Properties

Label 2-6026-1.1-c1-0-94
Degree $2$
Conductor $6026$
Sign $1$
Analytic cond. $48.1178$
Root an. cond. $6.93670$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 1.76·3-s + 4-s − 2.10·5-s − 1.76·6-s + 4.17·7-s − 8-s + 0.123·9-s + 2.10·10-s − 3.67·11-s + 1.76·12-s + 3.27·13-s − 4.17·14-s − 3.71·15-s + 16-s + 6.59·17-s − 0.123·18-s + 7.83·19-s − 2.10·20-s + 7.37·21-s + 3.67·22-s − 23-s − 1.76·24-s − 0.573·25-s − 3.27·26-s − 5.08·27-s + 4.17·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.02·3-s + 0.5·4-s − 0.940·5-s − 0.721·6-s + 1.57·7-s − 0.353·8-s + 0.0410·9-s + 0.665·10-s − 1.10·11-s + 0.510·12-s + 0.908·13-s − 1.11·14-s − 0.960·15-s + 0.250·16-s + 1.60·17-s − 0.0290·18-s + 1.79·19-s − 0.470·20-s + 1.60·21-s + 0.784·22-s − 0.208·23-s − 0.360·24-s − 0.114·25-s − 0.642·26-s − 0.978·27-s + 0.788·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6026 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6026 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6026\)    =    \(2 \cdot 23 \cdot 131\)
Sign: $1$
Analytic conductor: \(48.1178\)
Root analytic conductor: \(6.93670\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6026,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.229940353\)
\(L(\frac12)\) \(\approx\) \(2.229940353\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
23 \( 1 + T \)
131 \( 1 - T \)
good3 \( 1 - 1.76T + 3T^{2} \)
5 \( 1 + 2.10T + 5T^{2} \)
7 \( 1 - 4.17T + 7T^{2} \)
11 \( 1 + 3.67T + 11T^{2} \)
13 \( 1 - 3.27T + 13T^{2} \)
17 \( 1 - 6.59T + 17T^{2} \)
19 \( 1 - 7.83T + 19T^{2} \)
29 \( 1 - 4.43T + 29T^{2} \)
31 \( 1 - 1.39T + 31T^{2} \)
37 \( 1 - 7.30T + 37T^{2} \)
41 \( 1 + 0.848T + 41T^{2} \)
43 \( 1 + 2.49T + 43T^{2} \)
47 \( 1 + 0.139T + 47T^{2} \)
53 \( 1 + 8.57T + 53T^{2} \)
59 \( 1 - 8.52T + 59T^{2} \)
61 \( 1 + 7.88T + 61T^{2} \)
67 \( 1 + 15.3T + 67T^{2} \)
71 \( 1 - 2.18T + 71T^{2} \)
73 \( 1 - 11.2T + 73T^{2} \)
79 \( 1 - 9.84T + 79T^{2} \)
83 \( 1 + 2.79T + 83T^{2} \)
89 \( 1 + 10.3T + 89T^{2} \)
97 \( 1 + 10.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.027392016366875882794732900587, −7.86745880453707466679064467993, −7.21520749855951523712110564213, −5.83272380712332734954220846066, −5.25948637995905426604009114795, −4.32284431729150423192886452629, −3.32759199941961717800704953466, −2.88773132440955161490199128572, −1.72579662864258159013056298248, −0.880176545516630599223971836746, 0.880176545516630599223971836746, 1.72579662864258159013056298248, 2.88773132440955161490199128572, 3.32759199941961717800704953466, 4.32284431729150423192886452629, 5.25948637995905426604009114795, 5.83272380712332734954220846066, 7.21520749855951523712110564213, 7.86745880453707466679064467993, 8.027392016366875882794732900587

Graph of the $Z$-function along the critical line