Properties

Label 275.3.x.d.226.1
Level $275$
Weight $3$
Character 275.226
Analytic conductor $7.493$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(51,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.51"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.x (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,5,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 226.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 275.226
Dual form 275.3.x.d.101.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.690983 - 0.224514i) q^{2} +(-3.23607 - 2.35114i) q^{3} +(-2.80902 + 2.04087i) q^{4} +(-2.76393 - 0.898056i) q^{6} +(0.163119 + 0.224514i) q^{7} +(-3.19098 + 4.39201i) q^{8} +(2.16312 + 6.65740i) q^{9} +(10.3713 + 3.66547i) q^{11} +13.8885 q^{12} +(-10.7533 + 3.49396i) q^{13} +(0.163119 + 0.118513i) q^{14} +(3.07295 - 9.45756i) q^{16} +(19.2705 + 6.26137i) q^{17} +(2.98936 + 4.11450i) q^{18} +(16.9721 - 23.3601i) q^{19} -1.11006i q^{21} +(7.98936 + 0.204270i) q^{22} +27.6180 q^{23} +(20.6525 - 6.71040i) q^{24} +(-6.64590 + 4.82853i) q^{26} +(-2.47214 + 7.60845i) q^{27} +(-0.916408 - 0.297759i) q^{28} +(10.2016 + 14.0413i) q^{29} +(10.6180 + 32.6789i) q^{31} -28.9402i q^{32} +(-24.9443 - 36.2461i) q^{33} +14.7214 q^{34} +(-19.6631 - 14.2861i) q^{36} +(10.7361 - 7.80021i) q^{37} +(6.48278 - 19.9519i) q^{38} +(43.0132 + 13.9758i) q^{39} +(-10.6140 + 14.6089i) q^{41} +(-0.249224 - 0.767031i) q^{42} +34.7931i q^{43} +(-36.6140 + 10.8702i) q^{44} +(19.0836 - 6.20063i) q^{46} +(38.4230 + 27.9159i) q^{47} +(-32.1803 + 23.3804i) q^{48} +(15.1180 - 46.5285i) q^{49} +(-47.6393 - 65.5699i) q^{51} +(23.0755 - 31.7606i) q^{52} +(-12.8475 - 39.5406i) q^{53} +5.81234i q^{54} -1.50658 q^{56} +(-109.846 + 35.6911i) q^{57} +(10.2016 + 7.41192i) q^{58} +(-82.3115 + 59.8028i) q^{59} +(48.4164 + 15.7314i) q^{61} +(14.6738 + 20.1967i) q^{62} +(-1.14183 + 1.57160i) q^{63} +(5.79431 + 17.8330i) q^{64} +(-25.3738 - 19.4451i) q^{66} -40.1803 q^{67} +(-66.9098 + 21.7403i) q^{68} +(-89.3738 - 64.9339i) q^{69} +(8.70820 - 26.8011i) q^{71} +(-36.1418 - 11.7432i) q^{72} +(58.6656 + 80.7463i) q^{73} +(5.66718 - 7.80021i) q^{74} +100.257i q^{76} +(0.868810 + 2.92641i) q^{77} +32.8591 q^{78} +(-125.172 + 40.6709i) q^{79} +(76.8566 - 55.8396i) q^{81} +(-4.05418 + 12.4775i) q^{82} +(119.271 + 38.7533i) q^{83} +(2.26548 + 3.11817i) q^{84} +(7.81153 + 24.0414i) q^{86} -69.4242i q^{87} +(-49.1935 + 33.8545i) q^{88} +88.9493 q^{89} +(-2.53851 - 1.84433i) q^{91} +(-77.5795 + 56.3648i) q^{92} +(42.4721 - 130.716i) q^{93} +(32.8171 + 10.6629i) q^{94} +(-68.0426 + 93.6526i) q^{96} +(-14.9311 - 45.9533i) q^{97} -35.5446i q^{98} +(-1.96807 + 76.9748i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 5 q^{2} - 4 q^{3} - 9 q^{4} - 20 q^{6} - 15 q^{7} - 15 q^{8} - 7 q^{9} - q^{11} - 16 q^{12} - 5 q^{13} - 15 q^{14} + 19 q^{16} + 10 q^{17} - 35 q^{18} + 50 q^{19} - 15 q^{22} + 106 q^{23} + 20 q^{24}+ \cdots + 133 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.690983 0.224514i 0.345492 0.112257i −0.131131 0.991365i \(-0.541861\pi\)
0.476623 + 0.879108i \(0.341861\pi\)
\(3\) −3.23607 2.35114i −1.07869 0.783714i −0.101235 0.994862i \(-0.532280\pi\)
−0.977454 + 0.211149i \(0.932280\pi\)
\(4\) −2.80902 + 2.04087i −0.702254 + 0.510218i
\(5\) 0 0
\(6\) −2.76393 0.898056i −0.460655 0.149676i
\(7\) 0.163119 + 0.224514i 0.0233027 + 0.0320734i 0.820509 0.571633i \(-0.193690\pi\)
−0.797207 + 0.603706i \(0.793690\pi\)
\(8\) −3.19098 + 4.39201i −0.398873 + 0.549001i
\(9\) 2.16312 + 6.65740i 0.240347 + 0.739711i
\(10\) 0 0
\(11\) 10.3713 + 3.66547i 0.942848 + 0.333224i
\(12\) 13.8885 1.15738
\(13\) −10.7533 + 3.49396i −0.827176 + 0.268766i −0.691855 0.722036i \(-0.743206\pi\)
−0.135321 + 0.990802i \(0.543206\pi\)
\(14\) 0.163119 + 0.118513i 0.0116514 + 0.00846520i
\(15\) 0 0
\(16\) 3.07295 9.45756i 0.192059 0.591098i
\(17\) 19.2705 + 6.26137i 1.13356 + 0.368316i 0.814928 0.579563i \(-0.196777\pi\)
0.318632 + 0.947879i \(0.396777\pi\)
\(18\) 2.98936 + 4.11450i 0.166075 + 0.228583i
\(19\) 16.9721 23.3601i 0.893270 1.22948i −0.0792950 0.996851i \(-0.525267\pi\)
0.972565 0.232630i \(-0.0747331\pi\)
\(20\) 0 0
\(21\) 1.11006i 0.0528599i
\(22\) 7.98936 + 0.204270i 0.363153 + 0.00928498i
\(23\) 27.6180 1.20078 0.600392 0.799706i \(-0.295011\pi\)
0.600392 + 0.799706i \(0.295011\pi\)
\(24\) 20.6525 6.71040i 0.860520 0.279600i
\(25\) 0 0
\(26\) −6.64590 + 4.82853i −0.255611 + 0.185713i
\(27\) −2.47214 + 7.60845i −0.0915606 + 0.281795i
\(28\) −0.916408 0.297759i −0.0327289 0.0106342i
\(29\) 10.2016 + 14.0413i 0.351780 + 0.484184i 0.947836 0.318759i \(-0.103266\pi\)
−0.596055 + 0.802943i \(0.703266\pi\)
\(30\) 0 0
\(31\) 10.6180 + 32.6789i 0.342517 + 1.05416i 0.962900 + 0.269860i \(0.0869775\pi\)
−0.620382 + 0.784300i \(0.713023\pi\)
\(32\) 28.9402i 0.904382i
\(33\) −24.9443 36.2461i −0.755887 1.09837i
\(34\) 14.7214 0.432981
\(35\) 0 0
\(36\) −19.6631 14.2861i −0.546198 0.396836i
\(37\) 10.7361 7.80021i 0.290164 0.210816i −0.433175 0.901310i \(-0.642607\pi\)
0.723339 + 0.690494i \(0.242607\pi\)
\(38\) 6.48278 19.9519i 0.170599 0.525051i
\(39\) 43.0132 + 13.9758i 1.10290 + 0.358354i
\(40\) 0 0
\(41\) −10.6140 + 14.6089i −0.258877 + 0.356314i −0.918596 0.395199i \(-0.870676\pi\)
0.659718 + 0.751513i \(0.270676\pi\)
\(42\) −0.249224 0.767031i −0.00593390 0.0182627i
\(43\) 34.7931i 0.809141i 0.914507 + 0.404571i \(0.132579\pi\)
−0.914507 + 0.404571i \(0.867421\pi\)
\(44\) −36.6140 + 10.8702i −0.832136 + 0.247049i
\(45\) 0 0
\(46\) 19.0836 6.20063i 0.414861 0.134796i
\(47\) 38.4230 + 27.9159i 0.817510 + 0.593956i 0.915998 0.401182i \(-0.131401\pi\)
−0.0984879 + 0.995138i \(0.531401\pi\)
\(48\) −32.1803 + 23.3804i −0.670424 + 0.487091i
\(49\) 15.1180 46.5285i 0.308531 0.949562i
\(50\) 0 0
\(51\) −47.6393 65.5699i −0.934104 1.28568i
\(52\) 23.0755 31.7606i 0.443759 0.610782i
\(53\) −12.8475 39.5406i −0.242406 0.746049i −0.996052 0.0887689i \(-0.971707\pi\)
0.753646 0.657280i \(-0.228293\pi\)
\(54\) 5.81234i 0.107636i
\(55\) 0 0
\(56\) −1.50658 −0.0269032
\(57\) −109.846 + 35.6911i −1.92712 + 0.626160i
\(58\) 10.2016 + 7.41192i 0.175890 + 0.127792i
\(59\) −82.3115 + 59.8028i −1.39511 + 1.01361i −0.399828 + 0.916590i \(0.630930\pi\)
−0.995283 + 0.0970170i \(0.969070\pi\)
\(60\) 0 0
\(61\) 48.4164 + 15.7314i 0.793712 + 0.257893i 0.677684 0.735353i \(-0.262984\pi\)
0.116028 + 0.993246i \(0.462984\pi\)
\(62\) 14.6738 + 20.1967i 0.236674 + 0.325753i
\(63\) −1.14183 + 1.57160i −0.0181243 + 0.0249460i
\(64\) 5.79431 + 17.8330i 0.0905361 + 0.278641i
\(65\) 0 0
\(66\) −25.3738 19.4451i −0.384452 0.294623i
\(67\) −40.1803 −0.599707 −0.299853 0.953985i \(-0.596938\pi\)
−0.299853 + 0.953985i \(0.596938\pi\)
\(68\) −66.9098 + 21.7403i −0.983968 + 0.319711i
\(69\) −89.3738 64.9339i −1.29527 0.941071i
\(70\) 0 0
\(71\) 8.70820 26.8011i 0.122651 0.377480i −0.870815 0.491611i \(-0.836408\pi\)
0.993466 + 0.114131i \(0.0364083\pi\)
\(72\) −36.1418 11.7432i −0.501970 0.163100i
\(73\) 58.6656 + 80.7463i 0.803639 + 1.10611i 0.992274 + 0.124067i \(0.0395937\pi\)
−0.188635 + 0.982047i \(0.560406\pi\)
\(74\) 5.66718 7.80021i 0.0765836 0.105408i
\(75\) 0 0
\(76\) 100.257i 1.31917i
\(77\) 0.868810 + 2.92641i 0.0112833 + 0.0380054i
\(78\) 32.8591 0.421271
\(79\) −125.172 + 40.6709i −1.58446 + 0.514822i −0.963200 0.268784i \(-0.913378\pi\)
−0.621258 + 0.783606i \(0.713378\pi\)
\(80\) 0 0
\(81\) 76.8566 55.8396i 0.948847 0.689378i
\(82\) −4.05418 + 12.4775i −0.0494412 + 0.152164i
\(83\) 119.271 + 38.7533i 1.43699 + 0.466908i 0.920959 0.389660i \(-0.127407\pi\)
0.516035 + 0.856567i \(0.327407\pi\)
\(84\) 2.26548 + 3.11817i 0.0269701 + 0.0371211i
\(85\) 0 0
\(86\) 7.81153 + 24.0414i 0.0908317 + 0.279551i
\(87\) 69.4242i 0.797979i
\(88\) −49.1935 + 33.8545i −0.559017 + 0.384710i
\(89\) 88.9493 0.999430 0.499715 0.866190i \(-0.333438\pi\)
0.499715 + 0.866190i \(0.333438\pi\)
\(90\) 0 0
\(91\) −2.53851 1.84433i −0.0278957 0.0202674i
\(92\) −77.5795 + 56.3648i −0.843256 + 0.612661i
\(93\) 42.4721 130.716i 0.456690 1.40555i
\(94\) 32.8171 + 10.6629i 0.349119 + 0.113436i
\(95\) 0 0
\(96\) −68.0426 + 93.6526i −0.708777 + 0.975548i
\(97\) −14.9311 45.9533i −0.153929 0.473745i 0.844122 0.536152i \(-0.180122\pi\)
−0.998051 + 0.0624067i \(0.980122\pi\)
\(98\) 35.5446i 0.362700i
\(99\) −1.96807 + 76.9748i −0.0198795 + 0.777524i
\(100\) 0 0
\(101\) 36.5836 11.8867i 0.362214 0.117690i −0.122256 0.992499i \(-0.539013\pi\)
0.484469 + 0.874808i \(0.339013\pi\)
\(102\) −47.6393 34.6120i −0.467052 0.339333i
\(103\) 102.075 74.1622i 0.991024 0.720021i 0.0308788 0.999523i \(-0.490169\pi\)
0.960145 + 0.279502i \(0.0901694\pi\)
\(104\) 18.9681 58.3777i 0.182385 0.561324i
\(105\) 0 0
\(106\) −17.7548 24.4374i −0.167499 0.230542i
\(107\) −51.5542 + 70.9582i −0.481815 + 0.663161i −0.978852 0.204568i \(-0.934421\pi\)
0.497038 + 0.867729i \(0.334421\pi\)
\(108\) −8.58359 26.4176i −0.0794777 0.244607i
\(109\) 144.692i 1.32745i −0.747978 0.663723i \(-0.768975\pi\)
0.747978 0.663723i \(-0.231025\pi\)
\(110\) 0 0
\(111\) −53.0820 −0.478217
\(112\) 2.62461 0.852788i 0.0234340 0.00761418i
\(113\) −104.867 76.1905i −0.928029 0.674252i 0.0174806 0.999847i \(-0.494435\pi\)
−0.945509 + 0.325595i \(0.894435\pi\)
\(114\) −67.8885 + 49.3239i −0.595514 + 0.432666i
\(115\) 0 0
\(116\) −57.3131 18.6221i −0.494078 0.160536i
\(117\) −46.5213 64.0311i −0.397618 0.547274i
\(118\) −43.4493 + 59.8028i −0.368214 + 0.506804i
\(119\) 1.73762 + 5.34785i 0.0146019 + 0.0449399i
\(120\) 0 0
\(121\) 94.1287 + 76.0315i 0.777923 + 0.628360i
\(122\) 36.9868 0.303171
\(123\) 68.6950 22.3204i 0.558496 0.181466i
\(124\) −96.5197 70.1257i −0.778385 0.565530i
\(125\) 0 0
\(126\) −0.436141 + 1.34230i −0.00346144 + 0.0106532i
\(127\) 146.655 + 47.6511i 1.15476 + 0.375205i 0.822936 0.568134i \(-0.192335\pi\)
0.331828 + 0.943340i \(0.392335\pi\)
\(128\) 76.0501 + 104.674i 0.594141 + 0.817766i
\(129\) 81.8034 112.593i 0.634135 0.872812i
\(130\) 0 0
\(131\) 128.496i 0.980883i −0.871474 0.490442i \(-0.836836\pi\)
0.871474 0.490442i \(-0.163164\pi\)
\(132\) 144.043 + 50.9080i 1.09123 + 0.385667i
\(133\) 8.01316 0.0602493
\(134\) −27.7639 + 9.02105i −0.207194 + 0.0673213i
\(135\) 0 0
\(136\) −88.9919 + 64.6564i −0.654352 + 0.475415i
\(137\) 19.1378 58.9000i 0.139692 0.429927i −0.856599 0.515984i \(-0.827427\pi\)
0.996290 + 0.0860566i \(0.0274266\pi\)
\(138\) −76.3344 24.8025i −0.553148 0.179729i
\(139\) 134.155 + 184.649i 0.965144 + 1.32841i 0.944462 + 0.328620i \(0.106584\pi\)
0.0206817 + 0.999786i \(0.493416\pi\)
\(140\) 0 0
\(141\) −58.7051 180.676i −0.416348 1.28139i
\(142\) 20.4742i 0.144185i
\(143\) −124.333 3.17891i −0.869460 0.0222301i
\(144\) 69.6099 0.483402
\(145\) 0 0
\(146\) 58.6656 + 42.6231i 0.401819 + 0.291939i
\(147\) −158.318 + 115.025i −1.07699 + 0.782482i
\(148\) −14.2386 + 43.8218i −0.0962066 + 0.296094i
\(149\) −74.8460 24.3189i −0.502322 0.163214i 0.0468856 0.998900i \(-0.485070\pi\)
−0.549208 + 0.835686i \(0.685070\pi\)
\(150\) 0 0
\(151\) 41.7852 57.5124i 0.276723 0.380877i −0.647922 0.761707i \(-0.724362\pi\)
0.924645 + 0.380830i \(0.124362\pi\)
\(152\) 48.4402 + 149.084i 0.318686 + 0.980813i
\(153\) 141.835i 0.927029i
\(154\) 1.25735 + 1.82704i 0.00816464 + 0.0118639i
\(155\) 0 0
\(156\) −149.348 + 48.5260i −0.957356 + 0.311064i
\(157\) −173.730 126.223i −1.10656 0.803965i −0.124444 0.992227i \(-0.539715\pi\)
−0.982119 + 0.188261i \(0.939715\pi\)
\(158\) −77.3607 + 56.2058i −0.489625 + 0.355733i
\(159\) −51.3901 + 158.162i −0.323208 + 0.994732i
\(160\) 0 0
\(161\) 4.50502 + 6.20063i 0.0279815 + 0.0385133i
\(162\) 40.5698 55.8396i 0.250431 0.344689i
\(163\) 28.1753 + 86.7147i 0.172855 + 0.531992i 0.999529 0.0306887i \(-0.00977005\pi\)
−0.826674 + 0.562681i \(0.809770\pi\)
\(164\) 62.6983i 0.382307i
\(165\) 0 0
\(166\) 91.1146 0.548883
\(167\) −43.1910 + 14.0336i −0.258629 + 0.0840335i −0.435461 0.900207i \(-0.643415\pi\)
0.176833 + 0.984241i \(0.443415\pi\)
\(168\) 4.87539 + 3.54218i 0.0290202 + 0.0210844i
\(169\) −33.2984 + 24.1927i −0.197032 + 0.143152i
\(170\) 0 0
\(171\) 192.230 + 62.4595i 1.12415 + 0.365260i
\(172\) −71.0081 97.7343i −0.412838 0.568223i
\(173\) 89.0780 122.605i 0.514902 0.708701i −0.469835 0.882754i \(-0.655686\pi\)
0.984736 + 0.174053i \(0.0556865\pi\)
\(174\) −15.5867 47.9709i −0.0895787 0.275695i
\(175\) 0 0
\(176\) 66.5370 86.8237i 0.378051 0.493316i
\(177\) 406.971 2.29927
\(178\) 61.4625 19.9704i 0.345295 0.112193i
\(179\) 137.932 + 100.214i 0.770570 + 0.559852i 0.902134 0.431456i \(-0.142000\pi\)
−0.131564 + 0.991308i \(0.542000\pi\)
\(180\) 0 0
\(181\) −51.2918 + 157.860i −0.283380 + 0.872154i 0.703499 + 0.710696i \(0.251620\pi\)
−0.986880 + 0.161458i \(0.948380\pi\)
\(182\) −2.16814 0.704473i −0.0119129 0.00387073i
\(183\) −119.692 164.742i −0.654054 0.900229i
\(184\) −88.1287 + 121.299i −0.478960 + 0.659232i
\(185\) 0 0
\(186\) 99.8580i 0.536871i
\(187\) 176.910 + 135.574i 0.946042 + 0.724995i
\(188\) −164.904 −0.877147
\(189\) −2.11146 + 0.686054i −0.0111717 + 0.00362991i
\(190\) 0 0
\(191\) −9.05573 + 6.57937i −0.0474122 + 0.0344470i −0.611239 0.791446i \(-0.709329\pi\)
0.563827 + 0.825893i \(0.309329\pi\)
\(192\) 23.1772 71.3322i 0.120715 0.371522i
\(193\) −119.472 38.8189i −0.619027 0.201134i −0.0173185 0.999850i \(-0.505513\pi\)
−0.601708 + 0.798716i \(0.705513\pi\)
\(194\) −20.6343 28.4007i −0.106362 0.146395i
\(195\) 0 0
\(196\) 52.4919 + 161.553i 0.267816 + 0.824252i
\(197\) 361.517i 1.83511i −0.397607 0.917556i \(-0.630159\pi\)
0.397607 0.917556i \(-0.369841\pi\)
\(198\) 15.9220 + 53.6302i 0.0804143 + 0.270859i
\(199\) 267.692 1.34519 0.672593 0.740013i \(-0.265181\pi\)
0.672593 + 0.740013i \(0.265181\pi\)
\(200\) 0 0
\(201\) 130.026 + 94.4696i 0.646897 + 0.469998i
\(202\) 22.6099 16.4271i 0.111930 0.0813221i
\(203\) −1.48840 + 4.58082i −0.00733201 + 0.0225656i
\(204\) 267.639 + 86.9613i 1.31196 + 0.426281i
\(205\) 0 0
\(206\) 53.8820 74.1622i 0.261563 0.360011i
\(207\) 59.7411 + 183.864i 0.288604 + 0.888233i
\(208\) 112.437i 0.540561i
\(209\) 261.649 180.065i 1.25191 0.861554i
\(210\) 0 0
\(211\) −214.971 + 69.8482i −1.01882 + 0.331034i −0.770360 0.637609i \(-0.779924\pi\)
−0.248458 + 0.968643i \(0.579924\pi\)
\(212\) 116.786 + 84.8501i 0.550878 + 0.400236i
\(213\) −91.1935 + 66.2560i −0.428138 + 0.311061i
\(214\) −19.6919 + 60.6056i −0.0920184 + 0.283204i
\(215\) 0 0
\(216\) −25.5279 35.1361i −0.118185 0.162667i
\(217\) −5.60488 + 7.71445i −0.0258289 + 0.0355505i
\(218\) −32.4853 99.9794i −0.149015 0.458621i
\(219\) 399.232i 1.82298i
\(220\) 0 0
\(221\) −229.098 −1.03664
\(222\) −36.6788 + 11.9177i −0.165220 + 0.0536832i
\(223\) 226.619 + 164.648i 1.01623 + 0.738333i 0.965506 0.260379i \(-0.0838477\pi\)
0.0507223 + 0.998713i \(0.483848\pi\)
\(224\) 6.49749 4.72070i 0.0290066 0.0210746i
\(225\) 0 0
\(226\) −89.5673 29.1022i −0.396316 0.128771i
\(227\) −51.2392 70.5247i −0.225723 0.310681i 0.681102 0.732189i \(-0.261501\pi\)
−0.906825 + 0.421507i \(0.861501\pi\)
\(228\) 235.718 324.438i 1.03385 1.42298i
\(229\) 33.1722 + 102.094i 0.144857 + 0.445823i 0.996993 0.0774974i \(-0.0246929\pi\)
−0.852136 + 0.523321i \(0.824693\pi\)
\(230\) 0 0
\(231\) 4.06888 11.5128i 0.0176142 0.0498388i
\(232\) −94.2229 −0.406133
\(233\) 125.326 40.7210i 0.537881 0.174768i −0.0274639 0.999623i \(-0.508743\pi\)
0.565345 + 0.824855i \(0.308743\pi\)
\(234\) −46.5213 33.7997i −0.198809 0.144443i
\(235\) 0 0
\(236\) 109.165 335.974i 0.462562 1.42362i
\(237\) 500.689 + 162.684i 2.11261 + 0.686429i
\(238\) 2.40133 + 3.30515i 0.0100896 + 0.0138872i
\(239\) −54.0983 + 74.4599i −0.226353 + 0.311548i −0.907055 0.421013i \(-0.861675\pi\)
0.680702 + 0.732560i \(0.261675\pi\)
\(240\) 0 0
\(241\) 26.5140i 0.110017i 0.998486 + 0.0550083i \(0.0175185\pi\)
−0.998486 + 0.0550083i \(0.982481\pi\)
\(242\) 82.1115 + 31.4033i 0.339304 + 0.129766i
\(243\) −308.000 −1.26749
\(244\) −168.108 + 54.6217i −0.688969 + 0.223859i
\(245\) 0 0
\(246\) 42.4559 30.8460i 0.172585 0.125390i
\(247\) −100.887 + 310.498i −0.408449 + 1.25708i
\(248\) −177.408 57.6434i −0.715356 0.232433i
\(249\) −294.853 405.830i −1.18415 1.62984i
\(250\) 0 0
\(251\) −41.7279 128.425i −0.166247 0.511655i 0.832879 0.553455i \(-0.186691\pi\)
−0.999126 + 0.0417998i \(0.986691\pi\)
\(252\) 6.74498i 0.0267658i
\(253\) 286.436 + 101.233i 1.13216 + 0.400131i
\(254\) 112.034 0.441080
\(255\) 0 0
\(256\) 15.3713 + 11.1679i 0.0600442 + 0.0436247i
\(257\) −197.636 + 143.591i −0.769013 + 0.558720i −0.901661 0.432443i \(-0.857652\pi\)
0.132649 + 0.991163i \(0.457652\pi\)
\(258\) 31.2461 96.1657i 0.121109 0.372735i
\(259\) 3.50251 + 1.13804i 0.0135232 + 0.00439396i
\(260\) 0 0
\(261\) −71.4114 + 98.2893i −0.273607 + 0.376587i
\(262\) −28.8491 88.7883i −0.110111 0.338887i
\(263\) 1.93304i 0.00734998i 0.999993 + 0.00367499i \(0.00116979\pi\)
−0.999993 + 0.00367499i \(0.998830\pi\)
\(264\) 238.790 + 6.10532i 0.904508 + 0.0231262i
\(265\) 0 0
\(266\) 5.53695 1.79907i 0.0208156 0.00676340i
\(267\) −287.846 209.132i −1.07807 0.783267i
\(268\) 112.867 82.0029i 0.421146 0.305981i
\(269\) −56.6149 + 174.243i −0.210464 + 0.647743i 0.788980 + 0.614419i \(0.210609\pi\)
−0.999445 + 0.0333242i \(0.989391\pi\)
\(270\) 0 0
\(271\) 298.339 + 410.629i 1.10088 + 1.51524i 0.834208 + 0.551449i \(0.185925\pi\)
0.266675 + 0.963786i \(0.414075\pi\)
\(272\) 118.435 163.011i 0.435421 0.599306i
\(273\) 3.87849 + 11.9368i 0.0142069 + 0.0437245i
\(274\) 44.9956i 0.164217i
\(275\) 0 0
\(276\) 383.574 1.38976
\(277\) −33.6985 + 10.9493i −0.121655 + 0.0395282i −0.369212 0.929345i \(-0.620372\pi\)
0.247557 + 0.968873i \(0.420372\pi\)
\(278\) 134.155 + 97.4693i 0.482572 + 0.350609i
\(279\) −194.589 + 141.377i −0.697450 + 0.506727i
\(280\) 0 0
\(281\) −325.066 105.620i −1.15682 0.375873i −0.333110 0.942888i \(-0.608098\pi\)
−0.823707 + 0.567015i \(0.808098\pi\)
\(282\) −81.1285 111.664i −0.287690 0.395971i
\(283\) −243.002 + 334.463i −0.858664 + 1.18185i 0.123222 + 0.992379i \(0.460677\pi\)
−0.981886 + 0.189471i \(0.939323\pi\)
\(284\) 30.2361 + 93.0570i 0.106465 + 0.327666i
\(285\) 0 0
\(286\) −86.6256 + 25.7179i −0.302887 + 0.0899227i
\(287\) −5.01124 −0.0174608
\(288\) 192.667 62.6012i 0.668981 0.217365i
\(289\) 98.3419 + 71.4496i 0.340283 + 0.247230i
\(290\) 0 0
\(291\) −59.7245 + 183.813i −0.205239 + 0.631660i
\(292\) −329.586 107.089i −1.12872 0.366743i
\(293\) −113.360 156.026i −0.386893 0.532513i 0.570501 0.821297i \(-0.306749\pi\)
−0.957394 + 0.288784i \(0.906749\pi\)
\(294\) −83.5704 + 115.025i −0.284253 + 0.391241i
\(295\) 0 0
\(296\) 72.0433i 0.243389i
\(297\) −53.5279 + 69.8482i −0.180228 + 0.235179i
\(298\) −57.1772 −0.191870
\(299\) −296.985 + 96.4962i −0.993260 + 0.322730i
\(300\) 0 0
\(301\) −7.81153 + 5.67541i −0.0259519 + 0.0188552i
\(302\) 15.9605 49.1215i 0.0528494 0.162654i
\(303\) −146.334 47.5469i −0.482952 0.156921i
\(304\) −168.776 232.300i −0.555183 0.764143i
\(305\) 0 0
\(306\) 31.8441 + 98.0059i 0.104066 + 0.320281i
\(307\) 335.115i 1.09158i −0.837922 0.545790i \(-0.816230\pi\)
0.837922 0.545790i \(-0.183770\pi\)
\(308\) −8.41294 6.44722i −0.0273147 0.0209325i
\(309\) −504.689 −1.63330
\(310\) 0 0
\(311\) −175.687 127.644i −0.564910 0.410431i 0.268343 0.963323i \(-0.413524\pi\)
−0.833253 + 0.552893i \(0.813524\pi\)
\(312\) −198.636 + 144.318i −0.636655 + 0.462557i
\(313\) −183.753 + 565.533i −0.587069 + 1.80681i 0.00372731 + 0.999993i \(0.498814\pi\)
−0.590797 + 0.806821i \(0.701186\pi\)
\(314\) −148.384 48.2127i −0.472559 0.153544i
\(315\) 0 0
\(316\) 268.607 369.706i 0.850022 1.16995i
\(317\) 22.1860 + 68.2814i 0.0699872 + 0.215399i 0.979932 0.199330i \(-0.0638765\pi\)
−0.909945 + 0.414729i \(0.863877\pi\)
\(318\) 120.825i 0.379954i
\(319\) 54.3363 + 183.021i 0.170333 + 0.573733i
\(320\) 0 0
\(321\) 333.666 108.415i 1.03946 0.337740i
\(322\) 4.50502 + 3.27309i 0.0139908 + 0.0101649i
\(323\) 473.328 343.893i 1.46541 1.06468i
\(324\) −101.930 + 313.709i −0.314599 + 0.968237i
\(325\) 0 0
\(326\) 38.9373 + 53.5926i 0.119440 + 0.164395i
\(327\) −340.190 + 468.232i −1.04034 + 1.43190i
\(328\) −30.2933 93.2333i −0.0923578 0.284248i
\(329\) 13.1801i 0.0400611i
\(330\) 0 0
\(331\) −292.681 −0.884232 −0.442116 0.896958i \(-0.645772\pi\)
−0.442116 + 0.896958i \(0.645772\pi\)
\(332\) −414.123 + 134.557i −1.24736 + 0.405292i
\(333\) 75.1525 + 54.6015i 0.225683 + 0.163968i
\(334\) −26.6935 + 19.3940i −0.0799206 + 0.0580657i
\(335\) 0 0
\(336\) −10.4984 3.41115i −0.0312454 0.0101522i
\(337\) −230.410 317.132i −0.683710 0.941046i 0.316261 0.948672i \(-0.397572\pi\)
−0.999971 + 0.00762639i \(0.997572\pi\)
\(338\) −17.5770 + 24.1927i −0.0520030 + 0.0715760i
\(339\) 160.223 + 493.115i 0.472634 + 1.45462i
\(340\) 0 0
\(341\) −9.66061 + 377.844i −0.0283302 + 1.10805i
\(342\) 146.851 0.429389
\(343\) 25.8450 8.39755i 0.0753499 0.0244827i
\(344\) −152.812 111.024i −0.444220 0.322744i
\(345\) 0 0
\(346\) 34.0248 104.717i 0.0983375 0.302652i
\(347\) −60.4984 19.6571i −0.174347 0.0566488i 0.220543 0.975377i \(-0.429217\pi\)
−0.394890 + 0.918729i \(0.629217\pi\)
\(348\) 141.686 + 195.014i 0.407143 + 0.560384i
\(349\) 144.289 198.596i 0.413435 0.569044i −0.550617 0.834758i \(-0.685608\pi\)
0.964052 + 0.265714i \(0.0856076\pi\)
\(350\) 0 0
\(351\) 90.4534i 0.257702i
\(352\) 106.080 300.149i 0.301362 0.852695i
\(353\) −216.535 −0.613413 −0.306707 0.951804i \(-0.599227\pi\)
−0.306707 + 0.951804i \(0.599227\pi\)
\(354\) 281.210 91.3706i 0.794378 0.258109i
\(355\) 0 0
\(356\) −249.860 + 181.534i −0.701854 + 0.509927i
\(357\) 6.95048 21.3914i 0.0194691 0.0599199i
\(358\) 117.808 + 38.2782i 0.329073 + 0.106922i
\(359\) −401.418 552.505i −1.11816 1.53901i −0.808818 0.588059i \(-0.799892\pi\)
−0.309339 0.950952i \(-0.600108\pi\)
\(360\) 0 0
\(361\) −146.088 449.612i −0.404675 1.24546i
\(362\) 120.594i 0.333133i
\(363\) −125.846 467.353i −0.346683 1.28747i
\(364\) 10.8948 0.0299306
\(365\) 0 0
\(366\) −119.692 86.9613i −0.327027 0.237599i
\(367\) 59.6180 43.3150i 0.162447 0.118025i −0.503592 0.863942i \(-0.667988\pi\)
0.666039 + 0.745917i \(0.267988\pi\)
\(368\) 84.8688 261.199i 0.230622 0.709781i
\(369\) −120.216 39.0607i −0.325790 0.105855i
\(370\) 0 0
\(371\) 6.78175 9.33427i 0.0182796 0.0251598i
\(372\) 147.469 + 453.863i 0.396422 + 1.22006i
\(373\) 58.3795i 0.156514i 0.996933 + 0.0782568i \(0.0249354\pi\)
−0.996933 + 0.0782568i \(0.975065\pi\)
\(374\) 152.680 + 53.9607i 0.408235 + 0.144280i
\(375\) 0 0
\(376\) −245.214 + 79.6749i −0.652165 + 0.211901i
\(377\) −158.761 115.346i −0.421116 0.305959i
\(378\) −1.30495 + 0.948103i −0.00345225 + 0.00250821i
\(379\) −57.9346 + 178.304i −0.152862 + 0.470460i −0.997938 0.0641858i \(-0.979555\pi\)
0.845076 + 0.534646i \(0.179555\pi\)
\(380\) 0 0
\(381\) −362.551 499.009i −0.951578 1.30973i
\(382\) −4.78019 + 6.57937i −0.0125136 + 0.0172235i
\(383\) 1.89202 + 5.82303i 0.00493999 + 0.0152037i 0.953496 0.301405i \(-0.0974557\pi\)
−0.948556 + 0.316609i \(0.897456\pi\)
\(384\) 517.537i 1.34775i
\(385\) 0 0
\(386\) −91.2686 −0.236447
\(387\) −231.631 + 75.2615i −0.598530 + 0.194474i
\(388\) 135.726 + 98.6110i 0.349810 + 0.254152i
\(389\) 182.923 132.901i 0.470239 0.341649i −0.327295 0.944922i \(-0.606137\pi\)
0.797534 + 0.603273i \(0.206137\pi\)
\(390\) 0 0
\(391\) 532.214 + 172.927i 1.36116 + 0.442268i
\(392\) 156.112 + 214.870i 0.398246 + 0.548139i
\(393\) −302.111 + 415.821i −0.768731 + 1.05807i
\(394\) −81.1656 249.802i −0.206004 0.634016i
\(395\) 0 0
\(396\) −151.567 220.240i −0.382746 0.556162i
\(397\) 215.123 0.541873 0.270936 0.962597i \(-0.412667\pi\)
0.270936 + 0.962597i \(0.412667\pi\)
\(398\) 184.971 60.1006i 0.464750 0.151006i
\(399\) −25.9311 18.8401i −0.0649903 0.0472182i
\(400\) 0 0
\(401\) −167.199 + 514.586i −0.416955 + 1.28326i 0.493535 + 0.869726i \(0.335705\pi\)
−0.910490 + 0.413531i \(0.864295\pi\)
\(402\) 111.056 + 36.0842i 0.276258 + 0.0897617i
\(403\) −228.358 314.307i −0.566644 0.779919i
\(404\) −78.5047 + 108.052i −0.194318 + 0.267456i
\(405\) 0 0
\(406\) 3.49943i 0.00861929i
\(407\) 139.939 41.5458i 0.343830 0.102078i
\(408\) 440.000 1.07843
\(409\) 348.785 113.327i 0.852774 0.277083i 0.150167 0.988661i \(-0.452019\pi\)
0.702608 + 0.711578i \(0.252019\pi\)
\(410\) 0 0
\(411\) −200.413 + 145.609i −0.487624 + 0.354279i
\(412\) −135.376 + 416.646i −0.328583 + 1.01128i
\(413\) −26.8531 8.72511i −0.0650197 0.0211262i
\(414\) 82.5602 + 113.634i 0.199421 + 0.274479i
\(415\) 0 0
\(416\) 101.116 + 311.203i 0.243067 + 0.748083i
\(417\) 912.952i 2.18933i
\(418\) 140.368 183.166i 0.335809 0.438195i
\(419\) 164.543 0.392704 0.196352 0.980533i \(-0.437090\pi\)
0.196352 + 0.980533i \(0.437090\pi\)
\(420\) 0 0
\(421\) −97.2887 70.6844i −0.231090 0.167896i 0.466215 0.884672i \(-0.345617\pi\)
−0.697304 + 0.716775i \(0.745617\pi\)
\(422\) −132.859 + 96.5278i −0.314832 + 0.228739i
\(423\) −102.734 + 316.183i −0.242870 + 0.747476i
\(424\) 214.659 + 69.7470i 0.506271 + 0.164498i
\(425\) 0 0
\(426\) −48.1378 + 66.2560i −0.112999 + 0.155530i
\(427\) 4.36570 + 13.4363i 0.0102241 + 0.0314666i
\(428\) 304.538i 0.711538i
\(429\) 394.875 + 302.611i 0.920455 + 0.705387i
\(430\) 0 0
\(431\) 514.135 167.052i 1.19289 0.387593i 0.355748 0.934582i \(-0.384226\pi\)
0.837140 + 0.546989i \(0.184226\pi\)
\(432\) 64.3607 + 46.7608i 0.148983 + 0.108243i
\(433\) 172.618 125.414i 0.398656 0.289641i −0.370337 0.928897i \(-0.620758\pi\)
0.768993 + 0.639257i \(0.220758\pi\)
\(434\) −2.14087 + 6.58893i −0.00493289 + 0.0151819i
\(435\) 0 0
\(436\) 295.297 + 406.441i 0.677286 + 0.932205i
\(437\) 468.737 645.161i 1.07262 1.47634i
\(438\) −89.6331 275.862i −0.204642 0.629823i
\(439\) 29.8597i 0.0680175i −0.999422 0.0340087i \(-0.989173\pi\)
0.999422 0.0340087i \(-0.0108274\pi\)
\(440\) 0 0
\(441\) 342.461 0.776555
\(442\) −158.303 + 51.4358i −0.358152 + 0.116371i
\(443\) −46.3262 33.6580i −0.104574 0.0759774i 0.534269 0.845314i \(-0.320587\pi\)
−0.638843 + 0.769337i \(0.720587\pi\)
\(444\) 149.108 108.334i 0.335830 0.243994i
\(445\) 0 0
\(446\) 193.556 + 62.8901i 0.433981 + 0.141009i
\(447\) 185.029 + 254.671i 0.413936 + 0.569734i
\(448\) −3.05861 + 4.20981i −0.00682725 + 0.00939690i
\(449\) 183.771 + 565.590i 0.409291 + 1.25967i 0.917259 + 0.398291i \(0.130397\pi\)
−0.507968 + 0.861376i \(0.669603\pi\)
\(450\) 0 0
\(451\) −163.629 + 112.608i −0.362814 + 0.249686i
\(452\) 450.069 0.995728
\(453\) −270.440 + 87.8712i −0.596997 + 0.193976i
\(454\) −51.2392 37.2274i −0.112862 0.0819988i
\(455\) 0 0
\(456\) 193.761 596.335i 0.424914 1.30775i
\(457\) 451.899 + 146.831i 0.988837 + 0.321293i 0.758396 0.651794i \(-0.225983\pi\)
0.230441 + 0.973086i \(0.425983\pi\)
\(458\) 45.8429 + 63.0973i 0.100094 + 0.137767i
\(459\) −95.2786 + 131.140i −0.207579 + 0.285708i
\(460\) 0 0
\(461\) 290.362i 0.629853i −0.949116 0.314927i \(-0.898020\pi\)
0.949116 0.314927i \(-0.101980\pi\)
\(462\) 0.226751 8.86865i 0.000490803 0.0191962i
\(463\) −86.1358 −0.186039 −0.0930193 0.995664i \(-0.529652\pi\)
−0.0930193 + 0.995664i \(0.529652\pi\)
\(464\) 164.146 53.3342i 0.353763 0.114944i
\(465\) 0 0
\(466\) 77.4559 56.2750i 0.166214 0.120762i
\(467\) −69.8177 + 214.877i −0.149503 + 0.460122i −0.997563 0.0697786i \(-0.977771\pi\)
0.848060 + 0.529900i \(0.177771\pi\)
\(468\) 261.358 + 84.9204i 0.558458 + 0.181454i
\(469\) −6.55418 9.02105i −0.0139748 0.0192346i
\(470\) 0 0
\(471\) 265.437 + 816.930i 0.563559 + 1.73446i
\(472\) 552.343i 1.17022i
\(473\) −127.533 + 360.850i −0.269626 + 0.762897i
\(474\) 382.492 0.806946
\(475\) 0 0
\(476\) −15.7953 11.4759i −0.0331833 0.0241091i
\(477\) 235.447 171.062i 0.493599 0.358621i
\(478\) −20.6637 + 63.5964i −0.0432295 + 0.133047i
\(479\) 79.9888 + 25.9899i 0.166991 + 0.0542587i 0.391319 0.920255i \(-0.372019\pi\)
−0.224328 + 0.974514i \(0.572019\pi\)
\(480\) 0 0
\(481\) −88.1945 + 121.389i −0.183356 + 0.252369i
\(482\) 5.95277 + 18.3207i 0.0123501 + 0.0380098i
\(483\) 30.6576i 0.0634733i
\(484\) −419.580 21.4694i −0.866900 0.0443583i
\(485\) 0 0
\(486\) −212.823 + 69.1503i −0.437907 + 0.142285i
\(487\) 535.336 + 388.945i 1.09925 + 0.798654i 0.980938 0.194322i \(-0.0622506\pi\)
0.118315 + 0.992976i \(0.462251\pi\)
\(488\) −223.589 + 162.447i −0.458173 + 0.332882i
\(489\) 112.701 346.859i 0.230473 0.709323i
\(490\) 0 0
\(491\) −438.057 602.934i −0.892174 1.22797i −0.972898 0.231235i \(-0.925723\pi\)
0.0807242 0.996736i \(-0.474277\pi\)
\(492\) −147.413 + 202.896i −0.299619 + 0.412390i
\(493\) 108.673 + 334.460i 0.220431 + 0.678417i
\(494\) 237.200i 0.480161i
\(495\) 0 0
\(496\) 341.692 0.688895
\(497\) 7.43769 2.41665i 0.0149652 0.00486248i
\(498\) −294.853 214.223i −0.592074 0.430167i
\(499\) −224.927 + 163.419i −0.450756 + 0.327493i −0.789894 0.613243i \(-0.789864\pi\)
0.339138 + 0.940736i \(0.389864\pi\)
\(500\) 0 0
\(501\) 172.764 + 56.1344i 0.344838 + 0.112045i
\(502\) −57.6666 79.3713i −0.114874 0.158110i
\(503\) −158.365 + 217.971i −0.314842 + 0.433342i −0.936884 0.349642i \(-0.886303\pi\)
0.622042 + 0.782984i \(0.286303\pi\)
\(504\) −3.25891 10.0299i −0.00646609 0.0199006i
\(505\) 0 0
\(506\) 220.650 + 5.64152i 0.436068 + 0.0111493i
\(507\) 164.636 0.324726
\(508\) −509.206 + 165.451i −1.00237 + 0.325691i
\(509\) −424.177 308.183i −0.833354 0.605467i 0.0871522 0.996195i \(-0.472223\pi\)
−0.920506 + 0.390728i \(0.872223\pi\)
\(510\) 0 0
\(511\) −8.55920 + 26.3425i −0.0167499 + 0.0515509i
\(512\) −479.078 155.662i −0.935699 0.304027i
\(513\) 135.777 + 186.881i 0.264673 + 0.364291i
\(514\) −104.325 + 143.591i −0.202967 + 0.279360i
\(515\) 0 0
\(516\) 483.225i 0.936483i
\(517\) 296.172 + 430.363i 0.572867 + 0.832424i
\(518\) 2.67568 0.00516541
\(519\) −576.525 + 187.324i −1.11084 + 0.360933i
\(520\) 0 0
\(521\) 308.640 224.240i 0.592400 0.430404i −0.250773 0.968046i \(-0.580685\pi\)
0.843173 + 0.537642i \(0.180685\pi\)
\(522\) −27.2767 + 83.9491i −0.0522543 + 0.160822i
\(523\) −607.503 197.390i −1.16157 0.377418i −0.336083 0.941832i \(-0.609102\pi\)
−0.825492 + 0.564414i \(0.809102\pi\)
\(524\) 262.243 + 360.947i 0.500464 + 0.688829i
\(525\) 0 0
\(526\) 0.433995 + 1.33570i 0.000825086 + 0.00253935i
\(527\) 696.223i 1.32111i
\(528\) −419.453 + 124.529i −0.794418 + 0.235851i
\(529\) 233.756 0.441882
\(530\) 0 0
\(531\) −576.181 418.620i −1.08509 0.788361i
\(532\) −22.5091 + 16.3538i −0.0423103 + 0.0307402i
\(533\) 63.0923 194.178i 0.118372 0.364312i
\(534\) −245.850 79.8814i −0.460393 0.149591i
\(535\) 0 0
\(536\) 128.215 176.473i 0.239207 0.329240i
\(537\) −210.741 648.596i −0.392442 1.20781i
\(538\) 133.110i 0.247416i
\(539\) 327.343 427.148i 0.607315 0.792482i
\(540\) 0 0
\(541\) 117.236 38.0923i 0.216703 0.0704109i −0.198654 0.980070i \(-0.563657\pi\)
0.415356 + 0.909659i \(0.363657\pi\)
\(542\) 298.339 + 216.756i 0.550442 + 0.399919i
\(543\) 537.135 390.251i 0.989198 0.718695i
\(544\) 181.205 557.693i 0.333098 1.02517i
\(545\) 0 0
\(546\) 5.35995 + 7.37733i 0.00981675 + 0.0135116i
\(547\) 199.538 274.640i 0.364786 0.502085i −0.586688 0.809813i \(-0.699569\pi\)
0.951474 + 0.307728i \(0.0995687\pi\)
\(548\) 66.4489 + 204.509i 0.121257 + 0.373191i
\(549\) 356.356i 0.649100i
\(550\) 0 0
\(551\) 501.151 0.909530
\(552\) 570.381 185.328i 1.03330 0.335739i
\(553\) −29.5492 21.4687i −0.0534343 0.0388223i
\(554\) −20.8268 + 15.1316i −0.0375936 + 0.0273133i
\(555\) 0 0
\(556\) −753.687 244.888i −1.35555 0.440446i
\(557\) 310.414 + 427.248i 0.557296 + 0.767052i 0.990980 0.134013i \(-0.0427865\pi\)
−0.433684 + 0.901065i \(0.642787\pi\)
\(558\) −102.716 + 141.377i −0.184079 + 0.253364i
\(559\) −121.565 374.140i −0.217469 0.669302i
\(560\) 0 0
\(561\) −253.738 854.667i −0.452297 1.52347i
\(562\) −248.328 −0.441865
\(563\) 244.087 79.3087i 0.433547 0.140868i −0.0841094 0.996457i \(-0.526805\pi\)
0.517657 + 0.855589i \(0.326805\pi\)
\(564\) 533.639 + 387.712i 0.946169 + 0.687432i
\(565\) 0 0
\(566\) −92.8185 + 285.666i −0.163990 + 0.504710i
\(567\) 25.0735 + 8.14689i 0.0442214 + 0.0143684i
\(568\) 89.9230 + 123.768i 0.158315 + 0.217902i
\(569\) 146.337 201.415i 0.257182 0.353981i −0.660828 0.750537i \(-0.729795\pi\)
0.918010 + 0.396556i \(0.129795\pi\)
\(570\) 0 0
\(571\) 393.435i 0.689028i −0.938781 0.344514i \(-0.888044\pi\)
0.938781 0.344514i \(-0.111956\pi\)
\(572\) 355.741 244.818i 0.621924 0.428003i
\(573\) 44.7740 0.0781396
\(574\) −3.46268 + 1.12509i −0.00603254 + 0.00196009i
\(575\) 0 0
\(576\) −106.188 + 77.1500i −0.184354 + 0.133941i
\(577\) −76.8228 + 236.436i −0.133142 + 0.409768i −0.995296 0.0968772i \(-0.969115\pi\)
0.862155 + 0.506645i \(0.169115\pi\)
\(578\) 83.9940 + 27.2913i 0.145318 + 0.0472168i
\(579\) 295.351 + 406.516i 0.510106 + 0.702101i
\(580\) 0 0
\(581\) 10.7546 + 33.0993i 0.0185105 + 0.0569695i
\(582\) 140.421i 0.241273i
\(583\) 11.6891 457.181i 0.0200499 0.784186i
\(584\) −541.840 −0.927808
\(585\) 0 0
\(586\) −113.360 82.3607i −0.193447 0.140547i
\(587\) −308.959 + 224.472i −0.526336 + 0.382406i −0.818986 0.573814i \(-0.805463\pi\)
0.292649 + 0.956220i \(0.405463\pi\)
\(588\) 209.967 646.213i 0.357088 1.09900i
\(589\) 943.596 + 306.593i 1.60203 + 0.520531i
\(590\) 0 0
\(591\) −849.978 + 1169.89i −1.43820 + 1.97952i
\(592\) −40.7796 125.507i −0.0688845 0.212005i
\(593\) 467.858i 0.788968i 0.918903 + 0.394484i \(0.129077\pi\)
−0.918903 + 0.394484i \(0.870923\pi\)
\(594\) −21.3050 + 60.2817i −0.0358669 + 0.101484i
\(595\) 0 0
\(596\) 259.875 84.4386i 0.436033 0.141676i
\(597\) −866.269 629.382i −1.45104 1.05424i
\(598\) −183.547 + 133.354i −0.306934 + 0.223001i
\(599\) 180.089 554.257i 0.300649 0.925304i −0.680616 0.732641i \(-0.738288\pi\)
0.981265 0.192663i \(-0.0617124\pi\)
\(600\) 0 0
\(601\) 439.974 + 605.572i 0.732070 + 1.00761i 0.999036 + 0.0439019i \(0.0139789\pi\)
−0.266966 + 0.963706i \(0.586021\pi\)
\(602\) −4.12343 + 5.67541i −0.00684954 + 0.00942759i
\(603\) −86.9149 267.496i −0.144137 0.443609i
\(604\) 246.832i 0.408662i
\(605\) 0 0
\(606\) −111.790 −0.184471
\(607\) 715.161 232.370i 1.17819 0.382817i 0.346496 0.938052i \(-0.387372\pi\)
0.831694 + 0.555235i \(0.187372\pi\)
\(608\) −676.048 491.178i −1.11192 0.807858i
\(609\) 15.5867 11.3244i 0.0255939 0.0185951i
\(610\) 0 0
\(611\) −510.710 165.940i −0.835860 0.271587i
\(612\) −289.468 398.418i −0.472987 0.651010i
\(613\) 589.502 811.379i 0.961666 1.32362i 0.0155207 0.999880i \(-0.495059\pi\)
0.946146 0.323741i \(-0.104941\pi\)
\(614\) −75.2380 231.559i −0.122537 0.377131i
\(615\) 0 0
\(616\) −15.6252 5.52231i −0.0253656 0.00896480i
\(617\) −436.456 −0.707384 −0.353692 0.935362i \(-0.615074\pi\)
−0.353692 + 0.935362i \(0.615074\pi\)
\(618\) −348.731 + 113.310i −0.564290 + 0.183349i
\(619\) −102.839 74.7172i −0.166138 0.120706i 0.501610 0.865094i \(-0.332741\pi\)
−0.667748 + 0.744388i \(0.732741\pi\)
\(620\) 0 0
\(621\) −68.2755 + 210.130i −0.109945 + 0.338374i
\(622\) −150.055 48.7557i −0.241245 0.0783853i
\(623\) 14.5093 + 19.9704i 0.0232894 + 0.0320552i
\(624\) 264.354 363.853i 0.423645 0.583097i
\(625\) 0 0
\(626\) 432.028i 0.690141i
\(627\) −1270.07 32.4729i −2.02563 0.0517908i
\(628\) 745.616 1.18729
\(629\) 255.729 83.0915i 0.406565 0.132101i
\(630\) 0 0
\(631\) 182.154 132.343i 0.288675 0.209735i −0.434017 0.900905i \(-0.642904\pi\)
0.722692 + 0.691170i \(0.242904\pi\)
\(632\) 220.795 679.538i 0.349360 1.07522i
\(633\) 859.882 + 279.393i 1.35842 + 0.441379i
\(634\) 30.6602 + 42.2002i 0.0483600 + 0.0665618i
\(635\) 0 0
\(636\) −178.433 549.162i −0.280556 0.863462i
\(637\) 553.156i 0.868377i
\(638\) 78.6362 + 114.265i 0.123254 + 0.179099i
\(639\) 197.262 0.308705
\(640\) 0 0
\(641\) 852.241 + 619.190i 1.32955 + 0.965975i 0.999760 + 0.0219202i \(0.00697799\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(642\) 206.217 149.825i 0.321210 0.233373i
\(643\) 259.872 799.805i 0.404156 1.24386i −0.517442 0.855718i \(-0.673116\pi\)
0.921598 0.388146i \(-0.126884\pi\)
\(644\) −25.3094 8.22352i −0.0393003 0.0127694i
\(645\) 0 0
\(646\) 249.853 343.893i 0.386769 0.532342i
\(647\) −19.8766 61.1738i −0.0307211 0.0945499i 0.934520 0.355910i \(-0.115829\pi\)
−0.965241 + 0.261360i \(0.915829\pi\)
\(648\) 515.738i 0.795892i
\(649\) −1072.88 + 318.524i −1.65314 + 0.490792i
\(650\) 0 0
\(651\) 36.2755 11.7866i 0.0557228 0.0181054i
\(652\) −256.118 186.081i −0.392820 0.285400i
\(653\) −865.002 + 628.461i −1.32466 + 0.962421i −0.324797 + 0.945784i \(0.605296\pi\)
−0.999862 + 0.0166374i \(0.994704\pi\)
\(654\) −129.941 + 399.918i −0.198687 + 0.611495i
\(655\) 0 0
\(656\) 105.548 + 145.275i 0.160897 + 0.221455i
\(657\) −410.659 + 565.224i −0.625052 + 0.860311i
\(658\) 2.95912 + 9.10724i 0.00449714 + 0.0138408i
\(659\) 283.355i 0.429978i −0.976617 0.214989i \(-0.931028\pi\)
0.976617 0.214989i \(-0.0689715\pi\)
\(660\) 0 0
\(661\) −845.155 −1.27860 −0.639300 0.768957i \(-0.720776\pi\)
−0.639300 + 0.768957i \(0.720776\pi\)
\(662\) −202.237 + 65.7109i −0.305495 + 0.0992612i
\(663\) 741.378 + 538.642i 1.11822 + 0.812432i
\(664\) −550.795 + 400.176i −0.829511 + 0.602675i
\(665\) 0 0
\(666\) 64.1879 + 20.8559i 0.0963782 + 0.0313152i
\(667\) 281.749 + 387.794i 0.422412 + 0.581400i
\(668\) 92.6834 127.568i 0.138748 0.190970i
\(669\) −346.243 1065.63i −0.517553 1.59286i
\(670\) 0 0
\(671\) 444.479 + 340.625i 0.662413 + 0.507637i
\(672\) −32.1253 −0.0478056
\(673\) 422.060 137.135i 0.627132 0.203767i 0.0218275 0.999762i \(-0.493052\pi\)
0.605304 + 0.795994i \(0.293052\pi\)
\(674\) −230.410 167.403i −0.341855 0.248372i
\(675\) 0 0
\(676\) 44.1616 135.915i 0.0653278 0.201058i
\(677\) −914.604 297.173i −1.35097 0.438955i −0.457949 0.888979i \(-0.651416\pi\)
−0.893017 + 0.450023i \(0.851416\pi\)
\(678\) 221.423 + 304.762i 0.326582 + 0.449502i
\(679\) 7.88160 10.8481i 0.0116077 0.0159766i
\(680\) 0 0
\(681\) 348.693i 0.512031i
\(682\) 78.1559 + 263.253i 0.114598 + 0.386001i
\(683\) 488.033 0.714542 0.357271 0.934001i \(-0.383707\pi\)
0.357271 + 0.934001i \(0.383707\pi\)
\(684\) −667.450 + 216.868i −0.975804 + 0.317058i
\(685\) 0 0
\(686\) 15.9731 11.6051i 0.0232844 0.0169171i
\(687\) 132.689 408.374i 0.193142 0.594431i
\(688\) 329.058 + 106.917i 0.478281 + 0.155403i
\(689\) 276.306 + 380.303i 0.401025 + 0.551964i
\(690\) 0 0
\(691\) −153.473 472.340i −0.222102 0.683560i −0.998573 0.0534066i \(-0.982992\pi\)
0.776471 0.630153i \(-0.217008\pi\)
\(692\) 526.197i 0.760400i
\(693\) −17.6030 + 12.1142i −0.0254011 + 0.0174808i
\(694\) −46.2167 −0.0665947
\(695\) 0 0
\(696\) 304.912 + 221.531i 0.438092 + 0.318292i
\(697\) −296.008 + 215.062i −0.424689 + 0.308555i
\(698\) 55.1134 169.622i 0.0789590 0.243011i
\(699\) −501.305 162.884i −0.717174 0.233024i
\(700\) 0 0
\(701\) 294.515 405.366i 0.420136 0.578268i −0.545518 0.838099i \(-0.683667\pi\)
0.965654 + 0.259831i \(0.0836670\pi\)
\(702\) −20.3081 62.5018i −0.0289289 0.0890339i
\(703\) 383.182i 0.545067i
\(704\) −5.27184 + 206.191i −0.00748840 + 0.292885i
\(705\) 0 0
\(706\) −149.622 + 48.6151i −0.211929 + 0.0688599i
\(707\) 8.63621 + 6.27458i 0.0122153 + 0.00887493i
\(708\) −1143.19 + 830.574i −1.61467 + 1.17313i
\(709\) −0.643159 + 1.97944i −0.000907135 + 0.00279188i −0.951509 0.307621i \(-0.900467\pi\)
0.950602 + 0.310413i \(0.100467\pi\)
\(710\) 0 0
\(711\) −541.525 745.345i −0.761638 1.04831i
\(712\) −283.836 + 390.666i −0.398646 + 0.548689i
\(713\) 293.249 + 902.528i 0.411289 + 1.26582i
\(714\) 16.3416i 0.0228873i
\(715\) 0 0
\(716\) −591.976 −0.826783
\(717\) 350.132 113.765i 0.488329 0.158668i
\(718\) −401.418 291.647i −0.559078 0.406194i
\(719\) −568.638 + 413.140i −0.790874 + 0.574603i −0.908223 0.418487i \(-0.862560\pi\)
0.117349 + 0.993091i \(0.462560\pi\)
\(720\) 0 0
\(721\) 33.3009 + 10.8201i 0.0461871 + 0.0150071i
\(722\) −201.888 277.875i −0.279624 0.384869i
\(723\) 62.3382 85.8012i 0.0862216 0.118674i
\(724\) −178.092 548.111i −0.245984 0.757060i
\(725\) 0 0
\(726\) −191.885 294.679i −0.264304 0.405894i
\(727\) −1163.47 −1.60037 −0.800184 0.599754i \(-0.795265\pi\)
−0.800184 + 0.599754i \(0.795265\pi\)
\(728\) 16.2007 5.26392i 0.0222537 0.00723065i
\(729\) 304.999 + 221.595i 0.418381 + 0.303971i
\(730\) 0 0
\(731\) −217.852 + 670.480i −0.298019 + 0.917209i
\(732\) 672.433 + 218.487i 0.918625 + 0.298479i
\(733\) −768.849 1058.23i −1.04891 1.44370i −0.889752 0.456443i \(-0.849123\pi\)
−0.159155 0.987254i \(-0.550877\pi\)
\(734\) 31.4702 43.3150i 0.0428750 0.0590123i
\(735\) 0 0
\(736\) 799.272i 1.08597i
\(737\) −416.723 147.280i −0.565432 0.199837i
\(738\) −91.8371 −0.124441
\(739\) −1085.92 + 352.838i −1.46945 + 0.477453i −0.930942 0.365167i \(-0.881012\pi\)
−0.538508 + 0.842621i \(0.681012\pi\)
\(740\) 0 0
\(741\) 1056.50 767.594i 1.42578 1.03589i
\(742\) 2.59040 7.97242i 0.00349110 0.0107445i
\(743\) 542.947 + 176.414i 0.730749 + 0.237435i 0.650677 0.759354i \(-0.274485\pi\)
0.0800717 + 0.996789i \(0.474485\pi\)
\(744\) 438.577 + 603.650i 0.589486 + 0.811357i
\(745\) 0 0
\(746\) 13.1070 + 40.3393i 0.0175697 + 0.0540741i
\(747\) 877.859i 1.17518i
\(748\) −773.632 19.7800i −1.03427 0.0264438i
\(749\) −24.3406 −0.0324974
\(750\) 0 0
\(751\) 496.597 + 360.799i 0.661247 + 0.480424i 0.867084 0.498162i \(-0.165992\pi\)
−0.205837 + 0.978586i \(0.565992\pi\)
\(752\) 382.089 277.604i 0.508097 0.369154i
\(753\) −166.912 + 513.702i −0.221662 + 0.682207i
\(754\) −135.598 44.0584i −0.179838 0.0584329i
\(755\) 0 0
\(756\) 4.53097 6.23634i 0.00599335 0.00824913i
\(757\) 251.984 + 775.528i 0.332872 + 1.02448i 0.967761 + 0.251872i \(0.0810461\pi\)
−0.634888 + 0.772604i \(0.718954\pi\)
\(758\) 136.212i 0.179700i
\(759\) −688.912 1001.05i −0.907657 1.31890i
\(760\) 0 0
\(761\) −488.577 + 158.748i −0.642020 + 0.208605i −0.611892 0.790941i \(-0.709591\pi\)
−0.0301278 + 0.999546i \(0.509591\pi\)
\(762\) −362.551 263.409i −0.475789 0.345681i
\(763\) 32.4853 23.6019i 0.0425757 0.0309331i
\(764\) 12.0100 36.9631i 0.0157200 0.0483811i
\(765\) 0 0
\(766\) 2.61470 + 3.59883i 0.00341345 + 0.00469821i
\(767\) 676.171 930.670i 0.881579 1.21339i
\(768\) −23.4853 72.2803i −0.0305798 0.0941150i
\(769\) 501.416i 0.652036i 0.945364 + 0.326018i \(0.105707\pi\)
−0.945364 + 0.326018i \(0.894293\pi\)
\(770\) 0 0
\(771\) 977.167 1.26740
\(772\) 414.823 134.784i 0.537336 0.174591i
\(773\) −363.619 264.185i −0.470400 0.341765i 0.327197 0.944956i \(-0.393896\pi\)
−0.797597 + 0.603191i \(0.793896\pi\)
\(774\) −143.156 + 104.009i −0.184956 + 0.134378i
\(775\) 0 0
\(776\) 249.472 + 81.0584i 0.321485 + 0.104457i
\(777\) −8.65869 11.9177i −0.0111437 0.0153380i
\(778\) 96.5585 132.901i 0.124111 0.170824i
\(779\) 161.124 + 495.888i 0.206834 + 0.636569i
\(780\) 0 0
\(781\) 188.554 246.043i 0.241427 0.315036i
\(782\) 406.575 0.519917
\(783\) −132.053 + 42.9065i −0.168650 + 0.0547976i
\(784\) −393.590 285.960i −0.502028 0.364744i
\(785\) 0 0
\(786\) −115.396 + 355.153i −0.146815 + 0.451849i
\(787\) −547.379 177.854i −0.695526 0.225990i −0.0601458 0.998190i \(-0.519157\pi\)
−0.635380 + 0.772200i \(0.719157\pi\)
\(788\) 737.809 + 1015.51i 0.936306 + 1.28872i
\(789\) 4.54486 6.25546i 0.00576028 0.00792834i
\(790\) 0 0
\(791\) 35.9723i 0.0454770i
\(792\) −331.794 254.269i −0.418932 0.321047i
\(793\) −575.601 −0.725852
\(794\) 148.647 48.2982i 0.187212 0.0608290i
\(795\) 0 0
\(796\) −751.951 + 546.325i −0.944662 + 0.686337i
\(797\) −7.71885 + 23.7562i −0.00968488 + 0.0298070i −0.955782 0.294076i \(-0.904988\pi\)
0.946097 + 0.323883i \(0.104988\pi\)
\(798\) −22.1478 7.19626i −0.0277542 0.00901787i
\(799\) 565.639 + 778.535i 0.707933 + 0.974386i
\(800\) 0 0
\(801\) 192.408 + 592.171i 0.240210 + 0.739289i
\(802\) 393.109i 0.490160i
\(803\) 312.467 + 1052.48i 0.389125 + 1.31069i
\(804\) −558.046 −0.694088
\(805\) 0 0
\(806\) −228.358 165.911i −0.283322 0.205846i
\(807\) 592.879 430.752i 0.734671 0.533769i
\(808\) −64.5310 + 198.606i −0.0798651 + 0.245799i
\(809\) −711.977 231.335i −0.880070 0.285952i −0.166084 0.986112i \(-0.553112\pi\)
−0.713987 + 0.700159i \(0.753112\pi\)
\(810\) 0 0
\(811\) 138.201 190.218i 0.170409 0.234547i −0.715268 0.698851i \(-0.753695\pi\)
0.885676 + 0.464303i \(0.153695\pi\)
\(812\) −5.16792 15.9052i −0.00636443 0.0195877i
\(813\) 2030.26i 2.49725i
\(814\) 87.3676 60.1256i 0.107331 0.0738644i
\(815\) 0 0
\(816\) −766.525 + 249.059i −0.939369 + 0.305219i
\(817\) 812.771 + 590.513i 0.994824 + 0.722782i
\(818\) 215.561 156.614i 0.263522 0.191460i
\(819\) 6.78736 20.8894i 0.00828738 0.0255059i
\(820\) 0 0
\(821\) −90.2423 124.208i −0.109918 0.151288i 0.750514 0.660854i \(-0.229806\pi\)
−0.860432 + 0.509566i \(0.829806\pi\)
\(822\) −105.791 + 145.609i −0.128699 + 0.177140i
\(823\) −399.465 1229.43i −0.485377 1.49384i −0.831434 0.555624i \(-0.812480\pi\)
0.346057 0.938214i \(-0.387520\pi\)
\(824\) 684.967i 0.831270i
\(825\) 0 0
\(826\) −20.5140 −0.0248353
\(827\) −594.248 + 193.083i −0.718559 + 0.233474i −0.645398 0.763846i \(-0.723309\pi\)
−0.0731605 + 0.997320i \(0.523309\pi\)
\(828\) −543.057 394.554i −0.655866 0.476514i
\(829\) 1192.01 866.043i 1.43788 1.04468i 0.449405 0.893328i \(-0.351636\pi\)
0.988479 0.151355i \(-0.0483638\pi\)
\(830\) 0 0
\(831\) 134.794 + 43.7973i 0.162207 + 0.0527043i
\(832\) −124.616 171.519i −0.149779 0.206152i
\(833\) 582.664 801.969i 0.699477 0.962748i
\(834\) −204.971 630.835i −0.245768 0.756396i
\(835\) 0 0
\(836\) −367.489 + 1039.80i −0.439580 + 1.24378i
\(837\) −274.885 −0.328417
\(838\) 113.696 36.9422i 0.135676 0.0440838i
\(839\) 1083.63 + 787.303i 1.29157 + 0.938383i 0.999836 0.0181155i \(-0.00576666\pi\)
0.291737 + 0.956498i \(0.405767\pi\)
\(840\) 0 0
\(841\) 166.797 513.350i 0.198332 0.610404i
\(842\) −83.0945 26.9990i −0.0986870 0.0320654i
\(843\) 803.607 + 1106.07i 0.953270 + 1.31206i
\(844\) 461.305 634.932i 0.546570 0.752289i
\(845\) 0 0
\(846\) 241.542i 0.285511i
\(847\) −1.71597 + 33.5354i −0.00202594 + 0.0395931i
\(848\) −413.438 −0.487544
\(849\) 1572.74 511.015i 1.85246 0.601902i
\(850\) 0 0
\(851\) 296.509 215.426i 0.348424 0.253145i
\(852\) 120.944 372.228i 0.141953 0.436888i
\(853\) −1106.68 359.583i −1.29740 0.421551i −0.422724 0.906259i \(-0.638926\pi\)
−0.874676 + 0.484708i \(0.838926\pi\)
\(854\) 6.03326 + 8.30406i 0.00706470 + 0.00972373i
\(855\) 0 0
\(856\) −147.141 452.853i −0.171894 0.529034i
\(857\) 1069.27i 1.24769i −0.781549 0.623844i \(-0.785570\pi\)
0.781549 0.623844i \(-0.214430\pi\)
\(858\) 340.793 + 120.444i 0.397194 + 0.140378i
\(859\) 998.288 1.16215 0.581076 0.813849i \(-0.302632\pi\)
0.581076 + 0.813849i \(0.302632\pi\)
\(860\) 0 0
\(861\) 16.2167 + 11.7821i 0.0188347 + 0.0136842i
\(862\) 317.753 230.861i 0.368623 0.267820i
\(863\) −217.399 + 669.085i −0.251911 + 0.775301i 0.742512 + 0.669833i \(0.233634\pi\)
−0.994423 + 0.105468i \(0.966366\pi\)
\(864\) 220.190 + 71.5442i 0.254850 + 0.0828058i
\(865\) 0 0
\(866\) 91.1189 125.414i 0.105218 0.144820i
\(867\) −150.253 462.431i −0.173302 0.533370i
\(868\) 33.1089i 0.0381438i
\(869\) −1447.28 37.0036i −1.66545 0.0425818i
\(870\) 0 0
\(871\) 432.071 140.388i 0.496063 0.161181i
\(872\) 635.487 + 461.708i 0.728770 + 0.529482i
\(873\) 273.631 198.805i 0.313438 0.227726i
\(874\) 179.042 551.033i 0.204853 0.630473i
\(875\) 0 0
\(876\) 814.780 + 1121.45i 0.930114 + 1.28019i
\(877\) 198.377 273.042i 0.226199 0.311336i −0.680800 0.732470i \(-0.738368\pi\)
0.906999 + 0.421133i \(0.138368\pi\)
\(878\) −6.70391 20.6325i −0.00763544 0.0234995i
\(879\) 771.436i 0.877629i
\(880\) 0 0
\(881\) −1011.82 −1.14849 −0.574246 0.818682i \(-0.694705\pi\)
−0.574246 + 0.818682i \(0.694705\pi\)
\(882\) 236.635 76.8873i 0.268293 0.0871738i
\(883\) 260.572 + 189.317i 0.295099 + 0.214402i 0.725476 0.688247i \(-0.241620\pi\)
−0.430377 + 0.902649i \(0.641620\pi\)
\(884\) 643.541 467.560i 0.727988 0.528914i
\(885\) 0 0
\(886\) −39.5673 12.8562i −0.0446584 0.0145104i
\(887\) 437.553 + 602.240i 0.493296 + 0.678963i 0.980992 0.194050i \(-0.0621625\pi\)
−0.487696 + 0.873014i \(0.662163\pi\)
\(888\) 169.384 233.137i 0.190748 0.262542i
\(889\) 13.2239 + 40.6989i 0.0148750 + 0.0457805i
\(890\) 0 0
\(891\) 1001.78 297.415i 1.12434 0.333799i
\(892\) −972.603 −1.09036
\(893\) 1304.24 423.773i 1.46052 0.474550i
\(894\) 185.029 + 134.432i 0.206968 + 0.150371i
\(895\) 0 0
\(896\) −11.0956 + 34.1486i −0.0123834 + 0.0381123i
\(897\) 1187.94 + 385.985i 1.32435 + 0.430306i
\(898\) 253.966 + 349.554i 0.282813 + 0.389258i
\(899\) −350.535 + 482.470i −0.389916 + 0.536674i
\(900\) 0 0
\(901\) 842.411i 0.934973i
\(902\) −87.7829 + 114.547i −0.0973203 + 0.126993i
\(903\) 38.6223 0.0427711
\(904\) 669.259 217.456i 0.740331 0.240548i
\(905\) 0 0
\(906\) −167.141 + 121.435i −0.184482 + 0.134034i
\(907\) 173.823 534.971i 0.191646 0.589825i −0.808354 0.588697i \(-0.799641\pi\)
0.999999 0.00112787i \(-0.000359011\pi\)
\(908\) 287.863 + 93.5325i 0.317030 + 0.103009i
\(909\) 158.269 + 217.839i 0.174114 + 0.239647i
\(910\) 0 0
\(911\) −21.9218 67.4684i −0.0240634 0.0740597i 0.938304 0.345813i \(-0.112397\pi\)
−0.962367 + 0.271753i \(0.912397\pi\)
\(912\) 1148.55i 1.25938i
\(913\) 1094.94 + 839.106i 1.19928 + 0.919064i
\(914\) 345.220 0.377702
\(915\) 0 0
\(916\) −301.541 219.082i −0.329193 0.239173i
\(917\) 28.8491 20.9601i 0.0314603 0.0228572i
\(918\) −36.3932 + 112.007i −0.0396440 + 0.122012i
\(919\) 64.4021 + 20.9255i 0.0700784 + 0.0227699i 0.343846 0.939026i \(-0.388270\pi\)
−0.273768 + 0.961796i \(0.588270\pi\)
\(920\) 0 0
\(921\) −787.902 + 1084.45i −0.855486 + 1.17748i
\(922\) −65.1904 200.635i −0.0707054 0.217609i
\(923\) 318.626i 0.345207i
\(924\) 12.0665 + 40.6436i 0.0130590 + 0.0439866i
\(925\) 0 0
\(926\) −59.5184 + 19.3387i −0.0642747 + 0.0208841i
\(927\) 714.528 + 519.135i 0.770796 + 0.560016i
\(928\) 406.359 295.237i 0.437887 0.318144i
\(929\) 385.947 1187.82i 0.415443 1.27860i −0.496411 0.868088i \(-0.665349\pi\)
0.911854 0.410515i \(-0.134651\pi\)
\(930\) 0 0
\(931\) −830.328 1142.85i −0.891866 1.22755i
\(932\) −268.937 + 370.160i −0.288559 + 0.397168i
\(933\) 268.426 + 826.129i 0.287702 + 0.885455i
\(934\) 164.151i 0.175751i
\(935\) 0 0
\(936\) 429.674 0.459053
\(937\) 515.209 167.401i 0.549849 0.178657i −0.0208996 0.999782i \(-0.506653\pi\)
0.570749 + 0.821125i \(0.306653\pi\)
\(938\) −6.55418 4.76189i −0.00698739 0.00507664i
\(939\) 1924.28 1398.07i 2.04929 1.48890i
\(940\) 0 0
\(941\) −561.217 182.350i −0.596405 0.193784i −0.00476834 0.999989i \(-0.501518\pi\)
−0.591636 + 0.806205i \(0.701518\pi\)
\(942\) 366.824 + 504.890i 0.389410 + 0.535977i
\(943\) −293.137 + 403.468i −0.310856 + 0.427856i
\(944\) 312.650 + 962.238i 0.331197 + 1.01932i
\(945\) 0 0
\(946\) −7.10716 + 277.974i −0.00751286 + 0.293842i
\(947\) 527.364 0.556878 0.278439 0.960454i \(-0.410183\pi\)
0.278439 + 0.960454i \(0.410183\pi\)
\(948\) −1738.46 + 564.860i −1.83382 + 0.595844i
\(949\) −912.973 663.313i −0.962036 0.698960i
\(950\) 0 0
\(951\) 88.7438 273.125i 0.0933163 0.287198i
\(952\) −29.0325 9.43324i −0.0304963 0.00990886i
\(953\) −1038.40 1429.23i −1.08961 1.49972i −0.848483 0.529223i \(-0.822483\pi\)
−0.241125 0.970494i \(-0.577517\pi\)
\(954\) 124.284 171.062i 0.130277 0.179310i
\(955\) 0 0
\(956\) 319.567i 0.334275i
\(957\) 254.472 720.021i 0.265906 0.752373i
\(958\) 61.1060 0.0637849
\(959\) 16.3456 5.31101i 0.0170444 0.00553807i
\(960\) 0 0
\(961\) −177.706 + 129.111i −0.184917 + 0.134350i
\(962\) −33.6873 + 103.679i −0.0350180 + 0.107774i
\(963\) −583.915 189.725i −0.606350 0.197015i
\(964\) −54.1117 74.4783i −0.0561325 0.0772597i
\(965\) 0 0
\(966\) −6.88307 21.1839i −0.00712533 0.0219295i
\(967\) 1457.23i 1.50696i 0.657470 + 0.753481i \(0.271627\pi\)
−0.657470 + 0.753481i \(0.728373\pi\)
\(968\) −634.294 + 170.799i −0.655263 + 0.176445i
\(969\) −2340.26 −2.41513
\(970\) 0 0
\(971\) −151.983 110.422i −0.156522 0.113720i 0.506768 0.862083i \(-0.330840\pi\)
−0.663290 + 0.748363i \(0.730840\pi\)
\(972\) 865.177 628.588i 0.890100 0.646696i
\(973\) −19.5729 + 60.2393i −0.0201161 + 0.0619109i
\(974\) 457.232 + 148.564i 0.469437 + 0.152529i
\(975\) 0 0
\(976\) 297.562 409.559i 0.304879 0.419631i
\(977\) −389.172 1197.75i −0.398334 1.22595i −0.926335 0.376702i \(-0.877058\pi\)
0.528001 0.849244i \(-0.322942\pi\)
\(978\) 264.977i 0.270937i
\(979\) 922.522 + 326.041i 0.942310 + 0.333035i
\(980\) 0 0
\(981\) 963.269 312.985i 0.981926 0.319047i
\(982\) −438.057 318.267i −0.446087 0.324101i
\(983\) −842.819 + 612.344i −0.857395 + 0.622934i −0.927175 0.374628i \(-0.877770\pi\)
0.0697799 + 0.997562i \(0.477770\pi\)
\(984\) −121.173 + 372.933i −0.123144 + 0.378997i
\(985\) 0 0
\(986\) 150.182 + 206.708i 0.152314 + 0.209643i
\(987\) 30.9883 42.6518i 0.0313965 0.0432135i
\(988\) −350.293 1078.09i −0.354548 1.09119i
\(989\) 960.916i 0.971604i
\(990\) 0 0
\(991\) −664.312 −0.670345 −0.335173 0.942157i \(-0.608795\pi\)
−0.335173 + 0.942157i \(0.608795\pi\)
\(992\) 945.736 307.288i 0.953363 0.309767i
\(993\) 947.135 + 688.134i 0.953811 + 0.692985i
\(994\) 4.59675 3.33973i 0.00462449 0.00335989i
\(995\) 0 0
\(996\) 1656.49 + 538.227i 1.66315 + 0.540389i
\(997\) 116.026 + 159.697i 0.116375 + 0.160177i 0.863231 0.504809i \(-0.168437\pi\)
−0.746855 + 0.664987i \(0.768437\pi\)
\(998\) −118.731 + 163.419i −0.118969 + 0.163747i
\(999\) 32.8065 + 100.968i 0.0328393 + 0.101069i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.x.d.226.1 4
5.2 odd 4 275.3.q.c.149.2 8
5.3 odd 4 275.3.q.c.149.1 8
5.4 even 2 55.3.i.a.6.1 4
11.2 odd 10 inner 275.3.x.d.101.1 4
55.2 even 20 275.3.q.c.24.1 8
55.13 even 20 275.3.q.c.24.2 8
55.14 even 10 605.3.c.a.241.3 4
55.19 odd 10 605.3.c.a.241.2 4
55.24 odd 10 55.3.i.a.46.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.a.6.1 4 5.4 even 2
55.3.i.a.46.1 yes 4 55.24 odd 10
275.3.q.c.24.1 8 55.2 even 20
275.3.q.c.24.2 8 55.13 even 20
275.3.q.c.149.1 8 5.3 odd 4
275.3.q.c.149.2 8 5.2 odd 4
275.3.x.d.101.1 4 11.2 odd 10 inner
275.3.x.d.226.1 4 1.1 even 1 trivial
605.3.c.a.241.2 4 55.19 odd 10
605.3.c.a.241.3 4 55.14 even 10