Properties

Label 275.3.q.c.149.2
Level $275$
Weight $3$
Character 275.149
Analytic conductor $7.493$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(24,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.q (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,18,0,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 149.2
Root \(-0.587785 + 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 275.149
Dual form 275.3.q.c.24.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.224514 + 0.690983i) q^{2} +(-2.35114 + 3.23607i) q^{3} +(2.80902 - 2.04087i) q^{4} +(-2.76393 - 0.898056i) q^{6} +(-0.224514 + 0.163119i) q^{7} +(4.39201 + 3.19098i) q^{8} +(-2.16312 - 6.65740i) q^{9} +(10.3713 + 3.66547i) q^{11} +13.8885i q^{12} +(3.49396 + 10.7533i) q^{13} +(-0.163119 - 0.118513i) q^{14} +(3.07295 - 9.45756i) q^{16} +(-6.26137 + 19.2705i) q^{17} +(4.11450 - 2.98936i) q^{18} +(-16.9721 + 23.3601i) q^{19} -1.11006i q^{21} +(-0.204270 + 7.98936i) q^{22} -27.6180i q^{23} +(-20.6525 + 6.71040i) q^{24} +(-6.64590 + 4.82853i) q^{26} +(-7.60845 - 2.47214i) q^{27} +(-0.297759 + 0.916408i) q^{28} +(-10.2016 - 14.0413i) q^{29} +(10.6180 + 32.6789i) q^{31} +28.9402 q^{32} +(-36.2461 + 24.9443i) q^{33} -14.7214 q^{34} +(-19.6631 - 14.2861i) q^{36} +(7.80021 + 10.7361i) q^{37} +(-19.9519 - 6.48278i) q^{38} +(-43.0132 - 13.9758i) q^{39} +(-10.6140 + 14.6089i) q^{41} +(0.767031 - 0.249224i) q^{42} +34.7931 q^{43} +(36.6140 - 10.8702i) q^{44} +(19.0836 - 6.20063i) q^{46} +(-27.9159 + 38.4230i) q^{47} +(23.3804 + 32.1803i) q^{48} +(-15.1180 + 46.5285i) q^{49} +(-47.6393 - 65.5699i) q^{51} +(31.7606 + 23.0755i) q^{52} +(-39.5406 + 12.8475i) q^{53} -5.81234i q^{54} -1.50658 q^{56} +(-35.6911 - 109.846i) q^{57} +(7.41192 - 10.2016i) q^{58} +(82.3115 - 59.8028i) q^{59} +(48.4164 + 15.7314i) q^{61} +(-20.1967 + 14.6738i) q^{62} +(1.57160 + 1.14183i) q^{63} +(-5.79431 - 17.8330i) q^{64} +(-25.3738 - 19.4451i) q^{66} -40.1803i q^{67} +(21.7403 + 66.9098i) q^{68} +(89.3738 + 64.9339i) q^{69} +(8.70820 - 26.8011i) q^{71} +(11.7432 - 36.1418i) q^{72} +(80.7463 - 58.6656i) q^{73} +(-5.66718 + 7.80021i) q^{74} +100.257i q^{76} +(-2.92641 + 0.868810i) q^{77} -32.8591i q^{78} +(125.172 - 40.6709i) q^{79} +(76.8566 - 55.8396i) q^{81} +(-12.4775 - 4.05418i) q^{82} +(38.7533 - 119.271i) q^{83} +(-2.26548 - 3.11817i) q^{84} +(7.81153 + 24.0414i) q^{86} +69.4242 q^{87} +(33.8545 + 49.1935i) q^{88} -88.9493 q^{89} +(-2.53851 - 1.84433i) q^{91} +(-56.3648 - 77.5795i) q^{92} +(-130.716 - 42.4721i) q^{93} +(-32.8171 - 10.6629i) q^{94} +(-68.0426 + 93.6526i) q^{96} +(45.9533 - 14.9311i) q^{97} -35.5446 q^{98} +(1.96807 - 76.9748i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 18 q^{4} - 40 q^{6} + 14 q^{9} - 2 q^{11} + 30 q^{14} + 38 q^{16} - 100 q^{19} - 40 q^{24} - 80 q^{26} - 180 q^{29} + 76 q^{31} + 240 q^{34} - 126 q^{36} - 40 q^{39} + 170 q^{41} + 38 q^{44} + 260 q^{46}+ \cdots - 266 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.224514 + 0.690983i 0.112257 + 0.345492i 0.991365 0.131131i \(-0.0418609\pi\)
−0.879108 + 0.476623i \(0.841861\pi\)
\(3\) −2.35114 + 3.23607i −0.783714 + 1.07869i 0.211149 + 0.977454i \(0.432280\pi\)
−0.994862 + 0.101235i \(0.967720\pi\)
\(4\) 2.80902 2.04087i 0.702254 0.510218i
\(5\) 0 0
\(6\) −2.76393 0.898056i −0.460655 0.149676i
\(7\) −0.224514 + 0.163119i −0.0320734 + 0.0233027i −0.603706 0.797207i \(-0.706310\pi\)
0.571633 + 0.820509i \(0.306310\pi\)
\(8\) 4.39201 + 3.19098i 0.549001 + 0.398873i
\(9\) −2.16312 6.65740i −0.240347 0.739711i
\(10\) 0 0
\(11\) 10.3713 + 3.66547i 0.942848 + 0.333224i
\(12\) 13.8885i 1.15738i
\(13\) 3.49396 + 10.7533i 0.268766 + 0.827176i 0.990802 + 0.135321i \(0.0432065\pi\)
−0.722036 + 0.691855i \(0.756794\pi\)
\(14\) −0.163119 0.118513i −0.0116514 0.00846520i
\(15\) 0 0
\(16\) 3.07295 9.45756i 0.192059 0.591098i
\(17\) −6.26137 + 19.2705i −0.368316 + 1.13356i 0.579563 + 0.814928i \(0.303223\pi\)
−0.947879 + 0.318632i \(0.896777\pi\)
\(18\) 4.11450 2.98936i 0.228583 0.166075i
\(19\) −16.9721 + 23.3601i −0.893270 + 1.22948i 0.0792950 + 0.996851i \(0.474733\pi\)
−0.972565 + 0.232630i \(0.925267\pi\)
\(20\) 0 0
\(21\) 1.11006i 0.0528599i
\(22\) −0.204270 + 7.98936i −0.00928498 + 0.363153i
\(23\) 27.6180i 1.20078i −0.799706 0.600392i \(-0.795011\pi\)
0.799706 0.600392i \(-0.204989\pi\)
\(24\) −20.6525 + 6.71040i −0.860520 + 0.279600i
\(25\) 0 0
\(26\) −6.64590 + 4.82853i −0.255611 + 0.185713i
\(27\) −7.60845 2.47214i −0.281795 0.0915606i
\(28\) −0.297759 + 0.916408i −0.0106342 + 0.0327289i
\(29\) −10.2016 14.0413i −0.351780 0.484184i 0.596055 0.802943i \(-0.296734\pi\)
−0.947836 + 0.318759i \(0.896734\pi\)
\(30\) 0 0
\(31\) 10.6180 + 32.6789i 0.342517 + 1.05416i 0.962900 + 0.269860i \(0.0869775\pi\)
−0.620382 + 0.784300i \(0.713023\pi\)
\(32\) 28.9402 0.904382
\(33\) −36.2461 + 24.9443i −1.09837 + 0.755887i
\(34\) −14.7214 −0.432981
\(35\) 0 0
\(36\) −19.6631 14.2861i −0.546198 0.396836i
\(37\) 7.80021 + 10.7361i 0.210816 + 0.290164i 0.901310 0.433175i \(-0.142607\pi\)
−0.690494 + 0.723339i \(0.742607\pi\)
\(38\) −19.9519 6.48278i −0.525051 0.170599i
\(39\) −43.0132 13.9758i −1.10290 0.358354i
\(40\) 0 0
\(41\) −10.6140 + 14.6089i −0.258877 + 0.356314i −0.918596 0.395199i \(-0.870676\pi\)
0.659718 + 0.751513i \(0.270676\pi\)
\(42\) 0.767031 0.249224i 0.0182627 0.00593390i
\(43\) 34.7931 0.809141 0.404571 0.914507i \(-0.367421\pi\)
0.404571 + 0.914507i \(0.367421\pi\)
\(44\) 36.6140 10.8702i 0.832136 0.247049i
\(45\) 0 0
\(46\) 19.0836 6.20063i 0.414861 0.134796i
\(47\) −27.9159 + 38.4230i −0.593956 + 0.817510i −0.995138 0.0984879i \(-0.968599\pi\)
0.401182 + 0.915998i \(0.368599\pi\)
\(48\) 23.3804 + 32.1803i 0.487091 + 0.670424i
\(49\) −15.1180 + 46.5285i −0.308531 + 0.949562i
\(50\) 0 0
\(51\) −47.6393 65.5699i −0.934104 1.28568i
\(52\) 31.7606 + 23.0755i 0.610782 + 0.443759i
\(53\) −39.5406 + 12.8475i −0.746049 + 0.242406i −0.657280 0.753646i \(-0.728293\pi\)
−0.0887689 + 0.996052i \(0.528293\pi\)
\(54\) 5.81234i 0.107636i
\(55\) 0 0
\(56\) −1.50658 −0.0269032
\(57\) −35.6911 109.846i −0.626160 1.92712i
\(58\) 7.41192 10.2016i 0.127792 0.175890i
\(59\) 82.3115 59.8028i 1.39511 1.01361i 0.399828 0.916590i \(-0.369070\pi\)
0.995283 0.0970170i \(-0.0309301\pi\)
\(60\) 0 0
\(61\) 48.4164 + 15.7314i 0.793712 + 0.257893i 0.677684 0.735353i \(-0.262984\pi\)
0.116028 + 0.993246i \(0.462984\pi\)
\(62\) −20.1967 + 14.6738i −0.325753 + 0.236674i
\(63\) 1.57160 + 1.14183i 0.0249460 + 0.0181243i
\(64\) −5.79431 17.8330i −0.0905361 0.278641i
\(65\) 0 0
\(66\) −25.3738 19.4451i −0.384452 0.294623i
\(67\) 40.1803i 0.599707i −0.953985 0.299853i \(-0.903062\pi\)
0.953985 0.299853i \(-0.0969377\pi\)
\(68\) 21.7403 + 66.9098i 0.319711 + 0.983968i
\(69\) 89.3738 + 64.9339i 1.29527 + 0.941071i
\(70\) 0 0
\(71\) 8.70820 26.8011i 0.122651 0.377480i −0.870815 0.491611i \(-0.836408\pi\)
0.993466 + 0.114131i \(0.0364083\pi\)
\(72\) 11.7432 36.1418i 0.163100 0.501970i
\(73\) 80.7463 58.6656i 1.10611 0.803639i 0.124067 0.992274i \(-0.460406\pi\)
0.982047 + 0.188635i \(0.0604063\pi\)
\(74\) −5.66718 + 7.80021i −0.0765836 + 0.105408i
\(75\) 0 0
\(76\) 100.257i 1.31917i
\(77\) −2.92641 + 0.868810i −0.0380054 + 0.0112833i
\(78\) 32.8591i 0.421271i
\(79\) 125.172 40.6709i 1.58446 0.514822i 0.621258 0.783606i \(-0.286622\pi\)
0.963200 + 0.268784i \(0.0866219\pi\)
\(80\) 0 0
\(81\) 76.8566 55.8396i 0.948847 0.689378i
\(82\) −12.4775 4.05418i −0.152164 0.0494412i
\(83\) 38.7533 119.271i 0.466908 1.43699i −0.389660 0.920959i \(-0.627407\pi\)
0.856567 0.516035i \(-0.172593\pi\)
\(84\) −2.26548 3.11817i −0.0269701 0.0371211i
\(85\) 0 0
\(86\) 7.81153 + 24.0414i 0.0908317 + 0.279551i
\(87\) 69.4242 0.797979
\(88\) 33.8545 + 49.1935i 0.384710 + 0.559017i
\(89\) −88.9493 −0.999430 −0.499715 0.866190i \(-0.666562\pi\)
−0.499715 + 0.866190i \(0.666562\pi\)
\(90\) 0 0
\(91\) −2.53851 1.84433i −0.0278957 0.0202674i
\(92\) −56.3648 77.5795i −0.612661 0.843256i
\(93\) −130.716 42.4721i −1.40555 0.456690i
\(94\) −32.8171 10.6629i −0.349119 0.113436i
\(95\) 0 0
\(96\) −68.0426 + 93.6526i −0.708777 + 0.975548i
\(97\) 45.9533 14.9311i 0.473745 0.153929i −0.0624067 0.998051i \(-0.519878\pi\)
0.536152 + 0.844122i \(0.319878\pi\)
\(98\) −35.5446 −0.362700
\(99\) 1.96807 76.9748i 0.0198795 0.777524i
\(100\) 0 0
\(101\) 36.5836 11.8867i 0.362214 0.117690i −0.122256 0.992499i \(-0.539013\pi\)
0.484469 + 0.874808i \(0.339013\pi\)
\(102\) 34.6120 47.6393i 0.339333 0.467052i
\(103\) −74.1622 102.075i −0.720021 0.991024i −0.999523 0.0308788i \(-0.990169\pi\)
0.279502 0.960145i \(-0.409831\pi\)
\(104\) −18.9681 + 58.3777i −0.182385 + 0.561324i
\(105\) 0 0
\(106\) −17.7548 24.4374i −0.167499 0.230542i
\(107\) −70.9582 51.5542i −0.663161 0.481815i 0.204568 0.978852i \(-0.434421\pi\)
−0.867729 + 0.497038i \(0.834421\pi\)
\(108\) −26.4176 + 8.58359i −0.244607 + 0.0794777i
\(109\) 144.692i 1.32745i 0.747978 + 0.663723i \(0.231025\pi\)
−0.747978 + 0.663723i \(0.768975\pi\)
\(110\) 0 0
\(111\) −53.0820 −0.478217
\(112\) 0.852788 + 2.62461i 0.00761418 + 0.0234340i
\(113\) −76.1905 + 104.867i −0.674252 + 0.928029i −0.999847 0.0174806i \(-0.994435\pi\)
0.325595 + 0.945509i \(0.394435\pi\)
\(114\) 67.8885 49.3239i 0.595514 0.432666i
\(115\) 0 0
\(116\) −57.3131 18.6221i −0.494078 0.160536i
\(117\) 64.0311 46.5213i 0.547274 0.397618i
\(118\) 59.8028 + 43.4493i 0.506804 + 0.368214i
\(119\) −1.73762 5.34785i −0.0146019 0.0449399i
\(120\) 0 0
\(121\) 94.1287 + 76.0315i 0.777923 + 0.628360i
\(122\) 36.9868i 0.303171i
\(123\) −22.3204 68.6950i −0.181466 0.558496i
\(124\) 96.5197 + 70.1257i 0.778385 + 0.565530i
\(125\) 0 0
\(126\) −0.436141 + 1.34230i −0.00346144 + 0.0106532i
\(127\) −47.6511 + 146.655i −0.375205 + 1.15476i 0.568134 + 0.822936i \(0.307665\pi\)
−0.943340 + 0.331828i \(0.892335\pi\)
\(128\) 104.674 76.0501i 0.817766 0.594141i
\(129\) −81.8034 + 112.593i −0.634135 + 0.872812i
\(130\) 0 0
\(131\) 128.496i 0.980883i −0.871474 0.490442i \(-0.836836\pi\)
0.871474 0.490442i \(-0.163164\pi\)
\(132\) −50.9080 + 144.043i −0.385667 + 1.09123i
\(133\) 8.01316i 0.0602493i
\(134\) 27.7639 9.02105i 0.207194 0.0673213i
\(135\) 0 0
\(136\) −88.9919 + 64.6564i −0.654352 + 0.475415i
\(137\) 58.9000 + 19.1378i 0.429927 + 0.139692i 0.515984 0.856599i \(-0.327427\pi\)
−0.0860566 + 0.996290i \(0.527427\pi\)
\(138\) −24.8025 + 76.3344i −0.179729 + 0.553148i
\(139\) −134.155 184.649i −0.965144 1.32841i −0.944462 0.328620i \(-0.893416\pi\)
−0.0206817 0.999786i \(-0.506584\pi\)
\(140\) 0 0
\(141\) −58.7051 180.676i −0.416348 1.28139i
\(142\) 20.4742 0.144185
\(143\) −3.17891 + 124.333i −0.0222301 + 0.869460i
\(144\) −69.6099 −0.483402
\(145\) 0 0
\(146\) 58.6656 + 42.6231i 0.401819 + 0.291939i
\(147\) −115.025 158.318i −0.782482 1.07699i
\(148\) 43.8218 + 14.2386i 0.296094 + 0.0962066i
\(149\) 74.8460 + 24.3189i 0.502322 + 0.163214i 0.549208 0.835686i \(-0.314930\pi\)
−0.0468856 + 0.998900i \(0.514930\pi\)
\(150\) 0 0
\(151\) 41.7852 57.5124i 0.276723 0.380877i −0.647922 0.761707i \(-0.724362\pi\)
0.924645 + 0.380830i \(0.124362\pi\)
\(152\) −149.084 + 48.4402i −0.980813 + 0.318686i
\(153\) 141.835 0.927029
\(154\) −1.25735 1.82704i −0.00816464 0.0118639i
\(155\) 0 0
\(156\) −149.348 + 48.5260i −0.957356 + 0.311064i
\(157\) 126.223 173.730i 0.803965 1.10656i −0.188261 0.982119i \(-0.560285\pi\)
0.992227 0.124444i \(-0.0397148\pi\)
\(158\) 56.2058 + 77.3607i 0.355733 + 0.489625i
\(159\) 51.3901 158.162i 0.323208 0.994732i
\(160\) 0 0
\(161\) 4.50502 + 6.20063i 0.0279815 + 0.0385133i
\(162\) 55.8396 + 40.5698i 0.344689 + 0.250431i
\(163\) 86.7147 28.1753i 0.531992 0.172855i −0.0306887 0.999529i \(-0.509770\pi\)
0.562681 + 0.826674i \(0.309770\pi\)
\(164\) 62.6983i 0.382307i
\(165\) 0 0
\(166\) 91.1146 0.548883
\(167\) −14.0336 43.1910i −0.0840335 0.258629i 0.900207 0.435461i \(-0.143415\pi\)
−0.984241 + 0.176833i \(0.943415\pi\)
\(168\) 3.54218 4.87539i 0.0210844 0.0290202i
\(169\) 33.2984 24.1927i 0.197032 0.143152i
\(170\) 0 0
\(171\) 192.230 + 62.4595i 1.12415 + 0.365260i
\(172\) 97.7343 71.0081i 0.568223 0.412838i
\(173\) −122.605 89.0780i −0.708701 0.514902i 0.174053 0.984736i \(-0.444314\pi\)
−0.882754 + 0.469835i \(0.844314\pi\)
\(174\) 15.5867 + 47.9709i 0.0895787 + 0.275695i
\(175\) 0 0
\(176\) 66.5370 86.8237i 0.378051 0.493316i
\(177\) 406.971i 2.29927i
\(178\) −19.9704 61.4625i −0.112193 0.345295i
\(179\) −137.932 100.214i −0.770570 0.559852i 0.131564 0.991308i \(-0.458000\pi\)
−0.902134 + 0.431456i \(0.858000\pi\)
\(180\) 0 0
\(181\) −51.2918 + 157.860i −0.283380 + 0.872154i 0.703499 + 0.710696i \(0.251620\pi\)
−0.986880 + 0.161458i \(0.948380\pi\)
\(182\) 0.704473 2.16814i 0.00387073 0.0119129i
\(183\) −164.742 + 119.692i −0.900229 + 0.654054i
\(184\) 88.1287 121.299i 0.478960 0.659232i
\(185\) 0 0
\(186\) 99.8580i 0.536871i
\(187\) −135.574 + 176.910i −0.724995 + 0.946042i
\(188\) 164.904i 0.877147i
\(189\) 2.11146 0.686054i 0.0111717 0.00362991i
\(190\) 0 0
\(191\) −9.05573 + 6.57937i −0.0474122 + 0.0344470i −0.611239 0.791446i \(-0.709329\pi\)
0.563827 + 0.825893i \(0.309329\pi\)
\(192\) 71.3322 + 23.1772i 0.371522 + 0.120715i
\(193\) −38.8189 + 119.472i −0.201134 + 0.619027i 0.798716 + 0.601708i \(0.205513\pi\)
−0.999850 + 0.0173185i \(0.994487\pi\)
\(194\) 20.6343 + 28.4007i 0.106362 + 0.146395i
\(195\) 0 0
\(196\) 52.4919 + 161.553i 0.267816 + 0.824252i
\(197\) 361.517 1.83511 0.917556 0.397607i \(-0.130159\pi\)
0.917556 + 0.397607i \(0.130159\pi\)
\(198\) 53.6302 15.9220i 0.270859 0.0804143i
\(199\) −267.692 −1.34519 −0.672593 0.740013i \(-0.734819\pi\)
−0.672593 + 0.740013i \(0.734819\pi\)
\(200\) 0 0
\(201\) 130.026 + 94.4696i 0.646897 + 0.469998i
\(202\) 16.4271 + 22.6099i 0.0813221 + 0.111930i
\(203\) 4.58082 + 1.48840i 0.0225656 + 0.00733201i
\(204\) −267.639 86.9613i −1.31196 0.426281i
\(205\) 0 0
\(206\) 53.8820 74.1622i 0.261563 0.360011i
\(207\) −183.864 + 59.7411i −0.888233 + 0.288604i
\(208\) 112.437 0.540561
\(209\) −261.649 + 180.065i −1.25191 + 0.861554i
\(210\) 0 0
\(211\) −214.971 + 69.8482i −1.01882 + 0.331034i −0.770360 0.637609i \(-0.779924\pi\)
−0.248458 + 0.968643i \(0.579924\pi\)
\(212\) −84.8501 + 116.786i −0.400236 + 0.550878i
\(213\) 66.2560 + 91.1935i 0.311061 + 0.428138i
\(214\) 19.6919 60.6056i 0.0920184 0.283204i
\(215\) 0 0
\(216\) −25.5279 35.1361i −0.118185 0.162667i
\(217\) −7.71445 5.60488i −0.0355505 0.0258289i
\(218\) −99.9794 + 32.4853i −0.458621 + 0.149015i
\(219\) 399.232i 1.82298i
\(220\) 0 0
\(221\) −229.098 −1.03664
\(222\) −11.9177 36.6788i −0.0536832 0.165220i
\(223\) 164.648 226.619i 0.738333 1.01623i −0.260379 0.965506i \(-0.583848\pi\)
0.998713 0.0507223i \(-0.0161523\pi\)
\(224\) −6.49749 + 4.72070i −0.0290066 + 0.0210746i
\(225\) 0 0
\(226\) −89.5673 29.1022i −0.396316 0.128771i
\(227\) 70.5247 51.2392i 0.310681 0.225723i −0.421507 0.906825i \(-0.638499\pi\)
0.732189 + 0.681102i \(0.238499\pi\)
\(228\) −324.438 235.718i −1.42298 1.03385i
\(229\) −33.1722 102.094i −0.144857 0.445823i 0.852136 0.523321i \(-0.175307\pi\)
−0.996993 + 0.0774974i \(0.975307\pi\)
\(230\) 0 0
\(231\) 4.06888 11.5128i 0.0176142 0.0498388i
\(232\) 94.2229i 0.406133i
\(233\) −40.7210 125.326i −0.174768 0.537881i 0.824855 0.565345i \(-0.191257\pi\)
−0.999623 + 0.0274639i \(0.991257\pi\)
\(234\) 46.5213 + 33.7997i 0.198809 + 0.144443i
\(235\) 0 0
\(236\) 109.165 335.974i 0.462562 1.42362i
\(237\) −162.684 + 500.689i −0.686429 + 2.11261i
\(238\) 3.30515 2.40133i 0.0138872 0.0100896i
\(239\) 54.0983 74.4599i 0.226353 0.311548i −0.680702 0.732560i \(-0.738325\pi\)
0.907055 + 0.421013i \(0.138325\pi\)
\(240\) 0 0
\(241\) 26.5140i 0.110017i 0.998486 + 0.0550083i \(0.0175185\pi\)
−0.998486 + 0.0550083i \(0.982481\pi\)
\(242\) −31.4033 + 82.1115i −0.129766 + 0.339304i
\(243\) 308.000i 1.26749i
\(244\) 168.108 54.6217i 0.688969 0.223859i
\(245\) 0 0
\(246\) 42.4559 30.8460i 0.172585 0.125390i
\(247\) −310.498 100.887i −1.25708 0.408449i
\(248\) −57.6434 + 177.408i −0.232433 + 0.715356i
\(249\) 294.853 + 405.830i 1.18415 + 1.62984i
\(250\) 0 0
\(251\) −41.7279 128.425i −0.166247 0.511655i 0.832879 0.553455i \(-0.186691\pi\)
−0.999126 + 0.0417998i \(0.986691\pi\)
\(252\) 6.74498 0.0267658
\(253\) 101.233 286.436i 0.400131 1.13216i
\(254\) −112.034 −0.441080
\(255\) 0 0
\(256\) 15.3713 + 11.1679i 0.0600442 + 0.0436247i
\(257\) −143.591 197.636i −0.558720 0.769013i 0.432443 0.901661i \(-0.357652\pi\)
−0.991163 + 0.132649i \(0.957652\pi\)
\(258\) −96.1657 31.2461i −0.372735 0.121109i
\(259\) −3.50251 1.13804i −0.0135232 0.00439396i
\(260\) 0 0
\(261\) −71.4114 + 98.2893i −0.273607 + 0.376587i
\(262\) 88.7883 28.8491i 0.338887 0.110111i
\(263\) 1.93304 0.00734998 0.00367499 0.999993i \(-0.498830\pi\)
0.00367499 + 0.999993i \(0.498830\pi\)
\(264\) −238.790 6.10532i −0.904508 0.0231262i
\(265\) 0 0
\(266\) 5.53695 1.79907i 0.0208156 0.00676340i
\(267\) 209.132 287.846i 0.783267 1.07807i
\(268\) −82.0029 112.867i −0.305981 0.421146i
\(269\) 56.6149 174.243i 0.210464 0.647743i −0.788980 0.614419i \(-0.789391\pi\)
0.999445 0.0333242i \(-0.0106094\pi\)
\(270\) 0 0
\(271\) 298.339 + 410.629i 1.10088 + 1.51524i 0.834208 + 0.551449i \(0.185925\pi\)
0.266675 + 0.963786i \(0.414075\pi\)
\(272\) 163.011 + 118.435i 0.599306 + 0.435421i
\(273\) 11.9368 3.87849i 0.0437245 0.0142069i
\(274\) 44.9956i 0.164217i
\(275\) 0 0
\(276\) 383.574 1.38976
\(277\) −10.9493 33.6985i −0.0395282 0.121655i 0.929345 0.369212i \(-0.120372\pi\)
−0.968873 + 0.247557i \(0.920372\pi\)
\(278\) 97.4693 134.155i 0.350609 0.482572i
\(279\) 194.589 141.377i 0.697450 0.506727i
\(280\) 0 0
\(281\) −325.066 105.620i −1.15682 0.375873i −0.333110 0.942888i \(-0.608098\pi\)
−0.823707 + 0.567015i \(0.808098\pi\)
\(282\) 111.664 81.1285i 0.395971 0.287690i
\(283\) 334.463 + 243.002i 1.18185 + 0.858664i 0.992379 0.123222i \(-0.0393228\pi\)
0.189471 + 0.981886i \(0.439323\pi\)
\(284\) −30.2361 93.0570i −0.106465 0.327666i
\(285\) 0 0
\(286\) −86.6256 + 25.7179i −0.302887 + 0.0899227i
\(287\) 5.01124i 0.0174608i
\(288\) −62.6012 192.667i −0.217365 0.668981i
\(289\) −98.3419 71.4496i −0.340283 0.247230i
\(290\) 0 0
\(291\) −59.7245 + 183.813i −0.205239 + 0.631660i
\(292\) 107.089 329.586i 0.366743 1.12872i
\(293\) −156.026 + 113.360i −0.532513 + 0.386893i −0.821297 0.570501i \(-0.806749\pi\)
0.288784 + 0.957394i \(0.406749\pi\)
\(294\) 83.5704 115.025i 0.284253 0.391241i
\(295\) 0 0
\(296\) 72.0433i 0.243389i
\(297\) −69.8482 53.5279i −0.235179 0.180228i
\(298\) 57.1772i 0.191870i
\(299\) 296.985 96.4962i 0.993260 0.322730i
\(300\) 0 0
\(301\) −7.81153 + 5.67541i −0.0259519 + 0.0188552i
\(302\) 49.1215 + 15.9605i 0.162654 + 0.0528494i
\(303\) −47.5469 + 146.334i −0.156921 + 0.482952i
\(304\) 168.776 + 232.300i 0.555183 + 0.764143i
\(305\) 0 0
\(306\) 31.8441 + 98.0059i 0.104066 + 0.320281i
\(307\) 335.115 1.09158 0.545790 0.837922i \(-0.316230\pi\)
0.545790 + 0.837922i \(0.316230\pi\)
\(308\) −6.44722 + 8.41294i −0.0209325 + 0.0273147i
\(309\) 504.689 1.63330
\(310\) 0 0
\(311\) −175.687 127.644i −0.564910 0.410431i 0.268343 0.963323i \(-0.413524\pi\)
−0.833253 + 0.552893i \(0.813524\pi\)
\(312\) −144.318 198.636i −0.462557 0.636655i
\(313\) 565.533 + 183.753i 1.80681 + 0.587069i 0.999993 0.00372731i \(-0.00118644\pi\)
0.806821 + 0.590797i \(0.201186\pi\)
\(314\) 148.384 + 48.2127i 0.472559 + 0.153544i
\(315\) 0 0
\(316\) 268.607 369.706i 0.850022 1.16995i
\(317\) −68.2814 + 22.1860i −0.215399 + 0.0699872i −0.414729 0.909945i \(-0.636123\pi\)
0.199330 + 0.979932i \(0.436123\pi\)
\(318\) 120.825 0.379954
\(319\) −54.3363 183.021i −0.170333 0.573733i
\(320\) 0 0
\(321\) 333.666 108.415i 1.03946 0.337740i
\(322\) −3.27309 + 4.50502i −0.0101649 + 0.0139908i
\(323\) −343.893 473.328i −1.06468 1.46541i
\(324\) 101.930 313.709i 0.314599 0.968237i
\(325\) 0 0
\(326\) 38.9373 + 53.5926i 0.119440 + 0.164395i
\(327\) −468.232 340.190i −1.43190 1.04034i
\(328\) −93.2333 + 30.2933i −0.284248 + 0.0923578i
\(329\) 13.1801i 0.0400611i
\(330\) 0 0
\(331\) −292.681 −0.884232 −0.442116 0.896958i \(-0.645772\pi\)
−0.442116 + 0.896958i \(0.645772\pi\)
\(332\) −134.557 414.123i −0.405292 1.24736i
\(333\) 54.6015 75.1525i 0.163968 0.225683i
\(334\) 26.6935 19.3940i 0.0799206 0.0580657i
\(335\) 0 0
\(336\) −10.4984 3.41115i −0.0312454 0.0101522i
\(337\) 317.132 230.410i 0.941046 0.683710i −0.00762639 0.999971i \(-0.502428\pi\)
0.948672 + 0.316261i \(0.102428\pi\)
\(338\) 24.1927 + 17.5770i 0.0715760 + 0.0520030i
\(339\) −160.223 493.115i −0.472634 1.45462i
\(340\) 0 0
\(341\) −9.66061 + 377.844i −0.0283302 + 1.10805i
\(342\) 146.851i 0.429389i
\(343\) −8.39755 25.8450i −0.0244827 0.0753499i
\(344\) 152.812 + 111.024i 0.444220 + 0.322744i
\(345\) 0 0
\(346\) 34.0248 104.717i 0.0983375 0.302652i
\(347\) 19.6571 60.4984i 0.0566488 0.174347i −0.918729 0.394890i \(-0.870783\pi\)
0.975377 + 0.220543i \(0.0707828\pi\)
\(348\) 195.014 141.686i 0.560384 0.407143i
\(349\) −144.289 + 198.596i −0.413435 + 0.569044i −0.964052 0.265714i \(-0.914392\pi\)
0.550617 + 0.834758i \(0.314392\pi\)
\(350\) 0 0
\(351\) 90.4534i 0.257702i
\(352\) 300.149 + 106.080i 0.852695 + 0.301362i
\(353\) 216.535i 0.613413i 0.951804 + 0.306707i \(0.0992270\pi\)
−0.951804 + 0.306707i \(0.900773\pi\)
\(354\) −281.210 + 91.3706i −0.794378 + 0.258109i
\(355\) 0 0
\(356\) −249.860 + 181.534i −0.701854 + 0.509927i
\(357\) 21.3914 + 6.95048i 0.0599199 + 0.0194691i
\(358\) 38.2782 117.808i 0.106922 0.329073i
\(359\) 401.418 + 552.505i 1.11816 + 1.53901i 0.808818 + 0.588059i \(0.200108\pi\)
0.309339 + 0.950952i \(0.399892\pi\)
\(360\) 0 0
\(361\) −146.088 449.612i −0.404675 1.24546i
\(362\) −120.594 −0.333133
\(363\) −467.353 + 125.846i −1.28747 + 0.346683i
\(364\) −10.8948 −0.0299306
\(365\) 0 0
\(366\) −119.692 86.9613i −0.327027 0.237599i
\(367\) 43.3150 + 59.6180i 0.118025 + 0.162447i 0.863942 0.503592i \(-0.167988\pi\)
−0.745917 + 0.666039i \(0.767988\pi\)
\(368\) −261.199 84.8688i −0.709781 0.230622i
\(369\) 120.216 + 39.0607i 0.325790 + 0.105855i
\(370\) 0 0
\(371\) 6.78175 9.33427i 0.0182796 0.0251598i
\(372\) −453.863 + 147.469i −1.22006 + 0.396422i
\(373\) 58.3795 0.156514 0.0782568 0.996933i \(-0.475065\pi\)
0.0782568 + 0.996933i \(0.475065\pi\)
\(374\) −152.680 53.9607i −0.408235 0.144280i
\(375\) 0 0
\(376\) −245.214 + 79.6749i −0.652165 + 0.211901i
\(377\) 115.346 158.761i 0.305959 0.421116i
\(378\) 0.948103 + 1.30495i 0.00250821 + 0.00345225i
\(379\) 57.9346 178.304i 0.152862 0.470460i −0.845076 0.534646i \(-0.820445\pi\)
0.997938 + 0.0641858i \(0.0204450\pi\)
\(380\) 0 0
\(381\) −362.551 499.009i −0.951578 1.30973i
\(382\) −6.57937 4.78019i −0.0172235 0.0125136i
\(383\) 5.82303 1.89202i 0.0152037 0.00493999i −0.301405 0.953496i \(-0.597456\pi\)
0.316609 + 0.948556i \(0.397456\pi\)
\(384\) 517.537i 1.34775i
\(385\) 0 0
\(386\) −91.2686 −0.236447
\(387\) −75.2615 231.631i −0.194474 0.598530i
\(388\) 98.6110 135.726i 0.254152 0.349810i
\(389\) −182.923 + 132.901i −0.470239 + 0.341649i −0.797534 0.603273i \(-0.793863\pi\)
0.327295 + 0.944922i \(0.393863\pi\)
\(390\) 0 0
\(391\) 532.214 + 172.927i 1.36116 + 0.442268i
\(392\) −214.870 + 156.112i −0.548139 + 0.398246i
\(393\) 415.821 + 302.111i 1.05807 + 0.768731i
\(394\) 81.1656 + 249.802i 0.206004 + 0.634016i
\(395\) 0 0
\(396\) −151.567 220.240i −0.382746 0.556162i
\(397\) 215.123i 0.541873i 0.962597 + 0.270936i \(0.0873333\pi\)
−0.962597 + 0.270936i \(0.912667\pi\)
\(398\) −60.1006 184.971i −0.151006 0.464750i
\(399\) 25.9311 + 18.8401i 0.0649903 + 0.0472182i
\(400\) 0 0
\(401\) −167.199 + 514.586i −0.416955 + 1.28326i 0.493535 + 0.869726i \(0.335705\pi\)
−0.910490 + 0.413531i \(0.864295\pi\)
\(402\) −36.0842 + 111.056i −0.0897617 + 0.276258i
\(403\) −314.307 + 228.358i −0.779919 + 0.566644i
\(404\) 78.5047 108.052i 0.194318 0.267456i
\(405\) 0 0
\(406\) 3.49943i 0.00861929i
\(407\) 41.5458 + 139.939i 0.102078 + 0.343830i
\(408\) 440.000i 1.07843i
\(409\) −348.785 + 113.327i −0.852774 + 0.277083i −0.702608 0.711578i \(-0.747981\pi\)
−0.150167 + 0.988661i \(0.547981\pi\)
\(410\) 0 0
\(411\) −200.413 + 145.609i −0.487624 + 0.354279i
\(412\) −416.646 135.376i −1.01128 0.328583i
\(413\) −8.72511 + 26.8531i −0.0211262 + 0.0650197i
\(414\) −82.5602 113.634i −0.199421 0.274479i
\(415\) 0 0
\(416\) 101.116 + 311.203i 0.243067 + 0.748083i
\(417\) 912.952 2.18933
\(418\) −183.166 140.368i −0.438195 0.335809i
\(419\) −164.543 −0.392704 −0.196352 0.980533i \(-0.562910\pi\)
−0.196352 + 0.980533i \(0.562910\pi\)
\(420\) 0 0
\(421\) −97.2887 70.6844i −0.231090 0.167896i 0.466215 0.884672i \(-0.345617\pi\)
−0.697304 + 0.716775i \(0.745617\pi\)
\(422\) −96.5278 132.859i −0.228739 0.314832i
\(423\) 316.183 + 102.734i 0.747476 + 0.242870i
\(424\) −214.659 69.7470i −0.506271 0.164498i
\(425\) 0 0
\(426\) −48.1378 + 66.2560i −0.112999 + 0.155530i
\(427\) −13.4363 + 4.36570i −0.0314666 + 0.0102241i
\(428\) −304.538 −0.711538
\(429\) −394.875 302.611i −0.920455 0.705387i
\(430\) 0 0
\(431\) 514.135 167.052i 1.19289 0.387593i 0.355748 0.934582i \(-0.384226\pi\)
0.837140 + 0.546989i \(0.184226\pi\)
\(432\) −46.7608 + 64.3607i −0.108243 + 0.148983i
\(433\) −125.414 172.618i −0.289641 0.398656i 0.639257 0.768993i \(-0.279242\pi\)
−0.928897 + 0.370337i \(0.879242\pi\)
\(434\) 2.14087 6.58893i 0.00493289 0.0151819i
\(435\) 0 0
\(436\) 295.297 + 406.441i 0.677286 + 0.932205i
\(437\) 645.161 + 468.737i 1.47634 + 1.07262i
\(438\) −275.862 + 89.6331i −0.629823 + 0.204642i
\(439\) 29.8597i 0.0680175i 0.999422 + 0.0340087i \(0.0108274\pi\)
−0.999422 + 0.0340087i \(0.989173\pi\)
\(440\) 0 0
\(441\) 342.461 0.776555
\(442\) −51.4358 158.303i −0.116371 0.358152i
\(443\) −33.6580 + 46.3262i −0.0759774 + 0.104574i −0.845314 0.534269i \(-0.820587\pi\)
0.769337 + 0.638843i \(0.220587\pi\)
\(444\) −149.108 + 108.334i −0.335830 + 0.243994i
\(445\) 0 0
\(446\) 193.556 + 62.8901i 0.433981 + 0.141009i
\(447\) −254.671 + 185.029i −0.569734 + 0.413936i
\(448\) 4.20981 + 3.05861i 0.00939690 + 0.00682725i
\(449\) −183.771 565.590i −0.409291 1.25967i −0.917259 0.398291i \(-0.869603\pi\)
0.507968 0.861376i \(-0.330397\pi\)
\(450\) 0 0
\(451\) −163.629 + 112.608i −0.362814 + 0.249686i
\(452\) 450.069i 0.995728i
\(453\) 87.8712 + 270.440i 0.193976 + 0.596997i
\(454\) 51.2392 + 37.2274i 0.112862 + 0.0819988i
\(455\) 0 0
\(456\) 193.761 596.335i 0.424914 1.30775i
\(457\) −146.831 + 451.899i −0.321293 + 0.988837i 0.651794 + 0.758396i \(0.274017\pi\)
−0.973086 + 0.230441i \(0.925983\pi\)
\(458\) 63.0973 45.8429i 0.137767 0.100094i
\(459\) 95.2786 131.140i 0.207579 0.285708i
\(460\) 0 0
\(461\) 290.362i 0.629853i −0.949116 0.314927i \(-0.898020\pi\)
0.949116 0.314927i \(-0.101980\pi\)
\(462\) 8.86865 + 0.226751i 0.0191962 + 0.000490803i
\(463\) 86.1358i 0.186039i 0.995664 + 0.0930193i \(0.0296518\pi\)
−0.995664 + 0.0930193i \(0.970348\pi\)
\(464\) −164.146 + 53.3342i −0.353763 + 0.114944i
\(465\) 0 0
\(466\) 77.4559 56.2750i 0.166214 0.120762i
\(467\) −214.877 69.8177i −0.460122 0.149503i 0.0697786 0.997563i \(-0.477771\pi\)
−0.529900 + 0.848060i \(0.677771\pi\)
\(468\) 84.9204 261.358i 0.181454 0.558458i
\(469\) 6.55418 + 9.02105i 0.0139748 + 0.0192346i
\(470\) 0 0
\(471\) 265.437 + 816.930i 0.563559 + 1.73446i
\(472\) 552.343 1.17022
\(473\) 360.850 + 127.533i 0.762897 + 0.269626i
\(474\) −382.492 −0.806946
\(475\) 0 0
\(476\) −15.7953 11.4759i −0.0331833 0.0241091i
\(477\) 171.062 + 235.447i 0.358621 + 0.493599i
\(478\) 63.5964 + 20.6637i 0.133047 + 0.0432295i
\(479\) −79.9888 25.9899i −0.166991 0.0542587i 0.224328 0.974514i \(-0.427981\pi\)
−0.391319 + 0.920255i \(0.627981\pi\)
\(480\) 0 0
\(481\) −88.1945 + 121.389i −0.183356 + 0.252369i
\(482\) −18.3207 + 5.95277i −0.0380098 + 0.0123501i
\(483\) −30.6576 −0.0634733
\(484\) 419.580 + 21.4694i 0.866900 + 0.0443583i
\(485\) 0 0
\(486\) −212.823 + 69.1503i −0.437907 + 0.142285i
\(487\) −388.945 + 535.336i −0.798654 + 1.09925i 0.194322 + 0.980938i \(0.437749\pi\)
−0.992976 + 0.118315i \(0.962251\pi\)
\(488\) 162.447 + 223.589i 0.332882 + 0.458173i
\(489\) −112.701 + 346.859i −0.230473 + 0.709323i
\(490\) 0 0
\(491\) −438.057 602.934i −0.892174 1.22797i −0.972898 0.231235i \(-0.925723\pi\)
0.0807242 0.996736i \(-0.474277\pi\)
\(492\) −202.896 147.413i −0.412390 0.299619i
\(493\) 334.460 108.673i 0.678417 0.220431i
\(494\) 237.200i 0.480161i
\(495\) 0 0
\(496\) 341.692 0.688895
\(497\) 2.41665 + 7.43769i 0.00486248 + 0.0149652i
\(498\) −214.223 + 294.853i −0.430167 + 0.592074i
\(499\) 224.927 163.419i 0.450756 0.327493i −0.339138 0.940736i \(-0.610136\pi\)
0.789894 + 0.613243i \(0.210136\pi\)
\(500\) 0 0
\(501\) 172.764 + 56.1344i 0.344838 + 0.112045i
\(502\) 79.3713 57.6666i 0.158110 0.114874i
\(503\) 217.971 + 158.365i 0.433342 + 0.314842i 0.782984 0.622042i \(-0.213697\pi\)
−0.349642 + 0.936884i \(0.613697\pi\)
\(504\) 3.25891 + 10.0299i 0.00646609 + 0.0199006i
\(505\) 0 0
\(506\) 220.650 + 5.64152i 0.436068 + 0.0111493i
\(507\) 164.636i 0.324726i
\(508\) 165.451 + 509.206i 0.325691 + 1.00237i
\(509\) 424.177 + 308.183i 0.833354 + 0.605467i 0.920506 0.390728i \(-0.127777\pi\)
−0.0871522 + 0.996195i \(0.527777\pi\)
\(510\) 0 0
\(511\) −8.55920 + 26.3425i −0.0167499 + 0.0515509i
\(512\) 155.662 479.078i 0.304027 0.935699i
\(513\) 186.881 135.777i 0.364291 0.264673i
\(514\) 104.325 143.591i 0.202967 0.279360i
\(515\) 0 0
\(516\) 483.225i 0.936483i
\(517\) −430.363 + 296.172i −0.832424 + 0.572867i
\(518\) 2.67568i 0.00516541i
\(519\) 576.525 187.324i 1.11084 0.360933i
\(520\) 0 0
\(521\) 308.640 224.240i 0.592400 0.430404i −0.250773 0.968046i \(-0.580685\pi\)
0.843173 + 0.537642i \(0.180685\pi\)
\(522\) −83.9491 27.2767i −0.160822 0.0522543i
\(523\) −197.390 + 607.503i −0.377418 + 1.16157i 0.564414 + 0.825492i \(0.309102\pi\)
−0.941832 + 0.336083i \(0.890898\pi\)
\(524\) −262.243 360.947i −0.500464 0.688829i
\(525\) 0 0
\(526\) 0.433995 + 1.33570i 0.000825086 + 0.00253935i
\(527\) −696.223 −1.32111
\(528\) 124.529 + 419.453i 0.235851 + 0.794418i
\(529\) −233.756 −0.441882
\(530\) 0 0
\(531\) −576.181 418.620i −1.08509 0.788361i
\(532\) −16.3538 22.5091i −0.0307402 0.0423103i
\(533\) −194.178 63.0923i −0.364312 0.118372i
\(534\) 245.850 + 79.8814i 0.460393 + 0.149591i
\(535\) 0 0
\(536\) 128.215 176.473i 0.239207 0.329240i
\(537\) 648.596 210.741i 1.20781 0.392442i
\(538\) 133.110 0.247416
\(539\) −327.343 + 427.148i −0.607315 + 0.792482i
\(540\) 0 0
\(541\) 117.236 38.0923i 0.216703 0.0704109i −0.198654 0.980070i \(-0.563657\pi\)
0.415356 + 0.909659i \(0.363657\pi\)
\(542\) −216.756 + 298.339i −0.399919 + 0.550442i
\(543\) −390.251 537.135i −0.718695 0.989198i
\(544\) −181.205 + 557.693i −0.333098 + 1.02517i
\(545\) 0 0
\(546\) 5.35995 + 7.37733i 0.00981675 + 0.0135116i
\(547\) 274.640 + 199.538i 0.502085 + 0.364786i 0.809813 0.586688i \(-0.199569\pi\)
−0.307728 + 0.951474i \(0.599569\pi\)
\(548\) 204.509 66.4489i 0.373191 0.121257i
\(549\) 356.356i 0.649100i
\(550\) 0 0
\(551\) 501.151 0.909530
\(552\) 185.328 + 570.381i 0.335739 + 1.03330i
\(553\) −21.4687 + 29.5492i −0.0388223 + 0.0534343i
\(554\) 20.8268 15.1316i 0.0375936 0.0273133i
\(555\) 0 0
\(556\) −753.687 244.888i −1.35555 0.440446i
\(557\) −427.248 + 310.414i −0.767052 + 0.557296i −0.901065 0.433684i \(-0.857213\pi\)
0.134013 + 0.990980i \(0.457213\pi\)
\(558\) 141.377 + 102.716i 0.253364 + 0.184079i
\(559\) 121.565 + 374.140i 0.217469 + 0.669302i
\(560\) 0 0
\(561\) −253.738 854.667i −0.452297 1.52347i
\(562\) 248.328i 0.441865i
\(563\) −79.3087 244.087i −0.140868 0.433547i 0.855589 0.517657i \(-0.173195\pi\)
−0.996457 + 0.0841094i \(0.973195\pi\)
\(564\) −533.639 387.712i −0.946169 0.687432i
\(565\) 0 0
\(566\) −92.8185 + 285.666i −0.163990 + 0.504710i
\(567\) −8.14689 + 25.0735i −0.0143684 + 0.0442214i
\(568\) 123.768 89.9230i 0.217902 0.158315i
\(569\) −146.337 + 201.415i −0.257182 + 0.353981i −0.918010 0.396556i \(-0.870205\pi\)
0.660828 + 0.750537i \(0.270205\pi\)
\(570\) 0 0
\(571\) 393.435i 0.689028i −0.938781 0.344514i \(-0.888044\pi\)
0.938781 0.344514i \(-0.111956\pi\)
\(572\) 244.818 + 355.741i 0.428003 + 0.621924i
\(573\) 44.7740i 0.0781396i
\(574\) 3.46268 1.12509i 0.00603254 0.00196009i
\(575\) 0 0
\(576\) −106.188 + 77.1500i −0.184354 + 0.133941i
\(577\) −236.436 76.8228i −0.409768 0.133142i 0.0968772 0.995296i \(-0.469115\pi\)
−0.506645 + 0.862155i \(0.669115\pi\)
\(578\) 27.2913 83.9940i 0.0472168 0.145318i
\(579\) −295.351 406.516i −0.510106 0.702101i
\(580\) 0 0
\(581\) 10.7546 + 33.0993i 0.0185105 + 0.0569695i
\(582\) −140.421 −0.241273
\(583\) −457.181 11.6891i −0.784186 0.0200499i
\(584\) 541.840 0.927808
\(585\) 0 0
\(586\) −113.360 82.3607i −0.193447 0.140547i
\(587\) −224.472 308.959i −0.382406 0.526336i 0.573814 0.818986i \(-0.305463\pi\)
−0.956220 + 0.292649i \(0.905463\pi\)
\(588\) −646.213 209.967i −1.09900 0.357088i
\(589\) −943.596 306.593i −1.60203 0.520531i
\(590\) 0 0
\(591\) −849.978 + 1169.89i −1.43820 + 1.97952i
\(592\) 125.507 40.7796i 0.212005 0.0688845i
\(593\) 467.858 0.788968 0.394484 0.918903i \(-0.370923\pi\)
0.394484 + 0.918903i \(0.370923\pi\)
\(594\) 21.3050 60.2817i 0.0358669 0.101484i
\(595\) 0 0
\(596\) 259.875 84.4386i 0.436033 0.141676i
\(597\) 629.382 866.269i 1.05424 1.45104i
\(598\) 133.354 + 183.547i 0.223001 + 0.306934i
\(599\) −180.089 + 554.257i −0.300649 + 0.925304i 0.680616 + 0.732641i \(0.261712\pi\)
−0.981265 + 0.192663i \(0.938288\pi\)
\(600\) 0 0
\(601\) 439.974 + 605.572i 0.732070 + 1.00761i 0.999036 + 0.0439019i \(0.0139789\pi\)
−0.266966 + 0.963706i \(0.586021\pi\)
\(602\) −5.67541 4.12343i −0.00942759 0.00684954i
\(603\) −267.496 + 86.9149i −0.443609 + 0.144137i
\(604\) 246.832i 0.408662i
\(605\) 0 0
\(606\) −111.790 −0.184471
\(607\) 232.370 + 715.161i 0.382817 + 1.17819i 0.938052 + 0.346496i \(0.112628\pi\)
−0.555235 + 0.831694i \(0.687372\pi\)
\(608\) −491.178 + 676.048i −0.807858 + 1.11192i
\(609\) −15.5867 + 11.3244i −0.0255939 + 0.0185951i
\(610\) 0 0
\(611\) −510.710 165.940i −0.835860 0.271587i
\(612\) 398.418 289.468i 0.651010 0.472987i
\(613\) −811.379 589.502i −1.32362 0.961666i −0.999880 0.0155207i \(-0.995059\pi\)
−0.323741 0.946146i \(-0.604941\pi\)
\(614\) 75.2380 + 231.559i 0.122537 + 0.377131i
\(615\) 0 0
\(616\) −15.6252 5.52231i −0.0253656 0.00896480i
\(617\) 436.456i 0.707384i −0.935362 0.353692i \(-0.884926\pi\)
0.935362 0.353692i \(-0.115074\pi\)
\(618\) 113.310 + 348.731i 0.183349 + 0.564290i
\(619\) 102.839 + 74.7172i 0.166138 + 0.120706i 0.667748 0.744388i \(-0.267259\pi\)
−0.501610 + 0.865094i \(0.667259\pi\)
\(620\) 0 0
\(621\) −68.2755 + 210.130i −0.109945 + 0.338374i
\(622\) 48.7557 150.055i 0.0783853 0.241245i
\(623\) 19.9704 14.5093i 0.0320552 0.0232894i
\(624\) −264.354 + 363.853i −0.423645 + 0.583097i
\(625\) 0 0
\(626\) 432.028i 0.690141i
\(627\) 32.4729 1270.07i 0.0517908 2.02563i
\(628\) 745.616i 1.18729i
\(629\) −255.729 + 83.0915i −0.406565 + 0.132101i
\(630\) 0 0
\(631\) 182.154 132.343i 0.288675 0.209735i −0.434017 0.900905i \(-0.642904\pi\)
0.722692 + 0.691170i \(0.242904\pi\)
\(632\) 679.538 + 220.795i 1.07522 + 0.349360i
\(633\) 279.393 859.882i 0.441379 1.35842i
\(634\) −30.6602 42.2002i −0.0483600 0.0665618i
\(635\) 0 0
\(636\) −178.433 549.162i −0.280556 0.863462i
\(637\) −553.156 −0.868377
\(638\) 114.265 78.6362i 0.179099 0.123254i
\(639\) −197.262 −0.308705
\(640\) 0 0
\(641\) 852.241 + 619.190i 1.32955 + 0.965975i 0.999760 + 0.0219202i \(0.00697799\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(642\) 149.825 + 206.217i 0.233373 + 0.321210i
\(643\) −799.805 259.872i −1.24386 0.404156i −0.388146 0.921598i \(-0.626884\pi\)
−0.855718 + 0.517442i \(0.826884\pi\)
\(644\) 25.3094 + 8.22352i 0.0393003 + 0.0127694i
\(645\) 0 0
\(646\) 249.853 343.893i 0.386769 0.532342i
\(647\) 61.1738 19.8766i 0.0945499 0.0307211i −0.261360 0.965241i \(-0.584171\pi\)
0.355910 + 0.934520i \(0.384171\pi\)
\(648\) 515.738 0.795892
\(649\) 1072.88 318.524i 1.65314 0.490792i
\(650\) 0 0
\(651\) 36.2755 11.7866i 0.0557228 0.0181054i
\(652\) 186.081 256.118i 0.285400 0.392820i
\(653\) 628.461 + 865.002i 0.962421 + 1.32466i 0.945784 + 0.324797i \(0.105296\pi\)
0.0166374 + 0.999862i \(0.494704\pi\)
\(654\) 129.941 399.918i 0.198687 0.611495i
\(655\) 0 0
\(656\) 105.548 + 145.275i 0.160897 + 0.221455i
\(657\) −565.224 410.659i −0.860311 0.625052i
\(658\) 9.10724 2.95912i 0.0138408 0.00449714i
\(659\) 283.355i 0.429978i 0.976617 + 0.214989i \(0.0689715\pi\)
−0.976617 + 0.214989i \(0.931028\pi\)
\(660\) 0 0
\(661\) −845.155 −1.27860 −0.639300 0.768957i \(-0.720776\pi\)
−0.639300 + 0.768957i \(0.720776\pi\)
\(662\) −65.7109 202.237i −0.0992612 0.305495i
\(663\) 538.642 741.378i 0.812432 1.11822i
\(664\) 550.795 400.176i 0.829511 0.602675i
\(665\) 0 0
\(666\) 64.1879 + 20.8559i 0.0963782 + 0.0313152i
\(667\) −387.794 + 281.749i −0.581400 + 0.422412i
\(668\) −127.568 92.6834i −0.190970 0.138748i
\(669\) 346.243 + 1065.63i 0.517553 + 1.59286i
\(670\) 0 0
\(671\) 444.479 + 340.625i 0.662413 + 0.507637i
\(672\) 32.1253i 0.0478056i
\(673\) −137.135 422.060i −0.203767 0.627132i −0.999762 0.0218275i \(-0.993052\pi\)
0.795994 0.605304i \(-0.206948\pi\)
\(674\) 230.410 + 167.403i 0.341855 + 0.248372i
\(675\) 0 0
\(676\) 44.1616 135.915i 0.0653278 0.201058i
\(677\) 297.173 914.604i 0.438955 1.35097i −0.450023 0.893017i \(-0.648584\pi\)
0.888979 0.457949i \(-0.151416\pi\)
\(678\) 304.762 221.423i 0.449502 0.326582i
\(679\) −7.88160 + 10.8481i −0.0116077 + 0.0159766i
\(680\) 0 0
\(681\) 348.693i 0.512031i
\(682\) −263.253 + 78.1559i −0.386001 + 0.114598i
\(683\) 488.033i 0.714542i −0.934001 0.357271i \(-0.883707\pi\)
0.934001 0.357271i \(-0.116293\pi\)
\(684\) 667.450 216.868i 0.975804 0.317058i
\(685\) 0 0
\(686\) 15.9731 11.6051i 0.0232844 0.0169171i
\(687\) 408.374 + 132.689i 0.594431 + 0.193142i
\(688\) 106.917 329.058i 0.155403 0.478281i
\(689\) −276.306 380.303i −0.401025 0.551964i
\(690\) 0 0
\(691\) −153.473 472.340i −0.222102 0.683560i −0.998573 0.0534066i \(-0.982992\pi\)
0.776471 0.630153i \(-0.217008\pi\)
\(692\) −526.197 −0.760400
\(693\) 12.1142 + 17.6030i 0.0174808 + 0.0254011i
\(694\) 46.2167 0.0665947
\(695\) 0 0
\(696\) 304.912 + 221.531i 0.438092 + 0.318292i
\(697\) −215.062 296.008i −0.308555 0.424689i
\(698\) −169.622 55.1134i −0.243011 0.0789590i
\(699\) 501.305 + 162.884i 0.717174 + 0.233024i
\(700\) 0 0
\(701\) 294.515 405.366i 0.420136 0.578268i −0.545518 0.838099i \(-0.683667\pi\)
0.965654 + 0.259831i \(0.0836670\pi\)
\(702\) 62.5018 20.3081i 0.0890339 0.0289289i
\(703\) −383.182 −0.545067
\(704\) 5.27184 206.191i 0.00748840 0.292885i
\(705\) 0 0
\(706\) −149.622 + 48.6151i −0.211929 + 0.0688599i
\(707\) −6.27458 + 8.63621i −0.00887493 + 0.0122153i
\(708\) 830.574 + 1143.19i 1.17313 + 1.61467i
\(709\) 0.643159 1.97944i 0.000907135 0.00279188i −0.950602 0.310413i \(-0.899533\pi\)
0.951509 + 0.307621i \(0.0995328\pi\)
\(710\) 0 0
\(711\) −541.525 745.345i −0.761638 1.04831i
\(712\) −390.666 283.836i −0.548689 0.398646i
\(713\) 902.528 293.249i 1.26582 0.411289i
\(714\) 16.3416i 0.0228873i
\(715\) 0 0
\(716\) −591.976 −0.826783
\(717\) 113.765 + 350.132i 0.158668 + 0.488329i
\(718\) −291.647 + 401.418i −0.406194 + 0.559078i
\(719\) 568.638 413.140i 0.790874 0.574603i −0.117349 0.993091i \(-0.537440\pi\)
0.908223 + 0.418487i \(0.137440\pi\)
\(720\) 0 0
\(721\) 33.3009 + 10.8201i 0.0461871 + 0.0150071i
\(722\) 277.875 201.888i 0.384869 0.279624i
\(723\) −85.8012 62.3382i −0.118674 0.0862216i
\(724\) 178.092 + 548.111i 0.245984 + 0.757060i
\(725\) 0 0
\(726\) −191.885 294.679i −0.264304 0.405894i
\(727\) 1163.47i 1.60037i −0.599754 0.800184i \(-0.704735\pi\)
0.599754 0.800184i \(-0.295265\pi\)
\(728\) −5.26392 16.2007i −0.00723065 0.0222537i
\(729\) −304.999 221.595i −0.418381 0.303971i
\(730\) 0 0
\(731\) −217.852 + 670.480i −0.298019 + 0.917209i
\(732\) −218.487 + 672.433i −0.298479 + 0.918625i
\(733\) −1058.23 + 768.849i −1.44370 + 1.04891i −0.456443 + 0.889752i \(0.650877\pi\)
−0.987254 + 0.159155i \(0.949123\pi\)
\(734\) −31.4702 + 43.3150i −0.0428750 + 0.0590123i
\(735\) 0 0
\(736\) 799.272i 1.08597i
\(737\) 147.280 416.723i 0.199837 0.565432i
\(738\) 91.8371i 0.124441i
\(739\) 1085.92 352.838i 1.46945 0.477453i 0.538508 0.842621i \(-0.318988\pi\)
0.930942 + 0.365167i \(0.118988\pi\)
\(740\) 0 0
\(741\) 1056.50 767.594i 1.42578 1.03589i
\(742\) 7.97242 + 2.59040i 0.0107445 + 0.00349110i
\(743\) 176.414 542.947i 0.237435 0.730749i −0.759354 0.650677i \(-0.774485\pi\)
0.996789 0.0800717i \(-0.0255149\pi\)
\(744\) −438.577 603.650i −0.589486 0.811357i
\(745\) 0 0
\(746\) 13.1070 + 40.3393i 0.0175697 + 0.0540741i
\(747\) −877.859 −1.17518
\(748\) −19.7800 + 773.632i −0.0264438 + 1.03427i
\(749\) 24.3406 0.0324974
\(750\) 0 0
\(751\) 496.597 + 360.799i 0.661247 + 0.480424i 0.867084 0.498162i \(-0.165992\pi\)
−0.205837 + 0.978586i \(0.565992\pi\)
\(752\) 277.604 + 382.089i 0.369154 + 0.508097i
\(753\) 513.702 + 166.912i 0.682207 + 0.221662i
\(754\) 135.598 + 44.0584i 0.179838 + 0.0584329i
\(755\) 0 0
\(756\) 4.53097 6.23634i 0.00599335 0.00824913i
\(757\) −775.528 + 251.984i −1.02448 + 0.332872i −0.772604 0.634888i \(-0.781046\pi\)
−0.251872 + 0.967761i \(0.581046\pi\)
\(758\) 136.212 0.179700
\(759\) 688.912 + 1001.05i 0.907657 + 1.31890i
\(760\) 0 0
\(761\) −488.577 + 158.748i −0.642020 + 0.208605i −0.611892 0.790941i \(-0.709591\pi\)
−0.0301278 + 0.999546i \(0.509591\pi\)
\(762\) 263.409 362.551i 0.345681 0.475789i
\(763\) −23.6019 32.4853i −0.0309331 0.0425757i
\(764\) −12.0100 + 36.9631i −0.0157200 + 0.0483811i
\(765\) 0 0
\(766\) 2.61470 + 3.59883i 0.00341345 + 0.00469821i
\(767\) 930.670 + 676.171i 1.21339 + 0.881579i
\(768\) −72.2803 + 23.4853i −0.0941150 + 0.0305798i
\(769\) 501.416i 0.652036i −0.945364 0.326018i \(-0.894293\pi\)
0.945364 0.326018i \(-0.105707\pi\)
\(770\) 0 0
\(771\) 977.167 1.26740
\(772\) 134.784 + 414.823i 0.174591 + 0.537336i
\(773\) −264.185 + 363.619i −0.341765 + 0.470400i −0.944956 0.327197i \(-0.893896\pi\)
0.603191 + 0.797597i \(0.293896\pi\)
\(774\) 143.156 104.009i 0.184956 0.134378i
\(775\) 0 0
\(776\) 249.472 + 81.0584i 0.321485 + 0.104457i
\(777\) 11.9177 8.65869i 0.0153380 0.0111437i
\(778\) −132.901 96.5585i −0.170824 0.124111i
\(779\) −161.124 495.888i −0.206834 0.636569i
\(780\) 0 0
\(781\) 188.554 246.043i 0.241427 0.315036i
\(782\) 406.575i 0.519917i
\(783\) 42.9065 + 132.053i 0.0547976 + 0.168650i
\(784\) 393.590 + 285.960i 0.502028 + 0.364744i
\(785\) 0 0
\(786\) −115.396 + 355.153i −0.146815 + 0.451849i
\(787\) 177.854 547.379i 0.225990 0.695526i −0.772200 0.635380i \(-0.780843\pi\)
0.998190 0.0601458i \(-0.0191566\pi\)
\(788\) 1015.51 737.809i 1.28872 0.936306i
\(789\) −4.54486 + 6.25546i −0.00576028 + 0.00792834i
\(790\) 0 0
\(791\) 35.9723i 0.0454770i
\(792\) 254.269 331.794i 0.321047 0.418932i
\(793\) 575.601i 0.725852i
\(794\) −148.647 + 48.2982i −0.187212 + 0.0608290i
\(795\) 0 0
\(796\) −751.951 + 546.325i −0.944662 + 0.686337i
\(797\) −23.7562 7.71885i −0.0298070 0.00968488i 0.294076 0.955782i \(-0.404988\pi\)
−0.323883 + 0.946097i \(0.604988\pi\)
\(798\) −7.19626 + 22.1478i −0.00901787 + 0.0277542i
\(799\) −565.639 778.535i −0.707933 0.974386i
\(800\) 0 0
\(801\) 192.408 + 592.171i 0.240210 + 0.739289i
\(802\) −393.109 −0.490160
\(803\) 1052.48 312.467i 1.31069 0.389125i
\(804\) 558.046 0.694088
\(805\) 0 0
\(806\) −228.358 165.911i −0.283322 0.205846i
\(807\) 430.752 + 592.879i 0.533769 + 0.734671i
\(808\) 198.606 + 64.5310i 0.245799 + 0.0798651i
\(809\) 711.977 + 231.335i 0.880070 + 0.285952i 0.713987 0.700159i \(-0.246888\pi\)
0.166084 + 0.986112i \(0.446888\pi\)
\(810\) 0 0
\(811\) 138.201 190.218i 0.170409 0.234547i −0.715268 0.698851i \(-0.753695\pi\)
0.885676 + 0.464303i \(0.153695\pi\)
\(812\) 15.9052 5.16792i 0.0195877 0.00636443i
\(813\) −2030.26 −2.49725
\(814\) −87.3676 + 60.1256i −0.107331 + 0.0738644i
\(815\) 0 0
\(816\) −766.525 + 249.059i −0.939369 + 0.305219i
\(817\) −590.513 + 812.771i −0.722782 + 0.994824i
\(818\) −156.614 215.561i −0.191460 0.263522i
\(819\) −6.78736 + 20.8894i −0.00828738 + 0.0255059i
\(820\) 0 0
\(821\) −90.2423 124.208i −0.109918 0.151288i 0.750514 0.660854i \(-0.229806\pi\)
−0.860432 + 0.509566i \(0.829806\pi\)
\(822\) −145.609 105.791i −0.177140 0.128699i
\(823\) −1229.43 + 399.465i −1.49384 + 0.485377i −0.938214 0.346057i \(-0.887520\pi\)
−0.555624 + 0.831434i \(0.687520\pi\)
\(824\) 684.967i 0.831270i
\(825\) 0 0
\(826\) −20.5140 −0.0248353
\(827\) −193.083 594.248i −0.233474 0.718559i −0.997320 0.0731605i \(-0.976691\pi\)
0.763846 0.645398i \(-0.223309\pi\)
\(828\) −394.554 + 543.057i −0.476514 + 0.655866i
\(829\) −1192.01 + 866.043i −1.43788 + 1.04468i −0.449405 + 0.893328i \(0.648364\pi\)
−0.988479 + 0.151355i \(0.951636\pi\)
\(830\) 0 0
\(831\) 134.794 + 43.7973i 0.162207 + 0.0527043i
\(832\) 171.519 124.616i 0.206152 0.149779i
\(833\) −801.969 582.664i −0.962748 0.699477i
\(834\) 204.971 + 630.835i 0.245768 + 0.756396i
\(835\) 0 0
\(836\) −367.489 + 1039.80i −0.439580 + 1.24378i
\(837\) 274.885i 0.328417i
\(838\) −36.9422 113.696i −0.0440838 0.135676i
\(839\) −1083.63 787.303i −1.29157 0.938383i −0.291737 0.956498i \(-0.594233\pi\)
−0.999836 + 0.0181155i \(0.994233\pi\)
\(840\) 0 0
\(841\) 166.797 513.350i 0.198332 0.610404i
\(842\) 26.9990 83.0945i 0.0320654 0.0986870i
\(843\) 1106.07 803.607i 1.31206 0.953270i
\(844\) −461.305 + 634.932i −0.546570 + 0.752289i
\(845\) 0 0
\(846\) 241.542i 0.285511i
\(847\) −33.5354 1.71597i −0.0395931 0.00202594i
\(848\) 413.438i 0.487544i
\(849\) −1572.74 + 511.015i −1.85246 + 0.601902i
\(850\) 0 0
\(851\) 296.509 215.426i 0.348424 0.253145i
\(852\) 372.228 + 120.944i 0.436888 + 0.141953i
\(853\) −359.583 + 1106.68i −0.421551 + 1.29740i 0.484708 + 0.874676i \(0.338926\pi\)
−0.906259 + 0.422724i \(0.861074\pi\)
\(854\) −6.03326 8.30406i −0.00706470 0.00972373i
\(855\) 0 0
\(856\) −147.141 452.853i −0.171894 0.529034i
\(857\) 1069.27 1.24769 0.623844 0.781549i \(-0.285570\pi\)
0.623844 + 0.781549i \(0.285570\pi\)
\(858\) 120.444 340.793i 0.140378 0.397194i
\(859\) −998.288 −1.16215 −0.581076 0.813849i \(-0.697368\pi\)
−0.581076 + 0.813849i \(0.697368\pi\)
\(860\) 0 0
\(861\) 16.2167 + 11.7821i 0.0188347 + 0.0136842i
\(862\) 230.861 + 317.753i 0.267820 + 0.368623i
\(863\) 669.085 + 217.399i 0.775301 + 0.251911i 0.669833 0.742512i \(-0.266366\pi\)
0.105468 + 0.994423i \(0.466366\pi\)
\(864\) −220.190 71.5442i −0.254850 0.0828058i
\(865\) 0 0
\(866\) 91.1189 125.414i 0.105218 0.144820i
\(867\) 462.431 150.253i 0.533370 0.173302i
\(868\) −33.1089 −0.0381438
\(869\) 1447.28 + 37.0036i 1.66545 + 0.0425818i
\(870\) 0 0
\(871\) 432.071 140.388i 0.496063 0.161181i
\(872\) −461.708 + 635.487i −0.529482 + 0.728770i
\(873\) −198.805 273.631i −0.227726 0.313438i
\(874\) −179.042 + 551.033i −0.204853 + 0.630473i
\(875\) 0 0
\(876\) 814.780 + 1121.45i 0.930114 + 1.28019i
\(877\) 273.042 + 198.377i 0.311336 + 0.226199i 0.732470 0.680800i \(-0.238368\pi\)
−0.421133 + 0.906999i \(0.638368\pi\)
\(878\) −20.6325 + 6.70391i −0.0234995 + 0.00763544i
\(879\) 771.436i 0.877629i
\(880\) 0 0
\(881\) −1011.82 −1.14849 −0.574246 0.818682i \(-0.694705\pi\)
−0.574246 + 0.818682i \(0.694705\pi\)
\(882\) 76.8873 + 236.635i 0.0871738 + 0.268293i
\(883\) 189.317 260.572i 0.214402 0.295099i −0.688247 0.725476i \(-0.741620\pi\)
0.902649 + 0.430377i \(0.141620\pi\)
\(884\) −643.541 + 467.560i −0.727988 + 0.528914i
\(885\) 0 0
\(886\) −39.5673 12.8562i −0.0446584 0.0145104i
\(887\) −602.240 + 437.553i −0.678963 + 0.493296i −0.873014 0.487696i \(-0.837837\pi\)
0.194050 + 0.980992i \(0.437837\pi\)
\(888\) −233.137 169.384i −0.262542 0.190748i
\(889\) −13.2239 40.6989i −0.0148750 0.0457805i
\(890\) 0 0
\(891\) 1001.78 297.415i 1.12434 0.333799i
\(892\) 972.603i 1.09036i
\(893\) −423.773 1304.24i −0.474550 1.46052i
\(894\) −185.029 134.432i −0.206968 0.150371i
\(895\) 0 0
\(896\) −11.0956 + 34.1486i −0.0123834 + 0.0381123i
\(897\) −385.985 + 1187.94i −0.430306 + 1.32435i
\(898\) 349.554 253.966i 0.389258 0.282813i
\(899\) 350.535 482.470i 0.389916 0.536674i
\(900\) 0 0
\(901\) 842.411i 0.934973i
\(902\) −114.547 87.7829i −0.126993 0.0973203i
\(903\) 38.6223i 0.0427711i
\(904\) −669.259 + 217.456i −0.740331 + 0.240548i
\(905\) 0 0
\(906\) −167.141 + 121.435i −0.184482 + 0.134034i
\(907\) 534.971 + 173.823i 0.589825 + 0.191646i 0.588697 0.808354i \(-0.299641\pi\)
0.00112787 + 0.999999i \(0.499641\pi\)
\(908\) 93.5325 287.863i 0.103009 0.317030i
\(909\) −158.269 217.839i −0.174114 0.239647i
\(910\) 0 0
\(911\) −21.9218 67.4684i −0.0240634 0.0740597i 0.938304 0.345813i \(-0.112397\pi\)
−0.962367 + 0.271753i \(0.912397\pi\)
\(912\) −1148.55 −1.25938
\(913\) 839.106 1094.94i 0.919064 1.19928i
\(914\) −345.220 −0.377702
\(915\) 0 0
\(916\) −301.541 219.082i −0.329193 0.239173i
\(917\) 20.9601 + 28.8491i 0.0228572 + 0.0314603i
\(918\) 112.007 + 36.3932i 0.122012 + 0.0396440i
\(919\) −64.4021 20.9255i −0.0700784 0.0227699i 0.273768 0.961796i \(-0.411730\pi\)
−0.343846 + 0.939026i \(0.611730\pi\)
\(920\) 0 0
\(921\) −787.902 + 1084.45i −0.855486 + 1.17748i
\(922\) 200.635 65.1904i 0.217609 0.0707054i
\(923\) 318.626 0.345207
\(924\) −12.0665 40.6436i −0.0130590 0.0439866i
\(925\) 0 0
\(926\) −59.5184 + 19.3387i −0.0642747 + 0.0208841i
\(927\) −519.135 + 714.528i −0.560016 + 0.770796i
\(928\) −295.237 406.359i −0.318144 0.437887i
\(929\) −385.947 + 1187.82i −0.415443 + 1.27860i 0.496411 + 0.868088i \(0.334651\pi\)
−0.911854 + 0.410515i \(0.865349\pi\)
\(930\) 0 0
\(931\) −830.328 1142.85i −0.891866 1.22755i
\(932\) −370.160 268.937i −0.397168 0.288559i
\(933\) 826.129 268.426i 0.885455 0.287702i
\(934\) 164.151i 0.175751i
\(935\) 0 0
\(936\) 429.674 0.459053
\(937\) 167.401 + 515.209i 0.178657 + 0.549849i 0.999782 0.0208996i \(-0.00665305\pi\)
−0.821125 + 0.570749i \(0.806653\pi\)
\(938\) −4.76189 + 6.55418i −0.00507664 + 0.00698739i
\(939\) −1924.28 + 1398.07i −2.04929 + 1.48890i
\(940\) 0 0
\(941\) −561.217 182.350i −0.596405 0.193784i −0.00476834 0.999989i \(-0.501518\pi\)
−0.591636 + 0.806205i \(0.701518\pi\)
\(942\) −504.890 + 366.824i −0.535977 + 0.389410i
\(943\) 403.468 + 293.137i 0.427856 + 0.310856i
\(944\) −312.650 962.238i −0.331197 1.01932i
\(945\) 0 0
\(946\) −7.10716 + 277.974i −0.00751286 + 0.293842i
\(947\) 527.364i 0.556878i 0.960454 + 0.278439i \(0.0898171\pi\)
−0.960454 + 0.278439i \(0.910183\pi\)
\(948\) 564.860 + 1738.46i 0.595844 + 1.83382i
\(949\) 912.973 + 663.313i 0.962036 + 0.698960i
\(950\) 0 0
\(951\) 88.7438 273.125i 0.0933163 0.287198i
\(952\) 9.43324 29.0325i 0.00990886 0.0304963i
\(953\) −1429.23 + 1038.40i −1.49972 + 1.08961i −0.529223 + 0.848483i \(0.677517\pi\)
−0.970494 + 0.241125i \(0.922483\pi\)
\(954\) −124.284 + 171.062i −0.130277 + 0.179310i
\(955\) 0 0
\(956\) 319.567i 0.334275i
\(957\) 720.021 + 254.472i 0.752373 + 0.265906i
\(958\) 61.1060i 0.0637849i
\(959\) −16.3456 + 5.31101i −0.0170444 + 0.00553807i
\(960\) 0 0
\(961\) −177.706 + 129.111i −0.184917 + 0.134350i
\(962\) −103.679 33.6873i −0.107774 0.0350180i
\(963\) −189.725 + 583.915i −0.197015 + 0.606350i
\(964\) 54.1117 + 74.4783i 0.0561325 + 0.0772597i
\(965\) 0 0
\(966\) −6.88307 21.1839i −0.00712533 0.0219295i
\(967\) −1457.23 −1.50696 −0.753481 0.657470i \(-0.771627\pi\)
−0.753481 + 0.657470i \(0.771627\pi\)
\(968\) 170.799 + 634.294i 0.176445 + 0.655263i
\(969\) 2340.26 2.41513
\(970\) 0 0
\(971\) −151.983 110.422i −0.156522 0.113720i 0.506768 0.862083i \(-0.330840\pi\)
−0.663290 + 0.748363i \(0.730840\pi\)
\(972\) 628.588 + 865.177i 0.646696 + 0.890100i
\(973\) 60.2393 + 19.5729i 0.0619109 + 0.0201161i
\(974\) −457.232 148.564i −0.469437 0.152529i
\(975\) 0 0
\(976\) 297.562 409.559i 0.304879 0.419631i
\(977\) 1197.75 389.172i 1.22595 0.398334i 0.376702 0.926335i \(-0.377058\pi\)
0.849244 + 0.528001i \(0.177058\pi\)
\(978\) −264.977 −0.270937
\(979\) −922.522 326.041i −0.942310 0.333035i
\(980\) 0 0
\(981\) 963.269 312.985i 0.981926 0.319047i
\(982\) 318.267 438.057i 0.324101 0.446087i
\(983\) 612.344 + 842.819i 0.622934 + 0.857395i 0.997562 0.0697799i \(-0.0222297\pi\)
−0.374628 + 0.927175i \(0.622230\pi\)
\(984\) 121.173 372.933i 0.123144 0.378997i
\(985\) 0 0
\(986\) 150.182 + 206.708i 0.152314 + 0.209643i
\(987\) 42.6518 + 30.9883i 0.0432135 + 0.0313965i
\(988\) −1078.09 + 350.293i −1.09119 + 0.354548i
\(989\) 960.916i 0.971604i
\(990\) 0 0
\(991\) −664.312 −0.670345 −0.335173 0.942157i \(-0.608795\pi\)
−0.335173 + 0.942157i \(0.608795\pi\)
\(992\) 307.288 + 945.736i 0.309767 + 0.953363i
\(993\) 688.134 947.135i 0.692985 0.953811i
\(994\) −4.59675 + 3.33973i −0.00462449 + 0.00335989i
\(995\) 0 0
\(996\) 1656.49 + 538.227i 1.66315 + 0.540389i
\(997\) −159.697 + 116.026i −0.160177 + 0.116375i −0.664987 0.746855i \(-0.731563\pi\)
0.504809 + 0.863231i \(0.331563\pi\)
\(998\) 163.419 + 118.731i 0.163747 + 0.118969i
\(999\) −32.8065 100.968i −0.0328393 0.101069i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.q.c.149.2 8
5.2 odd 4 55.3.i.a.6.1 4
5.3 odd 4 275.3.x.d.226.1 4
5.4 even 2 inner 275.3.q.c.149.1 8
11.2 odd 10 inner 275.3.q.c.24.1 8
55.2 even 20 55.3.i.a.46.1 yes 4
55.13 even 20 275.3.x.d.101.1 4
55.24 odd 10 inner 275.3.q.c.24.2 8
55.47 odd 20 605.3.c.a.241.3 4
55.52 even 20 605.3.c.a.241.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.a.6.1 4 5.2 odd 4
55.3.i.a.46.1 yes 4 55.2 even 20
275.3.q.c.24.1 8 11.2 odd 10 inner
275.3.q.c.24.2 8 55.24 odd 10 inner
275.3.q.c.149.1 8 5.4 even 2 inner
275.3.q.c.149.2 8 1.1 even 1 trivial
275.3.x.d.101.1 4 55.13 even 20
275.3.x.d.226.1 4 5.3 odd 4
605.3.c.a.241.2 4 55.52 even 20
605.3.c.a.241.3 4 55.47 odd 20