# Properties

 Label 6026.2 Level 6026 Weight 2 Dimension 376049 Nonzero newspaces 16 Sturm bound 4.53024e+06

## Defining parameters

 Level: $$N$$ = $$6026 = 2 \cdot 23 \cdot 131$$ Weight: $$k$$ = $$2$$ Nonzero newspaces: $$16$$ Sturm bound: $$4530240$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(6026))$$.

Total New Old
Modular forms 1138280 376049 762231
Cusp forms 1126841 376049 750792
Eisenstein series 11439 0 11439

## Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(6026))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list the newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
6026.2.a $$\chi_{6026}(1, \cdot)$$ 6026.2.a.a 1 1
6026.2.a.b 1
6026.2.a.c 1
6026.2.a.d 1
6026.2.a.e 2
6026.2.a.f 20
6026.2.a.g 21
6026.2.a.h 24
6026.2.a.i 25
6026.2.a.j 33
6026.2.a.k 35
6026.2.a.l 36
6026.2.a.m 41
6026.2.c $$\chi_{6026}(6025, \cdot)$$ n/a 264 1
6026.2.e $$\chi_{6026}(323, \cdot)$$ n/a 968 4
6026.2.g $$\chi_{6026}(597, \cdot)$$ n/a 1056 4
6026.2.i $$\chi_{6026}(1573, \cdot)$$ n/a 2600 10
6026.2.j $$\chi_{6026}(369, \cdot)$$ n/a 2904 12
6026.2.l $$\chi_{6026}(523, \cdot)$$ n/a 2640 10
6026.2.o $$\chi_{6026}(1379, \cdot)$$ n/a 3168 12
6026.2.q $$\chi_{6026}(315, \cdot)$$ n/a 10560 40
6026.2.r $$\chi_{6026}(231, \cdot)$$ n/a 11616 48
6026.2.t $$\chi_{6026}(201, \cdot)$$ n/a 10560 40
6026.2.w $$\chi_{6026}(137, \cdot)$$ n/a 12672 48
6026.2.y $$\chi_{6026}(39, \cdot)$$ n/a 31680 120
6026.2.ba $$\chi_{6026}(19, \cdot)$$ n/a 31680 120
6026.2.bc $$\chi_{6026}(3, \cdot)$$ n/a 126720 480
6026.2.be $$\chi_{6026}(17, \cdot)$$ n/a 126720 480

"n/a" means that newforms for that character have not been added to the database yet

## Decomposition of $$S_{2}^{\mathrm{old}}(\Gamma_1(6026))$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(\Gamma_1(6026)) \cong$$ $$S_{2}^{\mathrm{new}}(\Gamma_1(23))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(46))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(131))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(262))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(3013))$$$$^{\oplus 2}$$