gp: [N,k,chi] = [6026,2,Mod(1,6026)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6026, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6026.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [36,-36,4,36,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(2\)
\( +1 \)
\(23\)
\( +1 \)
\(131\)
\( -1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6026))\):
\( T_{3}^{36} - 4 T_{3}^{35} - 69 T_{3}^{34} + 283 T_{3}^{33} + 2127 T_{3}^{32} - 9012 T_{3}^{31} + \cdots - 364600 \)
T3^36 - 4*T3^35 - 69*T3^34 + 283*T3^33 + 2127*T3^32 - 9012*T3^31 - 38630*T3^30 + 170981*T3^29 + 458230*T3^28 - 2155888*T3^27 - 3707793*T3^26 + 19077095*T3^25 + 20612482*T3^24 - 121920228*T3^23 - 75900548*T3^22 + 570299137*T3^21 + 157742641*T3^20 - 1956392903*T3^19 - 8502184*T3^18 + 4881398290*T3^17 - 1059843781*T3^16 - 8687431331*T3^15 + 3500252602*T3^14 + 10659604436*T3^13 - 6023900330*T3^12 - 8535122862*T3^11 + 6129262453*T3^10 + 4081222561*T3^9 - 3638574498*T3^8 - 1001936935*T3^7 + 1187287682*T3^6 + 86157525*T3^5 - 195753429*T3^4 + 4270412*T3^3 + 14330206*T3^2 - 591920*T3 - 364600
\( T_{5}^{36} - T_{5}^{35} - 114 T_{5}^{34} + 104 T_{5}^{33} + 5859 T_{5}^{32} - 4863 T_{5}^{31} + \cdots - 67756950 \)
T5^36 - T5^35 - 114*T5^34 + 104*T5^33 + 5859*T5^32 - 4863*T5^31 - 179862*T5^30 + 135669*T5^29 + 3684219*T5^28 - 2528395*T5^27 - 53288458*T5^26 + 33404381*T5^25 + 561838553*T5^24 - 323926974*T5^23 - 4395007112*T5^22 + 2352873296*T5^21 + 25716828606*T5^20 - 12929872493*T5^19 - 112621485225*T5^18 + 53820568567*T5^17 + 366668897214*T5^16 - 168430921412*T5^15 - 874502359398*T5^14 + 389594433838*T5^13 + 1489590027589*T5^12 - 646930736400*T5^11 - 1739021608755*T5^10 + 735779597048*T5^9 + 1300096874903*T5^8 - 530179114223*T5^7 - 552300511219*T5^6 + 210073952972*T5^5 + 105317940562*T5^4 - 34132138822*T5^3 - 5365872077*T5^2 + 1707936310*T5 - 67756950