Properties

Label 2-6026-1.1-c1-0-73
Degree $2$
Conductor $6026$
Sign $1$
Analytic cond. $48.1178$
Root an. cond. $6.93670$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2.76·3-s + 4-s − 2.60·5-s − 2.76·6-s − 3.00·7-s − 8-s + 4.64·9-s + 2.60·10-s + 4.33·11-s + 2.76·12-s − 0.432·13-s + 3.00·14-s − 7.20·15-s + 16-s + 1.52·17-s − 4.64·18-s + 5.33·19-s − 2.60·20-s − 8.31·21-s − 4.33·22-s − 23-s − 2.76·24-s + 1.79·25-s + 0.432·26-s + 4.54·27-s − 3.00·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.59·3-s + 0.5·4-s − 1.16·5-s − 1.12·6-s − 1.13·7-s − 0.353·8-s + 1.54·9-s + 0.824·10-s + 1.30·11-s + 0.798·12-s − 0.120·13-s + 0.803·14-s − 1.86·15-s + 0.250·16-s + 0.369·17-s − 1.09·18-s + 1.22·19-s − 0.582·20-s − 1.81·21-s − 0.925·22-s − 0.208·23-s − 0.564·24-s + 0.358·25-s + 0.0848·26-s + 0.874·27-s − 0.568·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6026 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6026 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6026\)    =    \(2 \cdot 23 \cdot 131\)
Sign: $1$
Analytic conductor: \(48.1178\)
Root analytic conductor: \(6.93670\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6026,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.923476511\)
\(L(\frac12)\) \(\approx\) \(1.923476511\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
23 \( 1 + T \)
131 \( 1 - T \)
good3 \( 1 - 2.76T + 3T^{2} \)
5 \( 1 + 2.60T + 5T^{2} \)
7 \( 1 + 3.00T + 7T^{2} \)
11 \( 1 - 4.33T + 11T^{2} \)
13 \( 1 + 0.432T + 13T^{2} \)
17 \( 1 - 1.52T + 17T^{2} \)
19 \( 1 - 5.33T + 19T^{2} \)
29 \( 1 - 10.4T + 29T^{2} \)
31 \( 1 + 4.34T + 31T^{2} \)
37 \( 1 + 0.502T + 37T^{2} \)
41 \( 1 + 5.81T + 41T^{2} \)
43 \( 1 + 7.60T + 43T^{2} \)
47 \( 1 + 3.30T + 47T^{2} \)
53 \( 1 - 0.273T + 53T^{2} \)
59 \( 1 + 2.64T + 59T^{2} \)
61 \( 1 + 10.0T + 61T^{2} \)
67 \( 1 - 13.6T + 67T^{2} \)
71 \( 1 - 12.1T + 71T^{2} \)
73 \( 1 - 10.3T + 73T^{2} \)
79 \( 1 - 16.0T + 79T^{2} \)
83 \( 1 - 8.70T + 83T^{2} \)
89 \( 1 - 16.0T + 89T^{2} \)
97 \( 1 - 6.18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.038982565135251009960561133340, −7.73240574811784951648640386904, −6.72883903634291393272280314208, −6.56940192578402130726095182873, −5.06218776336867955371066886580, −3.92018519737605064384331903847, −3.43704600029987613630587658350, −3.03111762918474803953371549659, −1.86518181515476755574815958952, −0.75425457321401128738739545253, 0.75425457321401128738739545253, 1.86518181515476755574815958952, 3.03111762918474803953371549659, 3.43704600029987613630587658350, 3.92018519737605064384331903847, 5.06218776336867955371066886580, 6.56940192578402130726095182873, 6.72883903634291393272280314208, 7.73240574811784951648640386904, 8.038982565135251009960561133340

Graph of the $Z$-function along the critical line