
0.198453 + 0.980110i \(0.436408\pi\)
\(72\) − 38.0018i − 0.527802i
\(73\) − 99.8079i − 1.36723i −0.729842 0.683616i \(-0.760406\pi\)
0.729842 0.683616i \(-0.239594\pi\)
\(74\) − 9.64159i − 0.130292i
\(75\) −20.0000 −0.266667
\(76\) − 100.257i − 1.31917i
\(77\) 0 0
\(78\) −32.8591 −0.421271
\(79\) − 131.614i − 1.66600i −0.553274 0.832999i \(-0.686622\pi\)
0.553274 0.832999i \(-0.313378\pi\)
\(80\) −22.2361 −0.277951
\(81\) −95.0000 −1.17284
\(82\) 13.1196 0.159995
\(83\) 125.408i 1.51095i 0.655180 + 0.755473i \(0.272593\pi\)
−0.655180 + 0.755473i \(0.727407\pi\)
\(84\) 3.85427i 0.0458842i
\(85\) − 45.3077i − 0.533032i
\(86\) 25.2786 0.293938
\(87\) − 69.4242i − 0.797979i
\(88\) 0 0
\(89\) 88.9493 0.999430 0.499715 0.866190i \(-0.333438\pi\)
0.499715 + 0.866190i \(0.333438\pi\)
\(90\) 11.3722i 0.126358i
\(91\) 3.13777 0.0344810
\(92\) −95.8936 −1.04232
\(93\) −137.443 −1.47788
\(94\) − 34.5060i − 0.367085i
\(95\) 64.5658i 0.679640i
\(96\) 115.761i 1.20584i
\(97\) 48.3181 0.498125 0.249062 0.968487i \(-0.419878\pi\)
0.249062 + 0.968487i \(0.419878\pi\)
\(98\) − 35.5446i − 0.362700i
\(99\) 0 0
\(100\) 17.3607 0.173607
\(101\) 38.4663i 0.380854i 0.981701 + 0.190427i \(0.0609873\pi\)
−0.981701 + 0.190427i \(0.939013\pi\)
\(102\) −58.8854 −0.577308
\(103\) 126.172 1.22497 0.612486 0.790481i \(-0.290169\pi\)
0.612486 + 0.790481i \(0.290169\pi\)
\(104\) 61.3820 0.590211
\(105\) − 2.48217i − 0.0236397i
\(106\) − 30.2063i − 0.284965i
\(107\) − 87.7092i − 0.819712i −0.912150 0.409856i \(-0.865579\pi\)
0.912150 0.409856i \(-0.134421\pi\)
\(108\) 27.7771 0.257195
\(109\) 144.692i 1.32745i 0.747978 + 0.663723i \(0.231025\pi\)
−0.747978 + 0.663723i \(0.768975\pi\)
\(110\) 0 0
\(111\) −53.0820 −0.478217
\(112\) − 2.75968i − 0.0246400i
\(113\) −129.623 −1.14711 −0.573553 0.819168i \(-0.694435\pi\)
−0.573553 + 0.819168i \(0.694435\pi\)
\(114\) 83.9149 0.736095
\(115\) 61.7558 0.537007
\(116\) 60.2625i 0.519505i
\(117\) 79.1467i 0.676468i
\(118\) − 73.9204i − 0.626444i
\(119\) 5.62306 0.0472526
\(120\) − 48.5569i − 0.404641i
\(121\) 0 0
\(122\) −36.9868 −0.303171
\(123\) − 72.2302i − 0.587238i
\(124\) 119.305 0.962137
\(125\) −11.1803 −0.0894427
\(126\) −1.41138 −0.0112015
\(127\) 154.202i 1.21419i 0.794629 + 0.607095i \(0.207665\pi\)
−0.794629 + 0.607095i \(0.792335\pi\)
\(128\) − 129.384i − 1.01081i
\(129\) − 139.172i − 1.07885i
\(130\) −18.3688 −0.141299
\(131\) 128.496i 0.980883i 0.871474 + 0.490442i \(0.163164\pi\)
−0.871474 + 0.490442i \(0.836836\pi\)
\(132\) 0 0
\(133\) −8.01316 −0.0602493
\(134\) − 29.1927i − 0.217856i
\(135\) −17.8885 −0.132508
\(136\) 110.000 0.808824
\(137\) −61.9311 −0.452052 −0.226026 0.974121i \(-0.572573\pi\)
−0.226026 + 0.974121i \(0.572573\pi\)
\(138\) − 80.2627i − 0.581614i
\(139\) 228.238i 1.64200i 0.570928 + 0.821000i \(0.306584\pi\)
−0.570928 + 0.821000i \(0.693416\pi\)
\(140\) 2.15460i 0.0153900i
\(141\) −189.974 −1.34733
\(142\) − 20.4742i − 0.144185i
\(143\) 0 0
\(144\) 69.6099 0.483402
\(145\) − 38.8093i − 0.267650i
\(146\) −72.5147 −0.496676
\(147\) −195.692 −1.33124
\(148\) 46.0770 0.311331
\(149\) 78.6977i 0.528173i 0.964499 + 0.264086i \(0.0850704\pi\)
−0.964499 + 0.264086i \(0.914930\pi\)
\(150\) 14.5309i 0.0968723i
\(151\) − 71.0893i − 0.470790i −0.971900 0.235395i \(-0.924362\pi\)
0.971900 0.235395i \(-0.0756383\pi\)
\(152\) −156.756 −1.03129
\(153\) 141.835i 0.927029i
\(154\) 0 0
\(155\) −76.8328 −0.495696
\(156\) − 157.033i − 1.00662i
\(157\) −214.743 −1.36779 −0.683894 0.729582i \(-0.739715\pi\)
−0.683894 + 0.729582i \(0.739715\pi\)
\(158\) −95.6231 −0.605209
\(159\) −166.302 −1.04592
\(160\) 64.7123i 0.404452i
\(161\) 7.66441i 0.0476050i
\(162\) 69.0215i 0.426059i
\(163\) −91.1772 −0.559370 −0.279685 0.960092i \(-0.590230\pi\)
−0.279685 + 0.960092i \(0.590230\pi\)
\(164\) 62.6983i 0.382307i
\(165\) 0 0
\(166\) 91.1146 0.548883
\(167\) 45.4137i 0.271938i 0.990713 + 0.135969i \(0.0434148\pi\)
−0.990713 + 0.135969i \(0.956585\pi\)
\(168\) 6.02631 0.0358709
\(169\) 41.1591 0.243545
\(170\) −32.9180 −0.193635
\(171\) − 202.123i − 1.18201i
\(172\) 120.806i 0.702362i
\(173\) 151.549i 0.876003i 0.898974 + 0.438001i \(0.144314\pi\)
−0.898974 + 0.438001i \(0.855686\pi\)
\(174\) −50.4396 −0.289883
\(175\) − 1.38757i − 0.00792899i
\(176\) 0 0
\(177\) −406.971 −2.29927
\(178\) − 64.6254i − 0.363064i
\(179\) −170.493 −0.952477 −0.476239 0.879316i \(-0.658000\pi\)
−0.476239 + 0.879316i \(0.658000\pi\)
\(180\) −54.3475 −0.301931
\(181\) −165.984 −0.917037 −0.458519 0.888685i \(-0.651620\pi\)
−0.458519 + 0.888685i \(0.651620\pi\)
\(182\) − 2.27972i − 0.0125259i
\(183\) 203.632i 1.11274i
\(184\) 149.933i 0.814856i
\(185\) −29.6738 −0.160399
\(186\) 99.8580i 0.536871i
\(187\) 0 0
\(188\) 164.904 0.877147
\(189\) − 2.22012i − 0.0117466i
\(190\) 46.9098 0.246894
\(191\) 11.1935 0.0586047 0.0293023 0.999571i \(-0.490671\pi\)
0.0293023 + 0.999571i \(0.490671\pi\)
\(192\) −75.0031 −0.390641
\(193\) − 125.620i − 0.650883i −0.945562 0.325442i \(-0.894487\pi\)
0.945562 0.325442i \(-0.105513\pi\)
\(194\) − 35.1052i − 0.180954i
\(195\) 101.130i 0.518615i
\(196\) 169.867 0.866670
\(197\) − 361.517i − 1.83511i −0.397607 0.917556i \(-0.630159\pi\)
0.397607 0.917556i \(-0.369841\pi\)
\(198\) 0 0
\(199\) 267.692 1.34519 0.672593 0.740013i \(-0.265181\pi\)
0.672593 + 0.740013i \(0.265181\pi\)
\(200\) − 27.1441i − 0.135721i
\(201\) −160.721 −0.799609
\(202\) 27.9474 0.138353
\(203\) 4.81655 0.0237269
\(204\) − 281.413i − 1.37947i
\(205\) − 40.3779i − 0.196966i
\(206\) − 91.6695i − 0.444997i
\(207\) −193.326 −0.933943
\(208\) 112.437i 0.540561i
\(209\) 0 0
\(210\) −1.80340 −0.00858761
\(211\) − 226.033i − 1.07125i −0.844456 0.535624i \(-0.820076\pi\)
0.844456 0.535624i \(-0.179924\pi\)
\(212\) 144.356 0.680923
\(213\) −112.721 −0.529208
\(214\) −63.7245 −0.297778
\(215\) − 77.7997i − 0.361859i
\(216\) − 43.4306i − 0.201068i
\(217\) − 9.53559i − 0.0439428i
\(218\) 105.125 0.482223
\(219\) 399.232i 1.82298i
\(220\) 0 0
\(221\) −229.098 −1.03664
\(222\) 38.5664i 0.173722i
\(223\) 280.116 1.25613 0.628064 0.778162i \(-0.283848\pi\)
0.628064 + 0.778162i \(0.283848\pi\)
\(224\) −8.03134 −0.0358542
\(225\) 35.0000 0.155556
\(226\) 94.1767i 0.416711i
\(227\) 87.1733i 0.384023i 0.981393 + 0.192012i \(0.0615011\pi\)
−0.981393 + 0.192012i \(0.938499\pi\)
\(228\) 401.028i 1.75889i
\(229\) 107.348 0.468766 0.234383 0.972144i \(-0.424693\pi\)
0.234383 + 0.972144i \(0.424693\pi\)
\(230\) − 44.8682i − 0.195079i
\(231\) 0 0
\(232\) 94.2229 0.406133
\(233\) − 131.776i − 0.565561i −0.959185 0.282781i \(-0.908743\pi\)
0.959185 0.282781i \(-0.0912569\pi\)
\(234\) 57.5035 0.245741
\(235\) −106.199 −0.451909
\(236\) 353.264 1.49688
\(237\) 526.455i 2.22133i
\(238\) − 4.08539i − 0.0171655i
\(239\) 92.0375i 0.385094i 0.981288 + 0.192547i \(0.0616748\pi\)
−0.981288 + 0.192547i \(0.938325\pi\)
\(240\) 88.9443 0.370601
\(241\) − 26.5140i − 0.110017i −0.998486 0.0550083i \(-0.982481\pi\)
0.998486 0.0550083i \(-0.0175185\pi\)
\(242\) 0 0
\(243\) 308.000 1.26749
\(244\) − 176.760i − 0.724425i
\(245\) −109.395 −0.446511
\(246\) −52.4783 −0.213327
\(247\) 326.477 1.32177
\(248\) − 186.538i − 0.752170i
\(249\) − 501.634i − 2.01459i
\(250\) 8.12299i 0.0324920i
\(251\) −135.034 −0.537986 −0.268993 0.963142i \(-0.586691\pi\)
−0.268993 + 0.963142i \(0.586691\pi\)
\(252\) − 6.74498i − 0.0267658i
\(253\) 0 0
\(254\) 112.034 0.441080
\(255\) 181.231i 0.710709i
\(256\) −19.0000 −0.0742188
\(257\) −244.292 −0.950552 −0.475276 0.879837i \(-0.657652\pi\)
−0.475276 + 0.879837i \(0.657652\pi\)
\(258\) −101.115 −0.391917
\(259\) − 3.68276i − 0.0142191i
\(260\) − 87.7843i − 0.337632i
\(261\) 121.492i 0.465488i
\(262\) 93.3576 0.356327
\(263\) 1.93304i 0.00734998i 0.999993 + 0.00367499i \(0.00116979\pi\)
−0.999993 + 0.00367499i \(0.998830\pi\)
\(264\) 0 0
\(265\) −92.9656 −0.350813
\(266\) 5.82190i 0.0218868i
\(267\) −355.797 −1.33257
\(268\) 139.512 0.520566
\(269\) −183.210 −0.681077 −0.340539 0.940231i \(-0.610609\pi\)
−0.340539 + 0.940231i \(0.610609\pi\)
\(270\) 12.9968i 0.0481363i
\(271\) 507.565i 1.87293i 0.350755 + 0.936467i \(0.385925\pi\)
−0.350755 + 0.936467i \(0.614075\pi\)
\(272\) 201.493i 0.740783i
\(273\) −12.5511 −0.0459746
\(274\) 44.9956i 0.164217i
\(275\) 0 0
\(276\) 383.574 1.38976
\(277\) 35.4327i 0.127916i 0.997953 + 0.0639580i \(0.0203724\pi\)
−0.997953 + 0.0639580i \(0.979628\pi\)
\(278\) 165.825 0.596492
\(279\) 240.525 0.862096
\(280\) 3.36881 0.0120315
\(281\) 341.794i 1.21635i 0.793803 + 0.608175i \(0.208098\pi\)
−0.793803 + 0.608175i \(0.791902\pi\)
\(282\) 138.024i 0.489447i
\(283\) − 413.420i − 1.46085i −0.682995 0.730423i \(-0.739323\pi\)
0.682995 0.730423i \(-0.260677\pi\)
\(284\) 97.8460 0.344528
\(285\) − 258.263i − 0.906187i
\(286\) 0 0
\(287\) 5.01124 0.0174608
\(288\) − 202.582i − 0.703408i
\(289\) −121.557 −0.420613
\(290\) −28.1966 −0.0972297
\(291\) −193.272 −0.664166
\(292\) − 346.547i − 1.18680i
\(293\) 192.859i 0.658222i 0.944291 + 0.329111i \(0.106749\pi\)
−0.944291 + 0.329111i \(0.893251\pi\)
\(294\) 142.179i 0.483600i
\(295\) −227.503 −0.771198
\(296\) − 72.0433i − 0.243389i
\(297\) 0 0
\(298\) 57.1772 0.191870
\(299\) − 312.268i − 1.04438i
\(300\) −69.4427 −0.231476
\(301\) 9.65558 0.0320783
\(302\) −51.6494 −0.171024
\(303\) − 153.865i − 0.507805i
\(304\) − 287.138i − 0.944533i
\(305\) 113.834i 0.373226i
\(306\) 103.050 0.336763
\(307\) − 335.115i − 1.09158i −0.837922 0.545790i \(-0.816230\pi\)
0.837922 0.545790i \(-0.183770\pi\)
\(308\) 0 0
\(309\) −504.689 −1.63330
\(310\) 55.8223i 0.180072i
\(311\) 217.161 0.698267 0.349133 0.937073i \(-0.386476\pi\)
0.349133 + 0.937073i \(0.386476\pi\)
\(312\) −245.528 −0.786948
\(313\) 594.636 1.89980 0.949898 0.312560i \(-0.101186\pi\)
0.949898 + 0.312560i \(0.101186\pi\)
\(314\) 156.020i 0.496878i
\(315\) 4.34379i 0.0137898i
\(316\) − 456.981i − 1.44614i
\(317\) −71.7953 −0.226483 −0.113242 0.993567i \(-0.536123\pi\)
−0.113242 + 0.993567i \(0.536123\pi\)
\(318\) 120.825i 0.379954i
\(319\) 0 0
\(320\) −41.9280 −0.131025
\(321\) 350.837i 1.09295i
\(322\) 5.56852 0.0172935
\(323\) 585.066 1.81135
\(324\) −329.853 −1.01806
\(325\) 56.5334i 0.173949i
\(326\) 66.2441i 0.203203i
\(327\) − 578.766i − 1.76993i
\(328\) 98.0313 0.298876
\(329\) − 13.1801i − 0.0400611i
\(330\) 0 0
\(331\) −292.681 −0.884232 −0.442116 0.896958i \(-0.645772\pi\)
−0.442116 + 0.896958i \(0.645772\pi\)
\(332\) 435.435i 1.31155i
\(333\) 92.8936 0.278960
\(334\) 32.9950 0.0987874
\(335\) −89.8460 −0.268197
\(336\) 11.0387i 0.0328533i
\(337\) 391.997i 1.16320i 0.813476 + 0.581598i \(0.197572\pi\)
−0.813476 + 0.581598i \(0.802428\pi\)
\(338\) − 29.9038i − 0.0884728i
\(339\) 518.492 1.52948
\(340\) − 157.314i − 0.462690i
\(341\) 0 0
\(342\) −146.851 −0.429389
\(343\) − 27.1751i − 0.0792276i
\(344\) 188.885 0.549086
\(345\) −247.023 −0.716009
\(346\) 110.106 0.318227
\(347\) − 63.6118i − 0.183319i −0.995790 0.0916597i \(-0.970783\pi\)
0.995790 0.0916597i \(-0.0292172\pi\)
\(348\) − 241.050i − 0.692673i
\(349\) − 245.479i − 0.703377i −0.936117 0.351689i \(-0.885608\pi\)
0.936117 0.351689i \(-0.114392\pi\)
\(350\) −1.00813 −0.00288037
\(351\) 90.4534i 0.257702i
\(352\) 0 0
\(353\) 216.535 0.613413 0.306707 0.951804i \(-0.400773\pi\)
0.306707 + 0.951804i \(0.400773\pi\)
\(354\) 295.681i 0.835258i
\(355\) −63.0132 −0.177502
\(356\) 308.844 0.867539
\(357\) −22.4922 −0.0630035
\(358\) 123.871i 0.346008i
\(359\) − 682.934i − 1.90232i −0.308695 0.951161i \(-0.599892\pi\)
0.308695 0.951161i \(-0.400108\pi\)
\(360\) 84.9745i 0.236040i
\(361\) −472.750 −1.30956
\(362\) 120.594i 0.333133i
\(363\) 0 0
\(364\) 10.8948 0.0299306
\(365\) 223.177i 0.611445i
\(366\) 147.947 0.404228
\(367\) 73.6919 0.200795 0.100398 0.994947i \(-0.467988\pi\)
0.100398 + 0.994947i \(0.467988\pi\)
\(368\) −274.641 −0.746308
\(369\) 126.403i 0.342555i
\(370\) 21.5593i 0.0582682i
\(371\) − 11.5378i − 0.0310992i
\(372\) −477.220 −1.28285
\(373\) 58.3795i 0.156514i 0.996933 + 0.0782568i \(0.0249354\pi\)
−0.996933 + 0.0782568i \(0.975065\pi\)
\(374\) 0 0
\(375\) 44.7214 0.119257
\(376\) − 257.833i − 0.685727i
\(377\) −196.239 −0.520528
\(378\) −1.61301 −0.00426722
\(379\) −187.480 −0.494671 −0.247335 0.968930i \(-0.579555\pi\)
−0.247335 + 0.968930i \(0.579555\pi\)
\(380\) 224.181i 0.589951i
\(381\) − 616.809i − 1.61892i
\(382\) − 8.13255i − 0.0212894i
\(383\) −6.12269 −0.0159861 −0.00799307 0.999968i \(-0.502544\pi\)
−0.00799307 + 0.999968i \(0.502544\pi\)
\(384\) 517.537i 1.34775i
\(385\) 0 0
\(386\) −91.2686 −0.236447
\(387\) 243.551i 0.629332i
\(388\) 167.767 0.432389
\(389\) −226.105 −0.581247 −0.290624 0.956837i \(-0.593863\pi\)
−0.290624 + 0.956837i \(0.593863\pi\)
\(390\) 73.4752 0.188398
\(391\) − 559.602i − 1.43121i
\(392\) − 265.594i − 0.677536i
\(393\) − 513.983i − 1.30784i
\(394\) −262.658 −0.666643
\(395\) 294.298i 0.745057i
\(396\) 0 0
\(397\) −215.123 −0.541873 −0.270936 0.962597i \(-0.587333\pi\)
−0.270936 + 0.962597i \(0.587333\pi\)
\(398\) − 194.490i − 0.488667i
\(399\) 32.0526 0.0803324
\(400\) 49.7214 0.124303
\(401\) −541.068 −1.34930 −0.674648 0.738140i \(-0.735705\pi\)
−0.674648 + 0.738140i \(0.735705\pi\)
\(402\) 116.771i 0.290475i
\(403\) 388.505i 0.964033i
\(404\) 133.560i 0.330594i
\(405\) 212.426 0.524510
\(406\) − 3.49943i − 0.00861929i
\(407\) 0 0
\(408\) −440.000 −1.07843
\(409\) 366.734i 0.896660i 0.893868 + 0.448330i \(0.147981\pi\)
−0.893868 + 0.448330i \(0.852019\pi\)
\(410\) −29.3363 −0.0715519
\(411\) 247.724 0.602736
\(412\) 438.087 1.06332
\(413\) − 28.2351i − 0.0683658i
\(414\) 140.460i 0.339275i
\(415\) − 280.422i − 0.675715i
\(416\) 327.218 0.786581
\(417\) − 912.952i − 2.18933i
\(418\) 0 0
\(419\) 164.543 0.392704 0.196352 0.980533i \(-0.437090\pi\)
0.196352 + 0.980533i \(0.437090\pi\)
\(420\) − 8.61842i − 0.0205200i
\(421\) 120.255 0.285642 0.142821 0.989749i \(-0.454383\pi\)
0.142821 + 0.989749i \(0.454383\pi\)
\(422\) −164.223 −0.389154
\(423\) 332.454 0.785943
\(424\) − 225.706i − 0.532325i
\(425\) 101.311i 0.238379i
\(426\) 81.8969i 0.192246i
\(427\) −14.1277 −0.0330860
\(428\) − 304.538i − 0.711538i
\(429\) 0 0
\(430\) −56.5248 −0.131453
\(431\) 540.593i 1.25428i 0.778908 + 0.627138i \(0.215774\pi\)
−0.778908 + 0.627138i \(0.784226\pi\)
\(432\) 79.5542 0.184153
\(433\) 213.368 0.492766 0.246383 0.969173i \(-0.420758\pi\)
0.246383 + 0.969173i \(0.420758\pi\)
\(434\) −6.92801 −0.0159632
\(435\) 155.237i 0.356867i
\(436\) 502.389i 1.15227i
\(437\) 797.463i 1.82486i
\(438\) 290.059 0.662235
\(439\) 29.8597i 0.0680175i 0.999422 + 0.0340087i \(0.0108274\pi\)
−0.999422 + 0.0340087i \(0.989173\pi\)
\(440\) 0 0
\(441\) 342.461 0.776555
\(442\) 166.450i 0.376583i
\(443\) −57.2624 −0.129260 −0.0646302 0.997909i \(-0.520587\pi\)
−0.0646302 + 0.997909i \(0.520587\pi\)
\(444\) −184.308 −0.415108
\(445\) −198.897 −0.446959
\(446\) − 203.517i − 0.456315i
\(447\) − 314.791i − 0.704230i
\(448\) − 5.20361i − 0.0116152i
\(449\) 594.697 1.32449 0.662246 0.749286i \(-0.269603\pi\)
0.662246 + 0.749286i \(0.269603\pi\)
\(450\) − 25.4290i − 0.0565089i
\(451\) 0 0
\(452\) −450.069 −0.995728
\(453\) 284.357i 0.627720i
\(454\) 63.3351 0.139505
\(455\) −7.01626 −0.0154204
\(456\) 627.023 1.37505
\(457\) 475.154i 1.03972i 0.854250 + 0.519862i \(0.174017\pi\)
−0.854250 + 0.519862i \(0.825983\pi\)
\(458\) − 77.9925i − 0.170289i
\(459\) 162.098i 0.353154i
\(460\) 214.425 0.466140
\(461\) 290.362i 0.629853i 0.949116 + 0.314927i \(0.101980\pi\)
−0.949116 + 0.314927i \(0.898020\pi\)
\(462\) 0 0
\(463\) 86.1358 0.186039 0.0930193 0.995664i \(-0.470348\pi\)
0.0930193 + 0.995664i \(0.470348\pi\)
\(464\) 172.593i 0.371968i
\(465\) 307.331 0.660927
\(466\) −95.7407 −0.205452
\(467\) 225.935 0.483801 0.241900 0.970301i \(-0.422229\pi\)
0.241900 + 0.970301i \(0.422229\pi\)
\(468\) 274.808i 0.587197i
\(469\) − 11.1506i − 0.0237753i
\(470\) 77.1577i 0.164165i
\(471\) 858.971 1.82372
\(472\) − 552.343i − 1.17022i
\(473\) 0 0
\(474\) 382.492 0.806946
\(475\) − 144.374i − 0.303944i
\(476\) 19.5240 0.0410169
\(477\) 291.028 0.610122
\(478\) 66.8692 0.139894
\(479\) − 84.1052i − 0.175585i −0.996139 0.0877924i \(-0.972019\pi\)
0.996139 0.0877924i \(-0.0279812\pi\)
\(480\) − 258.849i − 0.539269i
\(481\) 150.045i 0.311945i
\(482\) −19.2636 −0.0399659
\(483\) − 30.6576i − 0.0634733i
\(484\) 0 0
\(485\) −108.043 −0.222768
\(486\) − 223.775i − 0.460443i
\(487\) 661.712 1.35875 0.679376 0.733791i \(-0.262251\pi\)
0.679376 + 0.733791i \(0.262251\pi\)
\(488\) −276.371 −0.566333
\(489\) 364.709 0.745826
\(490\) 79.4802i 0.162205i
\(491\) − 745.268i − 1.51786i −0.651174 0.758928i \(-0.725723\pi\)
0.651174 0.758928i \(-0.274277\pi\)
\(492\) − 250.793i − 0.509742i
\(493\) −351.672 −0.713330
\(494\) − 237.200i − 0.480161i
\(495\) 0 0
\(496\) 341.692 0.688895
\(497\) − 7.82045i − 0.0157353i
\(498\) −364.458 −0.731844
\(499\) 278.025 0.557165 0.278582 0.960412i \(-0.410136\pi\)
0.278582 + 0.960412i \(0.410136\pi\)
\(500\) −38.8197 −0.0776393
\(501\) − 181.655i − 0.362584i
\(502\) 98.1083i 0.195435i
\(503\) − 269.427i − 0.535641i −0.963469 0.267820i \(-0.913697\pi\)
0.963469 0.267820i \(-0.0863033\pi\)
\(504\) −10.5460 −0.0209247
\(505\) − 86.0132i − 0.170323i
\(506\) 0 0
\(507\) −164.636 −0.324726
\(508\) 535.411i 1.05396i
\(509\) 524.312 1.03008 0.515041 0.857165i \(-0.327777\pi\)
0.515041 + 0.857165i \(0.327777\pi\)
\(510\) 131.672 0.258180
\(511\) −27.6982 −0.0542038
\(512\) − 503.732i − 0.983852i
\(513\) − 230.998i − 0.450288i
\(514\) 177.488i 0.345308i
\(515\) −282.130 −0.547825
\(516\) − 483.225i − 0.936483i
\(517\) 0 0
\(518\) −2.67568 −0.00516541
\(519\) − 606.194i − 1.16800i
\(520\) −137.254 −0.263950
\(521\) −381.500 −0.732246 −0.366123 0.930566i \(-0.619315\pi\)
−0.366123 + 0.930566i \(0.619315\pi\)
\(522\) 88.2693 0.169098
\(523\) − 638.767i − 1.22135i −0.791881 0.610676i \(-0.790898\pi\)
0.791881 0.610676i \(-0.209102\pi\)
\(524\) 446.154i 0.851440i
\(525\) 5.55029i 0.0105720i
\(526\) 1.40444 0.00267004
\(527\) 696.223i 1.32111i
\(528\) 0 0
\(529\) 233.756 0.441882
\(530\) 67.5434i 0.127440i
\(531\) 712.199 1.34124
\(532\) −27.8228 −0.0522984
\(533\) −204.171 −0.383060
\(534\) 258.502i 0.484086i
\(535\) 196.124i 0.366586i
\(536\) − 218.132i − 0.406963i
\(537\) 681.974 1.26997
\(538\) 133.110i 0.247416i
\(539\) 0 0
\(540\) −62.1115 −0.115021
\(541\) 123.269i 0.227855i 0.993489 + 0.113927i \(0.0363431\pi\)
−0.993489 + 0.113927i \(0.963657\pi\)
\(542\) 368.768 0.680383
\(543\) 663.935 1.22272
\(544\) 586.393 1.07793
\(545\) − 323.540i − 0.593652i
\(546\) 9.11889i 0.0167013i
\(547\) 339.474i 0.620611i 0.950637 + 0.310305i \(0.100431\pi\)
−0.950637 + 0.310305i \(0.899569\pi\)
\(548\) −215.033 −0.392396
\(549\) − 356.356i − 0.649100i
\(550\) 0 0
\(551\) 501.151 0.909530
\(552\) − 599.734i − 1.08647i
\(553\) −36.5248 −0.0660484
\(554\) 25.7434 0.0464682
\(555\) 118.695 0.213865
\(556\) 792.474i 1.42531i
\(557\) − 528.107i − 0.948128i −0.880490 0.474064i \(-0.842787\pi\)
0.880490 0.474064i \(-0.157213\pi\)
\(558\) − 174.751i − 0.313175i
\(559\) −393.394 −0.703746
\(560\) 6.17083i 0.0110193i
\(561\) 0 0
\(562\) 248.328 0.441865
\(563\) − 256.648i − 0.455858i −0.973678 0.227929i \(-0.926805\pi\)
0.973678 0.227929i \(-0.0731955\pi\)
\(564\) −659.614 −1.16953
\(565\) 289.846 0.513002
\(566\) −300.367 −0.530684
\(567\) 26.3639i 0.0464971i
\(568\) − 152.986i − 0.269342i
\(569\) − 248.963i − 0.437544i −0.975776 0.218772i \(-0.929795\pi\)
0.975776 0.218772i \(-0.0702051\pi\)
\(570\) −187.639 −0.329192
\(571\) 393.435i 0.689028i 0.938781 + 0.344514i \(0.111956\pi\)
−0.938781 + 0.344514i \(0.888044\pi\)
\(572\) 0 0
\(573\) −44.7740 −0.0781396
\(574\) − 3.64088i − 0.00634299i
\(575\) −138.090 −0.240157
\(576\) 131.255 0.227874
\(577\) 248.604 0.430856 0.215428 0.976520i \(-0.430885\pi\)
0.215428 + 0.976520i \(0.430885\pi\)
\(578\) 88.3165i 0.152797i
\(579\) 502.482i 0.867844i
\(580\) − 134.751i − 0.232330i
\(581\) 34.8027 0.0599013
\(582\) 140.421i 0.241273i
\(583\) 0 0
\(584\) −541.840 −0.927808
\(585\) − 176.977i − 0.302526i
\(586\) 140.120 0.239113
\(587\) −381.895 −0.650587 −0.325294 0.945613i \(-0.605463\pi\)
−0.325294 + 0.945613i \(0.605463\pi\)
\(588\) −679.469 −1.15556
\(589\) − 992.155i − 1.68447i
\(590\) 165.291i 0.280154i
\(591\) 1446.07i 2.44682i
\(592\) 131.966 0.222915
\(593\) 467.858i 0.788968i 0.918903 + 0.394484i \(0.129077\pi\)
−0.918903 + 0.394484i \(0.870923\pi\)
\(594\) 0 0
\(595\) −12.5735 −0.0211320
\(596\) 273.249i 0.458472i
\(597\) −1070.77 −1.79358
\(598\) −226.876 −0.379392
\(599\) 582.780 0.972922 0.486461 0.873702i \(-0.338288\pi\)
0.486461 + 0.873702i \(0.338288\pi\)
\(600\) 108.576i 0.180961i
\(601\) 748.529i 1.24547i 0.782432 + 0.622736i \(0.213979\pi\)
−0.782432 + 0.622736i \(0.786021\pi\)
\(602\) − 7.01519i − 0.0116531i
\(603\) 281.262 0.466438
\(604\) − 246.832i − 0.408662i
\(605\) 0 0
\(606\) −111.790 −0.184471
\(607\) − 751.965i − 1.23882i −0.785067 0.619411i \(-0.787372\pi\)
0.785067 0.619411i \(-0.212628\pi\)
\(608\) −835.641 −1.37441
\(609\) −19.2662 −0.0316358
\(610\) 82.7051 0.135582
\(611\) 536.993i 0.878875i
\(612\) 492.472i 0.804693i
\(613\) 1002.92i 1.63608i 0.575158 + 0.818042i \(0.304941\pi\)
−0.575158 + 0.818042i \(0.695059\pi\)
\(614\) −243.475 −0.396539
\(615\) 161.512i 0.262621i
\(616\) 0 0
\(617\) 436.456 0.707384 0.353692 0.935362i \(-0.384926\pi\)
0.353692 + 0.935362i \(0.384926\pi\)
\(618\) 366.678i 0.593330i
\(619\) 127.116 0.205358 0.102679 0.994715i \(-0.467259\pi\)
0.102679 + 0.994715i \(0.467259\pi\)
\(620\) −266.774 −0.430281
\(621\) −220.944 −0.355788
\(622\) − 157.777i − 0.253660i
\(623\) − 24.6847i − 0.0396224i
\(624\) − 449.747i − 0.720748i
\(625\) 25.0000 0.0400000
\(626\) − 432.028i − 0.690141i
\(627\) 0 0
\(628\) −745.616 −1.18729
\(629\) 268.890i 0.427488i
\(630\) 3.15595 0.00500944
\(631\) −225.155 −0.356822 −0.178411 0.983956i \(-0.557096\pi\)
−0.178411 + 0.983956i \(0.557096\pi\)
\(632\) −714.508 −1.13055
\(633\) 904.134i 1.42833i
\(634\) 52.1623i 0.0822749i
\(635\) − 344.807i − 0.543002i
\(636\) −577.423 −0.907897
\(637\) 553.156i 0.868377i
\(638\) 0 0
\(639\) 197.262 0.308705
\(640\) 289.312i 0.452050i
\(641\) −1053.43 −1.64341 −0.821707 0.569910i \(-0.806978\pi\)
−0.821707 + 0.569910i \(0.806978\pi\)
\(642\) 254.898 0.397037
\(643\) −840.964 −1.30788 −0.653938 0.756548i \(-0.726884\pi\)
−0.653938 + 0.756548i \(0.726884\pi\)
\(644\) 26.6119i 0.0413228i
\(645\) 311.199i 0.482478i
\(646\) − 425.075i − 0.658011i
\(647\) 64.3219 0.0994157 0.0497078 0.998764i \(-0.484171\pi\)
0.0497078 + 0.998764i \(0.484171\pi\)
\(648\) 515.738i 0.795892i
\(649\) 0 0
\(650\) 41.0739 0.0631906
\(651\) 38.1424i 0.0585904i
\(652\) −316.580 −0.485552
\(653\) −1069.20 −1.63737 −0.818684 0.574244i \(-0.805296\pi\)
−0.818684 + 0.574244i \(0.805296\pi\)
\(654\) −420.498 −0.642964
\(655\) − 287.325i − 0.438664i
\(656\) 179.569i 0.273734i
\(657\) − 698.656i − 1.06340i
\(658\) −9.57591 −0.0145531
\(659\) 283.355i 0.429978i 0.976617 + 0.214989i \(0.0689715\pi\)
−0.976617 + 0.214989i \(0.931028\pi\)
\(660\) 0 0
\(661\) −845.155 −1.27860 −0.639300 0.768957i \(-0.720776\pi\)
−0.639300 + 0.768957i \(0.720776\pi\)
\(662\) 212.645i 0.321216i
\(663\) 916.393 1.38219
\(664\) 680.820 1.02533
\(665\) 17.9180 0.0269443
\(666\) − 67.4911i − 0.101338i
\(667\) − 479.340i − 0.718650i
\(668\) 157.682i 0.236052i
\(669\) −1120.47 −1.67484
\(670\) 65.2769i 0.0974282i
\(671\) 0 0
\(672\) 32.1253 0.0478056
\(673\) − 443.780i − 0.659405i −0.944085 0.329703i \(-0.893052\pi\)
0.944085 0.329703i \(-0.106948\pi\)
\(674\) 284.803 0.422556
\(675\) 40.0000 0.0592593
\(676\) 142.910 0.211405
\(677\) − 961.671i − 1.42049i −0.703955 0.710245i \(-0.748584\pi\)
0.703955 0.710245i \(-0.251416\pi\)
\(678\) − 376.707i − 0.555615i
\(679\) − 13.4090i − 0.0197481i
\(680\) −245.967 −0.361717
\(681\) − 348.693i − 0.512031i
\(682\) 0 0
\(683\) −488.033 −0.714542 −0.357271 0.934001i \(-0.616293\pi\)
−0.357271 + 0.934001i \(0.616293\pi\)
\(684\) − 701.799i − 1.02602i
\(685\) 138.482 0.202164
\(686\) −19.7438 −0.0287811
\(687\) −429.390 −0.625022
\(688\) 345.992i 0.502895i
\(689\) 470.080i 0.682265i
\(690\) 179.473i 0.260106i
\(691\) −496.647 −0.718737 −0.359369 0.933196i \(-0.617008\pi\)
−0.359369 + 0.933196i \(0.617008\pi\)
\(692\) 526.197i 0.760400i
\(693\) 0 0
\(694\) −46.2167 −0.0665947
\(695\) − 510.356i − 0.734325i
\(696\) −376.892 −0.541511
\(697\) −365.886 −0.524944
\(698\) −178.351 −0.255517
\(699\) 527.103i 0.754082i
\(700\) − 4.81784i − 0.00688263i
\(701\) − 501.060i − 0.714778i −0.933956 0.357389i \(-0.883667\pi\)
0.933956 0.357389i \(-0.116333\pi\)
\(702\) 65.7183 0.0936157
\(703\) − 383.182i − 0.545067i
\(704\) 0 0
\(705\) 424.794 0.602545
\(706\) − 157.322i − 0.222835i
\(707\) 10.6749 0.0150989
\(708\) −1413.06 −1.99584
\(709\) −2.08131 −0.00293555 −0.00146778 0.999999i \(-0.500467\pi\)
−0.00146778 + 0.999999i \(0.500467\pi\)
\(710\) 45.7817i 0.0644813i
\(711\) − 921.297i − 1.29578i
\(712\) − 482.890i − 0.678216i
\(713\) −948.974 −1.33096
\(714\) 16.3416i 0.0228873i
\(715\) 0 0
\(716\) −591.976 −0.826783
\(717\) − 368.150i − 0.513459i
\(718\) −496.180 −0.691059
\(719\) 702.875 0.977574 0.488787 0.872403i \(-0.337440\pi\)
0.488787 + 0.872403i \(0.337440\pi\)
\(720\) −155.652 −0.216184
\(721\) − 35.0146i − 0.0485640i
\(722\) 343.473i 0.475724i
\(723\) 106.056i 0.146689i
\(724\) −576.318 −0.796019
\(725\) 86.7802i 0.119697i
\(726\) 0 0
\(727\) 1163.47 1.60037 0.800184 0.599754i \(-0.204735\pi\)
0.800184 + 0.599754i \(0.204735\pi\)
\(728\) − 17.0344i − 0.0233989i
\(729\) −377.000 −0.517147
\(730\) 162.148 0.222120
\(731\) −704.984 −0.964411
\(732\) 707.038i 0.965899i
\(733\) 1308.04i 1.78451i 0.451534 + 0.892254i \(0.350877\pi\)
−0.451534 + 0.892254i \(0.649123\pi\)
\(734\) − 53.5403i − 0.0729432i
\(735\) 437.580 0.595348
\(736\) 799.272i 1.08597i
\(737\) 0 0
\(738\) 91.8371 0.124441
\(739\) − 1141.81i − 1.54507i −0.634972 0.772535i \(-0.718988\pi\)
0.634972 0.772535i \(-0.281012\pi\)
\(740\) −103.031 −0.139232
\(741\) −1305.91 −1.76236
\(742\) −8.38270 −0.0112974
\(743\) 570.888i 0.768355i 0.923259 + 0.384178i \(0.125515\pi\)
−0.923259 + 0.384178i \(0.874485\pi\)
\(744\) 746.152i 1.00289i
\(745\) − 175.973i − 0.236206i
\(746\) 42.4152 0.0568569
\(747\) 877.859i 1.17518i
\(748\) 0 0
\(749\) −24.3406 −0.0324974
\(750\) − 32.4920i − 0.0433226i
\(751\) −613.827 −0.817347 −0.408673 0.912681i \(-0.634008\pi\)
−0.408673 + 0.912681i \(0.634008\pi\)
\(752\) 472.288 0.628042
\(753\) 540.138 0.717314
\(754\) 142.576i 0.189093i
\(755\) 158.960i 0.210544i
\(756\) − 7.70855i − 0.0101965i
\(757\) −815.438 −1.07720 −0.538599 0.842562i \(-0.681046\pi\)
−0.538599 + 0.842562i \(0.681046\pi\)
\(758\) 136.212i 0.179700i
\(759\) 0 0
\(760\) 350.517 0.461206
\(761\) − 513.721i − 0.675060i −0.941315 0.337530i \(-0.890409\pi\)
0.941315 0.337530i \(-0.109591\pi\)
\(762\) −448.138 −0.588107
\(763\) 40.1540 0.0526265
\(764\) 38.8653 0.0508709
\(765\) − 317.154i − 0.414580i
\(766\) 4.44840i 0.00580731i
\(767\) 1150.37i 1.49983i
\(768\) 76.0000 0.0989583
\(769\) − 501.416i − 0.652036i −0.945364 0.326018i \(-0.894293\pi\)
0.945364 0.326018i \(-0.105707\pi\)
\(770\) 0 0
\(771\) 977.167 1.26740
\(772\) − 436.171i − 0.564989i
\(773\) −449.458 −0.581446 −0.290723 0.956807i \(-0.593896\pi\)
−0.290723 + 0.956807i \(0.593896\pi\)
\(774\) 176.950 0.228618
\(775\) 171.803 0.221682
\(776\) − 262.311i − 0.338029i
\(777\) 14.7310i 0.0189589i
\(778\) 164.275i 0.211150i
\(779\) 521.407 0.669329
\(780\) 351.137i 0.450176i
\(781\) 0 0
\(782\) −406.575 −0.519917
\(783\) 138.848i 0.177329i
\(784\) 486.503 0.620540
\(785\) 480.179 0.611693
\(786\) −373.430 −0.475102
\(787\) − 575.548i − 0.731319i −0.930749 0.365660i \(-0.880843\pi\)
0.930749 0.365660i \(-0.119157\pi\)
\(788\) − 1255.24i − 1.59294i
\(789\) − 7.73217i − 0.00979997i
\(790\) 213.820 0.270658
\(791\) 35.9723i 0.0454770i
\(792\) 0 0
\(793\) 575.601 0.725852
\(794\) 156.296i 0.196847i
\(795\) 371.862 0.467751
\(796\) 929.463 1.16767
\(797\) 24.9787 0.0313409 0.0156705 0.999877i \(-0.495012\pi\)
0.0156705 + 0.999877i \(0.495012\pi\)
\(798\) − 23.2876i − 0.0291824i
\(799\) 962.322i 1.20441i
\(800\) − 144.701i − 0.180876i
\(801\) 622.645 0.777335
\(802\) 393.109i 0.490160i
\(803\) 0 0
\(804\) −558.046 −0.694088
\(805\) − 17.1381i − 0.0212896i
\(806\) 282.265 0.350205
\(807\) 732.839 0.908103
\(808\) 208.827 0.258449
\(809\) 748.617i 0.925361i 0.886525 + 0.462680i \(0.153112\pi\)
−0.886525 + 0.462680i \(0.846888\pi\)
\(810\) − 154.337i − 0.190539i
\(811\) − 235.122i − 0.289916i −0.989438 0.144958i \(-0.953695\pi\)
0.989438 0.144958i \(-0.0463048\pi\)
\(812\) 16.7237 0.0205957
\(813\) − 2030.26i − 2.49725i
\(814\) 0 0
\(815\) 203.878 0.250158
\(816\) − 805.972i − 0.987711i
\(817\) 1004.64 1.22967
\(818\) 266.448 0.325731
\(819\) 21.9644 0.0268185
\(820\) − 140.198i − 0.170973i
\(821\) − 153.529i − 0.187003i −0.995619 0.0935014i \(-0.970194\pi\)
0.995619 0.0935014i \(-0.0298060\pi\)
\(822\) − 179.982i − 0.218957i
\(823\) 1292.70 1.57071 0.785357 0.619044i \(-0.212480\pi\)
0.785357 + 0.619044i \(0.212480\pi\)
\(824\) − 684.967i − 0.831270i
\(825\) 0 0
\(826\) −20.5140 −0.0248353
\(827\) 624.829i 0.755537i 0.925900 + 0.377769i \(0.123309\pi\)
−0.925900 + 0.377769i \(0.876691\pi\)
\(828\) −671.255 −0.810694
\(829\) −1473.40 −1.77732 −0.888661 0.458565i \(-0.848364\pi\)
−0.888661 + 0.458565i \(0.848364\pi\)
\(830\) −203.738 −0.245468
\(831\) − 141.731i − 0.170555i
\(832\) 212.009i 0.254818i
\(833\) 991.288i 1.19002i
\(834\) −663.299 −0.795322
\(835\) − 101.548i − 0.121614i
\(836\) 0 0
\(837\) 274.885 0.328417
\(838\) − 119.547i − 0.142658i
\(839\) −1339.44 −1.59647 −0.798236 0.602345i \(-0.794233\pi\)
−0.798236 + 0.602345i \(0.794233\pi\)
\(840\) −13.4752 −0.0160420
\(841\) 539.768 0.641817
\(842\) − 87.3707i − 0.103766i
\(843\) − 1367.18i − 1.62180i
\(844\) − 784.819i − 0.929880i
\(845\) −92.0344 −0.108916
\(846\) − 241.542i − 0.285511i
\(847\) 0 0
\(848\) 413.438 0.487544
\(849\) 1653.68i 1.94780i
\(850\) 73.6068 0.0865962
\(851\) −366.505 −0.430676
\(852\) −391.384 −0.459371
\(853\) − 1163.63i − 1.36417i −0.731274 0.682084i \(-0.761074\pi\)
0.731274 0.682084i \(-0.238926\pi\)
\(854\) 10.2644i 0.0120192i
\(855\) 451.961i 0.528609i
\(856\) −476.158 −0.556259
\(857\) − 1069.27i − 1.24769i −0.781549 0.623844i \(-0.785570\pi\)
0.781549 0.623844i \(-0.214430\pi\)
\(858\) 0 0
\(859\) 998.288 1.16215 0.581076 0.813849i \(-0.302632\pi\)
0.581076 + 0.813849i \(0.302632\pi\)
\(860\) − 270.131i − 0.314106i
\(861\) −20.0449 −0.0232810
\(862\) 392.764 0.455643
\(863\) 703.517 0.815200 0.407600 0.913161i \(-0.366366\pi\)
0.407600 + 0.913161i \(0.366366\pi\)
\(864\) − 231.522i − 0.267965i
\(865\) − 338.873i − 0.391760i
\(866\) − 155.021i − 0.179008i
\(867\) 486.229 0.560818
\(868\) − 33.1089i − 0.0381438i
\(869\) 0 0
\(870\) 112.786 0.129640
\(871\) 454.306i 0.521591i
\(872\) 785.505 0.900809
\(873\) 338.227 0.387430
\(874\) 579.391 0.662919
\(875\) 3.10271i 0.00354595i
\(876\) 1386.19i 1.58241i
\(877\) 337.498i 0.384833i 0.981313 + 0.192416i \(0.0616324\pi\)
−0.981313 + 0.192416i \(0.938368\pi\)
\(878\) 21.6943 0.0247088
\(879\) − 771.436i − 0.877629i
\(880\) 0 0
\(881\) −1011.82 −1.14849 −0.574246 0.818682i \(-0.694705\pi\)
−0.574246 + 0.818682i \(0.694705\pi\)
\(882\) − 248.812i − 0.282100i
\(883\) 322.085 0.364762 0.182381 0.983228i \(-0.441620\pi\)
0.182381 + 0.983228i \(0.441620\pi\)
\(884\) −795.460 −0.899842
\(885\) 910.014 1.02826
\(886\) 41.6036i 0.0469566i
\(887\) − 744.410i − 0.839245i −0.907699 0.419622i \(-0.862163\pi\)
0.907699 0.419622i \(-0.137837\pi\)
\(888\) 288.173i 0.324519i
\(889\) 42.7933 0.0481365
\(890\) 144.507i 0.162367i
\(891\) 0 0
\(892\) 972.603 1.09036
\(893\) − 1371.36i − 1.53568i
\(894\) −228.709 −0.255827
\(895\) 381.235 0.425961
\(896\) −35.9060 −0.0400737
\(897\) 1249.07i 1.39250i
\(898\) − 432.073i − 0.481150i
\(899\) 596.365i 0.663365i
\(900\) 121.525 0.135028
\(901\) 842.411i 0.934973i
\(902\) 0 0
\(903\) −38.6223 −0.0427711
\(904\) 703.701i 0.778430i
\(905\) 371.151 0.410112
\(906\) 206.597 0.228033
\(907\) −562.502 −0.620179 −0.310089 0.950707i \(-0.600359\pi\)
−0.310089 + 0.950707i \(0.600359\pi\)
\(908\) 302.678i 0.333345i
\(909\) 269.264i 0.296220i
\(910\) 5.09761i 0.00560177i
\(911\) −70.9404 −0.0778709 −0.0389355 0.999242i \(-0.512397\pi\)
−0.0389355 + 0.999242i \(0.512397\pi\)
\(912\) 1148.55i 1.25938i
\(913\) 0 0
\(914\) 345.220 0.377702
\(915\) − 455.335i − 0.497634i
\(916\) 372.725 0.406905
\(917\) 35.6594 0.0388870
\(918\) 117.771 0.128291
\(919\) − 67.7163i − 0.0736848i −0.999321 0.0368424i \(-0.988270\pi\)
0.999321 0.0368424i \(-0.0117300\pi\)
\(920\) − 335.261i − 0.364415i
\(921\) 1340.46i 1.45544i
\(922\) 210.961 0.228808
\(923\) 318.626i 0.345207i
\(924\) 0 0
\(925\) 66.3525 0.0717325
\(926\) − 62.5814i − 0.0675825i
\(927\) 883.205 0.952757
\(928\) 502.288 0.541259
\(929\) 1248.95 1.34440 0.672201 0.740369i \(-0.265349\pi\)
0.672201 + 0.740369i \(0.265349\pi\)
\(930\) − 223.289i − 0.240096i
\(931\) − 1412.64i − 1.51733i
\(932\) − 457.544i − 0.490927i
\(933\) −868.644 −0.931022
\(934\) − 164.151i − 0.175751i
\(935\) 0 0
\(936\) 429.674 0.459053
\(937\) − 541.722i − 0.578146i −0.957307 0.289073i \(-0.906653\pi\)
0.957307 0.289073i \(-0.0933470\pi\)
\(938\) −8.10141 −0.00863689
\(939\) −2378.54 −2.53306
\(940\) −368.736 −0.392272
\(941\) 590.098i 0.627097i 0.949572 + 0.313548i \(0.101518\pi\)
−0.949572 + 0.313548i \(0.898482\pi\)
\(942\) − 624.079i − 0.662504i
\(943\) − 498.714i − 0.528859i
\(944\) 1011.76 1.07178
\(945\) 4.96433i 0.00525326i
\(946\) 0 0
\(947\) −527.364 −0.556878 −0.278439 0.960454i \(-0.589817\pi\)
−0.278439 + 0.960454i \(0.589817\pi\)
\(948\) 1827.92i 1.92819i
\(949\) 1128.50 1.18914
\(950\) −104.894 −0.110414
\(951\) 287.181 0.301978
\(952\) − 30.5266i − 0.0320658i
\(953\) 1766.63i 1.85375i 0.375367 + 0.926876i \(0.377517\pi\)
−0.375367 + 0.926876i \(0.622483\pi\)
\(954\) − 211.444i − 0.221640i
\(955\) −25.0294 −0.0262088
\(956\) 319.567i 0.334275i
\(957\) 0 0
\(958\) −61.1060 −0.0637849
\(959\) 17.1868i 0.0179216i
\(960\) 167.712 0.174700
\(961\) 219.656 0.228571
\(962\) 109.014 0.113321
\(963\) − 613.964i − 0.637554i
\(964\) − 92.0603i − 0.0954982i
\(965\) 280.896i 0.291084i
\(966\) −22.2741 −0.0230580
\(967\) 1457.23i 1.50696i 0.657470 + 0.753481i \(0.271627\pi\)
−0.657470 + 0.753481i \(0.728373\pi\)
\(968\) 0 0
\(969\) −2340.26 −2.41513
\(970\) 78.4975i 0.0809253i
\(971\) 187.861 0.193472 0.0967359 0.995310i \(-0.469160\pi\)
0.0967359 + 0.995310i \(0.469160\pi\)
\(972\) 1069.42 1.10022
\(973\) 63.3394 0.0650970
\(974\) − 480.762i − 0.493595i
\(975\) − 226.134i − 0.231932i
\(976\) − 506.243i − 0.518692i
\(977\) 1259.39 1.28904 0.644518 0.764589i \(-0.277058\pi\)
0.644518 + 0.764589i \(0.277058\pi\)
\(978\) − 264.977i − 0.270937i
\(979\) 0 0
\(980\) −379.835 −0.387586
\(981\) 1012.84i 1.03246i
\(982\) −541.469 −0.551394
\(983\) −1041.78 −1.05980 −0.529899 0.848061i \(-0.677770\pi\)
−0.529899 + 0.848061i \(0.677770\pi\)
\(984\) −392.125 −0.398501
\(985\) 808.377i 0.820687i
\(986\) 255.505i 0.259132i
\(987\) 52.7205i 0.0534149i
\(988\) 1133.57 1.14734
\(989\) − 960.916i − 0.971604i
\(990\) 0 0
\(991\) −664.312 −0.670345 −0.335173 0.942157i \(-0.608795\pi\)
−0.335173 + 0.942157i \(0.608795\pi\)
\(992\) − 994.406i − 1.00243i
\(993\) 1170.72 1.17898
\(994\) −5.68189 −0.00571619
\(995\) −598.577 −0.601585
\(996\) − 1741.74i − 1.74874i
\(997\) − 197.396i − 0.197990i −0.995088 0.0989949i \(-0.968437\pi\)
0.995088 0.0989949i \(-0.0315627\pi\)
\(998\) − 201.997i − 0.202402i
\(999\) 106.164 0.106270
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.3.c.a.241.2 4
11.3 even 5 55.3.i.a.46.1 yes 4
11.7 odd 10 55.3.i.a.6.1 4
11.10 odd 2 inner 605.3.c.a.241.3 4
55.3 odd 20 275.3.q.c.24.1 8
55.7 even 20 275.3.q.c.149.1 8
55.14 even 10 275.3.x.d.101.1 4
55.18 even 20 275.3.q.c.149.2 8
55.29 odd 10 275.3.x.d.226.1 4
55.47 odd 20 275.3.q.c.24.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.a.6.1 4 11.7 odd 10
55.3.i.a.46.1 yes 4 11.3 even 5
275.3.q.c.24.1 8 55.3 odd 20
275.3.q.c.24.2 8 55.47 odd 20
275.3.q.c.149.1 8 55.7 even 20
275.3.q.c.149.2 8 55.18 even 20
275.3.x.d.101.1 4 55.14 even 10
275.3.x.d.226.1 4 55.29 odd 10
605.3.c.a.241.2 4 1.1 even 1 trivial
605.3.c.a.241.3 4 11.10 odd 2 inner