Properties

Label 6026.2
Level 6026
Weight 2
Dimension 376049
Nonzero newspaces 16
Sturm bound 4530240

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 6026 = 2 \cdot 23 \cdot 131 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 16 \)
Sturm bound: \(4530240\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(6026))\).

Total New Old
Modular forms 1138280 376049 762231
Cusp forms 1126841 376049 750792
Eisenstein series 11439 0 11439

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(6026))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
6026.2.a \(\chi_{6026}(1, \cdot)\) 6026.2.a.a 1 1
6026.2.a.b 1
6026.2.a.c 1
6026.2.a.d 1
6026.2.a.e 2
6026.2.a.f 20
6026.2.a.g 21
6026.2.a.h 24
6026.2.a.i 25
6026.2.a.j 33
6026.2.a.k 35
6026.2.a.l 36
6026.2.a.m 41
6026.2.c \(\chi_{6026}(6025, \cdot)\) n/a 264 1
6026.2.e \(\chi_{6026}(323, \cdot)\) n/a 968 4
6026.2.g \(\chi_{6026}(597, \cdot)\) n/a 1056 4
6026.2.i \(\chi_{6026}(1573, \cdot)\) n/a 2600 10
6026.2.j \(\chi_{6026}(369, \cdot)\) n/a 2904 12
6026.2.l \(\chi_{6026}(523, \cdot)\) n/a 2640 10
6026.2.o \(\chi_{6026}(1379, \cdot)\) n/a 3168 12
6026.2.q \(\chi_{6026}(315, \cdot)\) n/a 10560 40
6026.2.r \(\chi_{6026}(231, \cdot)\) n/a 11616 48
6026.2.t \(\chi_{6026}(201, \cdot)\) n/a 10560 40
6026.2.w \(\chi_{6026}(137, \cdot)\) n/a 12672 48
6026.2.y \(\chi_{6026}(39, \cdot)\) n/a 31680 120
6026.2.ba \(\chi_{6026}(19, \cdot)\) n/a 31680 120
6026.2.bc \(\chi_{6026}(3, \cdot)\) n/a 126720 480
6026.2.be \(\chi_{6026}(17, \cdot)\) n/a 126720 480

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(6026))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(6026)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(131))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(262))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3013))\)\(^{\oplus 2}\)