Properties

Label 588.2.o.f.31.8
Level $588$
Weight $2$
Character 588.31
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(19,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,-4,12,4,0,-8,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.8
Character \(\chi\) \(=\) 588.31
Dual form 588.2.o.f.19.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.00239545 - 1.41421i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-1.99999 + 0.00677535i) q^{4} +(-3.15890 + 1.82379i) q^{5} +(-1.22594 - 0.705031i) q^{6} +(0.0143727 + 2.82839i) q^{8} +(-0.500000 - 0.866025i) q^{9} +(2.58679 + 4.46298i) q^{10} +(5.25694 + 3.03510i) q^{11} +(-0.994127 + 1.73543i) q^{12} +0.483253i q^{13} +3.64758i q^{15} +(3.99991 - 0.0271012i) q^{16} +(2.21053 + 1.27625i) q^{17} +(-1.22355 + 0.709180i) q^{18} +(-0.609546 - 1.05577i) q^{19} +(6.30540 - 3.66896i) q^{20} +(4.27968 - 7.44170i) q^{22} +(-3.00269 + 1.73360i) q^{23} +(2.45664 + 1.40175i) q^{24} +(4.15242 - 7.19220i) q^{25} +(0.683422 - 0.00115761i) q^{26} -1.00000 q^{27} +8.21857 q^{29} +(5.15845 - 0.00873760i) q^{30} +(-3.15625 + 5.46678i) q^{31} +(-0.0479085 - 5.65665i) q^{32} +(5.25694 - 3.03510i) q^{33} +(1.79959 - 3.12921i) q^{34} +(1.00586 + 1.72865i) q^{36} +(-0.595080 - 1.03071i) q^{37} +(-1.49162 + 0.864556i) q^{38} +(0.418509 + 0.241626i) q^{39} +(-5.20379 - 8.90838i) q^{40} +6.59422i q^{41} +3.51184i q^{43} +(-10.5344 - 6.03454i) q^{44} +(3.15890 + 1.82379i) q^{45} +(2.45887 + 4.24228i) q^{46} +(5.83110 + 10.0998i) q^{47} +(1.97648 - 3.47757i) q^{48} +(-10.1812 - 5.85517i) q^{50} +(2.21053 - 1.27625i) q^{51} +(-0.00327421 - 0.966500i) q^{52} +(-1.31391 + 2.27576i) q^{53} +(0.00239545 + 1.41421i) q^{54} -22.1415 q^{55} -1.21909 q^{57} +(-0.0196872 - 11.6228i) q^{58} +(0.580801 - 1.00598i) q^{59} +(-0.0247136 - 7.29512i) q^{60} +(0.180530 - 0.104229i) q^{61} +(7.73874 + 4.45050i) q^{62} +(-7.99959 + 0.0813030i) q^{64} +(-0.881351 - 1.52655i) q^{65} +(-4.30486 - 7.42716i) q^{66} +(1.53820 + 0.888083i) q^{67} +(-4.42968 - 2.53751i) q^{68} +3.46720i q^{69} +9.13166i q^{71} +(2.44227 - 1.42664i) q^{72} +(-5.23883 - 3.02464i) q^{73} +(-1.45621 + 0.844038i) q^{74} +(-4.15242 - 7.19220i) q^{75} +(1.22624 + 2.10739i) q^{76} +(0.340708 - 0.592439i) q^{78} +(-2.75342 + 1.58969i) q^{79} +(-12.5859 + 7.38060i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(9.32562 - 0.0157961i) q^{82} +7.49842 q^{83} -9.31044 q^{85} +(4.96648 - 0.00841243i) q^{86} +(4.10928 - 7.11749i) q^{87} +(-8.50888 + 14.9123i) q^{88} +(10.6411 - 6.14362i) q^{89} +(2.57166 - 4.47172i) q^{90} +(5.99359 - 3.48753i) q^{92} +(3.15625 + 5.46678i) q^{93} +(14.2692 - 8.27060i) q^{94} +(3.85099 + 2.22337i) q^{95} +(-4.92276 - 2.78684i) q^{96} -11.8376i q^{97} -6.07019i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{2} + 12 q^{3} + 4 q^{4} - 8 q^{6} + 8 q^{8} - 12 q^{9} - 4 q^{12} + 4 q^{16} - 4 q^{18} + 48 q^{20} + 4 q^{24} + 12 q^{25} + 24 q^{26} - 24 q^{27} + 64 q^{29} + 16 q^{31} - 4 q^{32} - 64 q^{34}+ \cdots + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.00239545 1.41421i −0.00169384 0.999999i
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) −1.99999 + 0.00677535i −0.999994 + 0.00338767i
\(5\) −3.15890 + 1.82379i −1.41270 + 0.815624i −0.995642 0.0932558i \(-0.970273\pi\)
−0.417059 + 0.908879i \(0.636939\pi\)
\(6\) −1.22594 0.705031i −0.500488 0.287828i
\(7\) 0 0
\(8\) 0.0143727 + 2.82839i 0.00508150 + 0.999987i
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 2.58679 + 4.46298i 0.818015 + 1.41132i
\(11\) 5.25694 + 3.03510i 1.58503 + 0.915116i 0.994109 + 0.108385i \(0.0345679\pi\)
0.590919 + 0.806731i \(0.298765\pi\)
\(12\) −0.994127 + 1.73543i −0.286980 + 0.500975i
\(13\) 0.483253i 0.134030i 0.997752 + 0.0670151i \(0.0213476\pi\)
−0.997752 + 0.0670151i \(0.978652\pi\)
\(14\) 0 0
\(15\) 3.64758i 0.941801i
\(16\) 3.99991 0.0271012i 0.999977 0.00677531i
\(17\) 2.21053 + 1.27625i 0.536132 + 0.309536i 0.743510 0.668725i \(-0.233160\pi\)
−0.207378 + 0.978261i \(0.566493\pi\)
\(18\) −1.22355 + 0.709180i −0.288392 + 0.167155i
\(19\) −0.609546 1.05577i −0.139840 0.242209i 0.787596 0.616192i \(-0.211325\pi\)
−0.927436 + 0.373983i \(0.877992\pi\)
\(20\) 6.30540 3.66896i 1.40993 0.820405i
\(21\) 0 0
\(22\) 4.27968 7.44170i 0.912430 1.58658i
\(23\) −3.00269 + 1.73360i −0.626103 + 0.361481i −0.779241 0.626724i \(-0.784395\pi\)
0.153138 + 0.988205i \(0.451062\pi\)
\(24\) 2.45664 + 1.40175i 0.501460 + 0.286131i
\(25\) 4.15242 7.19220i 0.830483 1.43844i
\(26\) 0.683422 0.00115761i 0.134030 0.000227026i
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 8.21857 1.52615 0.763075 0.646310i \(-0.223689\pi\)
0.763075 + 0.646310i \(0.223689\pi\)
\(30\) 5.15845 0.00873760i 0.941800 0.00159526i
\(31\) −3.15625 + 5.46678i −0.566878 + 0.981862i 0.429994 + 0.902832i \(0.358516\pi\)
−0.996872 + 0.0790304i \(0.974818\pi\)
\(32\) −0.0479085 5.65665i −0.00846910 0.999964i
\(33\) 5.25694 3.03510i 0.915116 0.528343i
\(34\) 1.79959 3.12921i 0.308627 0.536655i
\(35\) 0 0
\(36\) 1.00586 + 1.72865i 0.167644 + 0.288109i
\(37\) −0.595080 1.03071i −0.0978305 0.169447i 0.812956 0.582325i \(-0.197857\pi\)
−0.910786 + 0.412878i \(0.864524\pi\)
\(38\) −1.49162 + 0.864556i −0.241972 + 0.140250i
\(39\) 0.418509 + 0.241626i 0.0670151 + 0.0386912i
\(40\) −5.20379 8.90838i −0.822792 1.40854i
\(41\) 6.59422i 1.02984i 0.857237 + 0.514922i \(0.172179\pi\)
−0.857237 + 0.514922i \(0.827821\pi\)
\(42\) 0 0
\(43\) 3.51184i 0.535550i 0.963481 + 0.267775i \(0.0862884\pi\)
−0.963481 + 0.267775i \(0.913712\pi\)
\(44\) −10.5344 6.03454i −1.58812 0.909741i
\(45\) 3.15890 + 1.82379i 0.470900 + 0.271875i
\(46\) 2.45887 + 4.24228i 0.362541 + 0.625490i
\(47\) 5.83110 + 10.0998i 0.850553 + 1.47320i 0.880710 + 0.473656i \(0.157066\pi\)
−0.0301567 + 0.999545i \(0.509601\pi\)
\(48\) 1.97648 3.47757i 0.285281 0.501944i
\(49\) 0 0
\(50\) −10.1812 5.85517i −1.43984 0.828046i
\(51\) 2.21053 1.27625i 0.309536 0.178711i
\(52\) −0.00327421 0.966500i −0.000454051 0.134029i
\(53\) −1.31391 + 2.27576i −0.180479 + 0.312600i −0.942044 0.335490i \(-0.891098\pi\)
0.761564 + 0.648089i \(0.224432\pi\)
\(54\) 0.00239545 + 1.41421i 0.000325980 + 0.192450i
\(55\) −22.1415 −2.98556
\(56\) 0 0
\(57\) −1.21909 −0.161473
\(58\) −0.0196872 11.6228i −0.00258505 1.52615i
\(59\) 0.580801 1.00598i 0.0756138 0.130967i −0.825739 0.564052i \(-0.809242\pi\)
0.901353 + 0.433085i \(0.142575\pi\)
\(60\) −0.0247136 7.29512i −0.00319052 0.941796i
\(61\) 0.180530 0.104229i 0.0231145 0.0133451i −0.488398 0.872621i \(-0.662419\pi\)
0.511513 + 0.859276i \(0.329085\pi\)
\(62\) 7.73874 + 4.45050i 0.982821 + 0.565215i
\(63\) 0 0
\(64\) −7.99959 + 0.0813030i −0.999948 + 0.0101629i
\(65\) −0.881351 1.52655i −0.109318 0.189345i
\(66\) −4.30486 7.42716i −0.529892 0.914220i
\(67\) 1.53820 + 0.888083i 0.187922 + 0.108497i 0.591009 0.806665i \(-0.298730\pi\)
−0.403088 + 0.915161i \(0.632063\pi\)
\(68\) −4.42968 2.53751i −0.537177 0.307718i
\(69\) 3.46720i 0.417402i
\(70\) 0 0
\(71\) 9.13166i 1.08373i 0.840466 + 0.541864i \(0.182281\pi\)
−0.840466 + 0.541864i \(0.817719\pi\)
\(72\) 2.44227 1.42664i 0.287824 0.168131i
\(73\) −5.23883 3.02464i −0.613159 0.354007i 0.161042 0.986948i \(-0.448515\pi\)
−0.774201 + 0.632940i \(0.781848\pi\)
\(74\) −1.45621 + 0.844038i −0.169281 + 0.0981174i
\(75\) −4.15242 7.19220i −0.479480 0.830483i
\(76\) 1.22624 + 2.10739i 0.140659 + 0.241734i
\(77\) 0 0
\(78\) 0.340708 0.592439i 0.0385776 0.0670805i
\(79\) −2.75342 + 1.58969i −0.309784 + 0.178854i −0.646830 0.762634i \(-0.723906\pi\)
0.337046 + 0.941488i \(0.390572\pi\)
\(80\) −12.5859 + 7.38060i −1.40714 + 0.825176i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 9.32562 0.0157961i 1.02984 0.00174439i
\(83\) 7.49842 0.823059 0.411529 0.911396i \(-0.364995\pi\)
0.411529 + 0.911396i \(0.364995\pi\)
\(84\) 0 0
\(85\) −9.31044 −1.00986
\(86\) 4.96648 0.00841243i 0.535549 0.000907136i
\(87\) 4.10928 7.11749i 0.440562 0.763075i
\(88\) −8.50888 + 14.9123i −0.907050 + 1.58966i
\(89\) 10.6411 6.14362i 1.12795 0.651222i 0.184531 0.982827i \(-0.440923\pi\)
0.943419 + 0.331604i \(0.107590\pi\)
\(90\) 2.57166 4.47172i 0.271076 0.471360i
\(91\) 0 0
\(92\) 5.99359 3.48753i 0.624875 0.363600i
\(93\) 3.15625 + 5.46678i 0.327287 + 0.566878i
\(94\) 14.2692 8.27060i 1.47176 0.853047i
\(95\) 3.85099 + 2.22337i 0.395103 + 0.228113i
\(96\) −4.92276 2.78684i −0.502427 0.284430i
\(97\) 11.8376i 1.20192i −0.799277 0.600962i \(-0.794784\pi\)
0.799277 0.600962i \(-0.205216\pi\)
\(98\) 0 0
\(99\) 6.07019i 0.610077i
\(100\) −8.25606 + 14.4124i −0.825606 + 1.44124i
\(101\) −4.95940 2.86331i −0.493479 0.284910i 0.232538 0.972587i \(-0.425297\pi\)
−0.726016 + 0.687677i \(0.758630\pi\)
\(102\) −1.81018 3.12310i −0.179235 0.309233i
\(103\) 2.47654 + 4.28949i 0.244020 + 0.422656i 0.961856 0.273557i \(-0.0882003\pi\)
−0.717835 + 0.696213i \(0.754867\pi\)
\(104\) −1.36683 + 0.00694562i −0.134028 + 0.000681074i
\(105\) 0 0
\(106\) 3.22155 + 1.85270i 0.312905 + 0.179950i
\(107\) −11.8888 + 6.86398i −1.14933 + 0.663566i −0.948724 0.316107i \(-0.897624\pi\)
−0.200606 + 0.979672i \(0.564291\pi\)
\(108\) 1.99999 0.00677535i 0.192449 0.000651958i
\(109\) 6.82537 11.8219i 0.653752 1.13233i −0.328453 0.944520i \(-0.606527\pi\)
0.982205 0.187812i \(-0.0601394\pi\)
\(110\) 0.0530389 + 31.3128i 0.00505706 + 2.98556i
\(111\) −1.19016 −0.112965
\(112\) 0 0
\(113\) −7.11968 −0.669764 −0.334882 0.942260i \(-0.608696\pi\)
−0.334882 + 0.942260i \(0.608696\pi\)
\(114\) 0.00292028 + 1.72405i 0.000273509 + 0.161473i
\(115\) 6.32345 10.9525i 0.589665 1.02133i
\(116\) −16.4370 + 0.0556837i −1.52614 + 0.00517010i
\(117\) 0.418509 0.241626i 0.0386912 0.0223384i
\(118\) −1.42406 0.818966i −0.131095 0.0753919i
\(119\) 0 0
\(120\) −10.3168 + 0.0524254i −0.941789 + 0.00478576i
\(121\) 12.9236 + 22.3844i 1.17487 + 2.03494i
\(122\) −0.147834 0.255058i −0.0133843 0.0230918i
\(123\) 5.71076 + 3.29711i 0.514922 + 0.297290i
\(124\) 6.27542 10.9549i 0.563549 0.983777i
\(125\) 12.0546i 1.07820i
\(126\) 0 0
\(127\) 3.03609i 0.269409i 0.990886 + 0.134705i \(0.0430086\pi\)
−0.990886 + 0.134705i \(0.956991\pi\)
\(128\) 0.134142 + 11.3129i 0.0118566 + 0.999930i
\(129\) 3.04134 + 1.75592i 0.267775 + 0.154600i
\(130\) −2.15675 + 1.25007i −0.189159 + 0.109639i
\(131\) −7.23328 12.5284i −0.631974 1.09461i −0.987148 0.159811i \(-0.948911\pi\)
0.355173 0.934800i \(-0.384422\pi\)
\(132\) −10.4933 + 6.10578i −0.913321 + 0.531440i
\(133\) 0 0
\(134\) 1.25225 2.17747i 0.108178 0.188105i
\(135\) 3.15890 1.82379i 0.271875 0.156967i
\(136\) −3.57796 + 6.27058i −0.306807 + 0.537698i
\(137\) −5.78134 + 10.0136i −0.493933 + 0.855517i −0.999976 0.00699157i \(-0.997774\pi\)
0.506043 + 0.862508i \(0.331108\pi\)
\(138\) 4.90336 0.00830552i 0.417402 0.000707013i
\(139\) 17.6203 1.49453 0.747266 0.664525i \(-0.231366\pi\)
0.747266 + 0.664525i \(0.231366\pi\)
\(140\) 0 0
\(141\) 11.6622 0.982134
\(142\) 12.9141 0.0218744i 1.08373 0.00183566i
\(143\) −1.46672 + 2.54043i −0.122653 + 0.212442i
\(144\) −2.02342 3.45047i −0.168619 0.287539i
\(145\) −25.9616 + 14.9889i −2.15599 + 1.24476i
\(146\) −4.26493 + 7.41606i −0.352968 + 0.613757i
\(147\) 0 0
\(148\) 1.19714 + 2.05737i 0.0984040 + 0.169115i
\(149\) −3.05734 5.29546i −0.250467 0.433821i 0.713188 0.700973i \(-0.247251\pi\)
−0.963654 + 0.267152i \(0.913917\pi\)
\(150\) −10.1613 + 5.88962i −0.829670 + 0.480886i
\(151\) −12.3346 7.12137i −1.00377 0.579529i −0.0944112 0.995533i \(-0.530097\pi\)
−0.909363 + 0.416004i \(0.863430\pi\)
\(152\) 2.97736 1.73921i 0.241495 0.141068i
\(153\) 2.55250i 0.206357i
\(154\) 0 0
\(155\) 23.0253i 1.84944i
\(156\) −0.838651 0.480414i −0.0671458 0.0384639i
\(157\) −18.2706 10.5485i −1.45815 0.841865i −0.459232 0.888316i \(-0.651875\pi\)
−0.998921 + 0.0464518i \(0.985209\pi\)
\(158\) 2.25475 + 3.89012i 0.179379 + 0.309481i
\(159\) 1.31391 + 2.27576i 0.104200 + 0.180479i
\(160\) 10.4679 + 17.7814i 0.827559 + 1.40574i
\(161\) 0 0
\(162\) 1.22594 + 0.705031i 0.0963190 + 0.0553925i
\(163\) 16.5731 9.56851i 1.29811 0.749464i 0.318032 0.948080i \(-0.396978\pi\)
0.980077 + 0.198617i \(0.0636448\pi\)
\(164\) −0.0446781 13.1884i −0.00348878 1.02984i
\(165\) −11.0708 + 19.1751i −0.861857 + 1.49278i
\(166\) −0.0179621 10.6044i −0.00139413 0.823058i
\(167\) −7.69624 −0.595553 −0.297776 0.954636i \(-0.596245\pi\)
−0.297776 + 0.954636i \(0.596245\pi\)
\(168\) 0 0
\(169\) 12.7665 0.982036
\(170\) 0.0223027 + 13.1669i 0.00171054 + 1.00986i
\(171\) −0.609546 + 1.05577i −0.0466132 + 0.0807364i
\(172\) −0.0237939 7.02363i −0.00181427 0.535547i
\(173\) −0.713055 + 0.411682i −0.0542125 + 0.0312996i −0.526861 0.849951i \(-0.676631\pi\)
0.472649 + 0.881251i \(0.343298\pi\)
\(174\) −10.0755 5.79435i −0.763820 0.439268i
\(175\) 0 0
\(176\) 21.1095 + 11.9976i 1.59119 + 0.904356i
\(177\) −0.580801 1.00598i −0.0436557 0.0756138i
\(178\) −8.71386 15.0340i −0.653132 1.12685i
\(179\) −8.20383 4.73649i −0.613183 0.354022i 0.161027 0.986950i \(-0.448519\pi\)
−0.774210 + 0.632928i \(0.781853\pi\)
\(180\) −6.33011 3.62616i −0.471819 0.270278i
\(181\) 2.06119i 0.153207i −0.997062 0.0766034i \(-0.975592\pi\)
0.997062 0.0766034i \(-0.0244075\pi\)
\(182\) 0 0
\(183\) 0.208458i 0.0154096i
\(184\) −4.94646 8.46785i −0.364658 0.624258i
\(185\) 3.75959 + 2.17060i 0.276411 + 0.159586i
\(186\) 7.72362 4.47669i 0.566323 0.328247i
\(187\) 7.74708 + 13.4183i 0.566522 + 0.981245i
\(188\) −11.7306 20.1599i −0.855539 1.47031i
\(189\) 0 0
\(190\) 3.13509 5.45144i 0.227443 0.395489i
\(191\) −9.40191 + 5.42820i −0.680298 + 0.392770i −0.799967 0.600043i \(-0.795150\pi\)
0.119669 + 0.992814i \(0.461817\pi\)
\(192\) −3.92938 + 6.96850i −0.283579 + 0.502908i
\(193\) −4.85673 + 8.41210i −0.349595 + 0.605517i −0.986178 0.165692i \(-0.947014\pi\)
0.636582 + 0.771209i \(0.280348\pi\)
\(194\) −16.7409 + 0.0283564i −1.20192 + 0.00203587i
\(195\) −1.76270 −0.126230
\(196\) 0 0
\(197\) −15.9300 −1.13496 −0.567481 0.823386i \(-0.692082\pi\)
−0.567481 + 0.823386i \(0.692082\pi\)
\(198\) −8.58454 + 0.0145409i −0.610077 + 0.00103337i
\(199\) −5.02859 + 8.70978i −0.356467 + 0.617420i −0.987368 0.158444i \(-0.949352\pi\)
0.630901 + 0.775864i \(0.282686\pi\)
\(200\) 20.4020 + 11.6413i 1.44264 + 0.823163i
\(201\) 1.53820 0.888083i 0.108497 0.0626405i
\(202\) −4.03745 + 7.02050i −0.284074 + 0.493961i
\(203\) 0 0
\(204\) −4.41238 + 2.56746i −0.308929 + 0.179758i
\(205\) −12.0265 20.8304i −0.839965 1.45486i
\(206\) 6.06031 3.51262i 0.422242 0.244736i
\(207\) 3.00269 + 1.73360i 0.208701 + 0.120494i
\(208\) 0.0130967 + 1.93297i 0.000908096 + 0.134027i
\(209\) 7.40013i 0.511878i
\(210\) 0 0
\(211\) 1.03227i 0.0710647i −0.999369 0.0355324i \(-0.988687\pi\)
0.999369 0.0355324i \(-0.0113127\pi\)
\(212\) 2.61239 4.56039i 0.179419 0.313209i
\(213\) 7.90825 + 4.56583i 0.541864 + 0.312846i
\(214\) 9.73559 + 16.7968i 0.665511 + 1.14820i
\(215\) −6.40485 11.0935i −0.436807 0.756572i
\(216\) −0.0143727 2.82839i −0.000977935 0.192448i
\(217\) 0 0
\(218\) −16.7350 9.62420i −1.13344 0.651833i
\(219\) −5.23883 + 3.02464i −0.354007 + 0.204386i
\(220\) 44.2828 0.150016i 2.98554 0.0101141i
\(221\) −0.616751 + 1.06824i −0.0414871 + 0.0718578i
\(222\) 0.00285097 + 1.68314i 0.000191345 + 0.112965i
\(223\) 9.57250 0.641022 0.320511 0.947245i \(-0.396145\pi\)
0.320511 + 0.947245i \(0.396145\pi\)
\(224\) 0 0
\(225\) −8.30483 −0.553656
\(226\) 0.0170549 + 10.0687i 0.00113447 + 0.669763i
\(227\) −5.57692 + 9.65951i −0.370153 + 0.641124i −0.989589 0.143923i \(-0.954028\pi\)
0.619436 + 0.785048i \(0.287362\pi\)
\(228\) 2.43817 0.00825978i 0.161472 0.000547017i
\(229\) 8.77151 5.06423i 0.579637 0.334654i −0.181352 0.983418i \(-0.558047\pi\)
0.760989 + 0.648764i \(0.224714\pi\)
\(230\) −15.5043 8.91646i −1.02233 0.587934i
\(231\) 0 0
\(232\) 0.118123 + 23.2453i 0.00775513 + 1.52613i
\(233\) −6.32072 10.9478i −0.414084 0.717215i 0.581248 0.813727i \(-0.302565\pi\)
−0.995332 + 0.0965119i \(0.969231\pi\)
\(234\) −0.342713 0.591282i −0.0224039 0.0386533i
\(235\) −36.8397 21.2694i −2.40316 1.38746i
\(236\) −1.15478 + 2.01588i −0.0751697 + 0.131222i
\(237\) 3.17938i 0.206523i
\(238\) 0 0
\(239\) 5.46050i 0.353211i 0.984282 + 0.176605i \(0.0565116\pi\)
−0.984282 + 0.176605i \(0.943488\pi\)
\(240\) 0.0988539 + 14.5900i 0.00638099 + 0.941779i
\(241\) 11.8106 + 6.81887i 0.760790 + 0.439242i 0.829579 0.558389i \(-0.188580\pi\)
−0.0687894 + 0.997631i \(0.521914\pi\)
\(242\) 31.6253 18.3304i 2.03295 1.17832i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) −0.360351 + 0.209680i −0.0230691 + 0.0134234i
\(245\) 0 0
\(246\) 4.64913 8.08412i 0.296418 0.515425i
\(247\) 0.510201 0.294565i 0.0324633 0.0187427i
\(248\) −15.5075 8.84852i −0.984730 0.561882i
\(249\) 3.74921 6.49383i 0.237597 0.411529i
\(250\) 17.0478 0.0288763i 1.07820 0.00182630i
\(251\) 28.2425 1.78265 0.891324 0.453367i \(-0.149777\pi\)
0.891324 + 0.453367i \(0.149777\pi\)
\(252\) 0 0
\(253\) −21.0466 −1.32319
\(254\) 4.29367 0.00727280i 0.269409 0.000456336i
\(255\) −4.65522 + 8.06307i −0.291521 + 0.504929i
\(256\) 15.9985 0.216805i 0.999908 0.0135503i
\(257\) 17.4613 10.0813i 1.08920 0.628852i 0.155840 0.987782i \(-0.450192\pi\)
0.933364 + 0.358930i \(0.116858\pi\)
\(258\) 2.47595 4.30530i 0.154146 0.268036i
\(259\) 0 0
\(260\) 1.77304 + 3.04710i 0.109959 + 0.188973i
\(261\) −4.10928 7.11749i −0.254358 0.440562i
\(262\) −17.7005 + 10.2594i −1.09354 + 0.633827i
\(263\) 10.8326 + 6.25419i 0.667965 + 0.385650i 0.795305 0.606209i \(-0.207311\pi\)
−0.127340 + 0.991859i \(0.540644\pi\)
\(264\) 8.66000 + 14.8251i 0.532986 + 0.912419i
\(265\) 9.58518i 0.588813i
\(266\) 0 0
\(267\) 12.2872i 0.751967i
\(268\) −3.08241 1.76573i −0.188288 0.107859i
\(269\) 11.3057 + 6.52738i 0.689324 + 0.397981i 0.803359 0.595496i \(-0.203044\pi\)
−0.114035 + 0.993477i \(0.536378\pi\)
\(270\) −2.58679 4.46298i −0.157427 0.271608i
\(271\) 5.14672 + 8.91437i 0.312641 + 0.541510i 0.978933 0.204181i \(-0.0654531\pi\)
−0.666292 + 0.745691i \(0.732120\pi\)
\(272\) 8.87650 + 5.04497i 0.538217 + 0.305896i
\(273\) 0 0
\(274\) 14.1752 + 8.15205i 0.856352 + 0.492483i
\(275\) 43.6580 25.2060i 2.63268 1.51998i
\(276\) −0.0234915 6.93437i −0.00141402 0.417400i
\(277\) 9.48111 16.4218i 0.569665 0.986689i −0.426934 0.904283i \(-0.640406\pi\)
0.996599 0.0824058i \(-0.0262604\pi\)
\(278\) −0.0422085 24.9188i −0.00253150 1.49453i
\(279\) 6.31249 0.377919
\(280\) 0 0
\(281\) 17.5144 1.04482 0.522412 0.852693i \(-0.325032\pi\)
0.522412 + 0.852693i \(0.325032\pi\)
\(282\) −0.0279362 16.4928i −0.00166358 0.982133i
\(283\) −9.47095 + 16.4042i −0.562990 + 0.975127i 0.434244 + 0.900795i \(0.357016\pi\)
−0.997234 + 0.0743313i \(0.976318\pi\)
\(284\) −0.0618702 18.2632i −0.00367132 1.08372i
\(285\) 3.85099 2.22337i 0.228113 0.131701i
\(286\) 3.59622 + 2.06816i 0.212649 + 0.122293i
\(287\) 0 0
\(288\) −4.87485 + 2.86982i −0.287253 + 0.169106i
\(289\) −5.24238 9.08007i −0.308375 0.534122i
\(290\) 21.2597 + 36.6793i 1.24841 + 2.15388i
\(291\) −10.2517 5.91879i −0.600962 0.346966i
\(292\) 10.4981 + 6.01375i 0.614354 + 0.351928i
\(293\) 25.2760i 1.47664i −0.674451 0.738320i \(-0.735620\pi\)
0.674451 0.738320i \(-0.264380\pi\)
\(294\) 0 0
\(295\) 4.23703i 0.246690i
\(296\) 2.90669 1.69793i 0.168948 0.0986903i
\(297\) −5.25694 3.03510i −0.305039 0.176114i
\(298\) −7.48158 + 4.33641i −0.433396 + 0.251201i
\(299\) −0.837768 1.45106i −0.0484494 0.0839167i
\(300\) 8.35352 + 14.3562i 0.482290 + 0.828854i
\(301\) 0 0
\(302\) −10.0416 + 17.4608i −0.577828 + 1.00475i
\(303\) −4.95940 + 2.86331i −0.284910 + 0.164493i
\(304\) −2.46674 4.20644i −0.141477 0.241256i
\(305\) −0.380183 + 0.658497i −0.0217692 + 0.0377054i
\(306\) −3.60977 + 0.00611438i −0.206357 + 0.000349536i
\(307\) 10.2457 0.584750 0.292375 0.956304i \(-0.405554\pi\)
0.292375 + 0.956304i \(0.405554\pi\)
\(308\) 0 0
\(309\) 4.95307 0.281770
\(310\) −32.5627 + 0.0551560i −1.84943 + 0.00313265i
\(311\) 15.1919 26.3131i 0.861451 1.49208i −0.00907691 0.999959i \(-0.502889\pi\)
0.870528 0.492119i \(-0.163777\pi\)
\(312\) −0.677399 + 1.18718i −0.0383501 + 0.0672108i
\(313\) −14.8277 + 8.56075i −0.838108 + 0.483882i −0.856621 0.515946i \(-0.827440\pi\)
0.0185123 + 0.999829i \(0.494107\pi\)
\(314\) −14.8741 + 25.8638i −0.839394 + 1.45958i
\(315\) 0 0
\(316\) 5.49605 3.19802i 0.309177 0.179903i
\(317\) 6.18286 + 10.7090i 0.347264 + 0.601478i 0.985762 0.168145i \(-0.0537775\pi\)
−0.638499 + 0.769623i \(0.720444\pi\)
\(318\) 3.21526 1.86360i 0.180303 0.104505i
\(319\) 43.2045 + 24.9442i 2.41899 + 1.39660i
\(320\) 25.1216 14.8464i 1.40434 0.829938i
\(321\) 13.7280i 0.766220i
\(322\) 0 0
\(323\) 3.11173i 0.173141i
\(324\) 0.994127 1.73543i 0.0552293 0.0964127i
\(325\) 3.47565 + 2.00667i 0.192794 + 0.111310i
\(326\) −13.5716 23.4150i −0.751661 1.29684i
\(327\) −6.82537 11.8219i −0.377444 0.653752i
\(328\) −18.6510 + 0.0947764i −1.02983 + 0.00523315i
\(329\) 0 0
\(330\) 27.1442 + 15.6105i 1.49424 + 0.859327i
\(331\) −6.65278 + 3.84098i −0.365670 + 0.211120i −0.671565 0.740946i \(-0.734378\pi\)
0.305895 + 0.952065i \(0.401044\pi\)
\(332\) −14.9968 + 0.0508044i −0.823054 + 0.00278826i
\(333\) −0.595080 + 1.03071i −0.0326102 + 0.0564825i
\(334\) 0.0184360 + 10.8841i 0.00100877 + 0.595552i
\(335\) −6.47871 −0.353969
\(336\) 0 0
\(337\) −13.3863 −0.729201 −0.364600 0.931164i \(-0.618794\pi\)
−0.364600 + 0.931164i \(0.618794\pi\)
\(338\) −0.0305815 18.0545i −0.00166341 0.982035i
\(339\) −3.55984 + 6.16583i −0.193344 + 0.334882i
\(340\) 18.6208 0.0630815i 1.00985 0.00342107i
\(341\) −33.1844 + 19.1590i −1.79704 + 1.03752i
\(342\) 1.49454 + 0.859498i 0.0808152 + 0.0464763i
\(343\) 0 0
\(344\) −9.93284 + 0.0504744i −0.535543 + 0.00272140i
\(345\) −6.32345 10.9525i −0.340443 0.589665i
\(346\) 0.583914 + 1.00742i 0.0313914 + 0.0541595i
\(347\) −27.6076 15.9393i −1.48206 0.855666i −0.482264 0.876026i \(-0.660185\pi\)
−0.999793 + 0.0203606i \(0.993519\pi\)
\(348\) −8.17030 + 14.2627i −0.437974 + 0.764563i
\(349\) 9.51634i 0.509398i −0.967020 0.254699i \(-0.918024\pi\)
0.967020 0.254699i \(-0.0819764\pi\)
\(350\) 0 0
\(351\) 0.483253i 0.0257941i
\(352\) 16.9166 29.8821i 0.901659 1.59272i
\(353\) 12.2392 + 7.06628i 0.651425 + 0.376100i 0.789002 0.614391i \(-0.210598\pi\)
−0.137577 + 0.990491i \(0.543931\pi\)
\(354\) −1.42127 + 0.823785i −0.0755398 + 0.0437837i
\(355\) −16.6542 28.8460i −0.883915 1.53099i
\(356\) −21.2404 + 12.3593i −1.12574 + 0.655040i
\(357\) 0 0
\(358\) −6.67874 + 11.6133i −0.352982 + 0.613782i
\(359\) 19.4557 11.2328i 1.02684 0.592843i 0.110759 0.993847i \(-0.464672\pi\)
0.916076 + 0.401004i \(0.131339\pi\)
\(360\) −5.11299 + 8.96081i −0.269478 + 0.472276i
\(361\) 8.75691 15.1674i 0.460890 0.798285i
\(362\) −2.91495 + 0.00493747i −0.153207 + 0.000259508i
\(363\) 25.8472 1.35663
\(364\) 0 0
\(365\) 22.0652 1.15495
\(366\) −0.294803 0.000499351i −0.0154096 2.61015e-5i
\(367\) 5.99956 10.3915i 0.313174 0.542434i −0.665873 0.746065i \(-0.731941\pi\)
0.979048 + 0.203631i \(0.0652742\pi\)
\(368\) −11.9635 + 7.01562i −0.623640 + 0.365715i
\(369\) 5.71076 3.29711i 0.297290 0.171641i
\(370\) 3.06068 5.32206i 0.159117 0.276680i
\(371\) 0 0
\(372\) −6.34949 10.9121i −0.329206 0.565766i
\(373\) −2.81380 4.87365i −0.145693 0.252348i 0.783938 0.620839i \(-0.213208\pi\)
−0.929631 + 0.368491i \(0.879875\pi\)
\(374\) 18.9578 10.9881i 0.980284 0.568184i
\(375\) 10.4396 + 6.02732i 0.539100 + 0.311250i
\(376\) −28.4823 + 16.6378i −1.46886 + 0.858028i
\(377\) 3.97165i 0.204550i
\(378\) 0 0
\(379\) 21.3356i 1.09594i −0.836500 0.547968i \(-0.815402\pi\)
0.836500 0.547968i \(-0.184598\pi\)
\(380\) −7.71699 4.42062i −0.395873 0.226773i
\(381\) 2.62933 + 1.51804i 0.134705 + 0.0777718i
\(382\) 7.69914 + 13.2833i 0.393922 + 0.679632i
\(383\) −3.77595 6.54013i −0.192942 0.334185i 0.753282 0.657698i \(-0.228470\pi\)
−0.946224 + 0.323513i \(0.895136\pi\)
\(384\) 9.86434 + 5.54029i 0.503388 + 0.282727i
\(385\) 0 0
\(386\) 11.9081 + 6.84829i 0.606108 + 0.348569i
\(387\) 3.04134 1.75592i 0.154600 0.0892583i
\(388\) 0.0802038 + 23.6750i 0.00407173 + 1.20192i
\(389\) 1.32531 2.29550i 0.0671957 0.116386i −0.830470 0.557063i \(-0.811928\pi\)
0.897666 + 0.440677i \(0.145261\pi\)
\(390\) 0.00422247 + 2.49283i 0.000213813 + 0.126230i
\(391\) −8.85003 −0.447565
\(392\) 0 0
\(393\) −14.4666 −0.729741
\(394\) 0.0381594 + 22.5283i 0.00192244 + 1.13496i
\(395\) 5.79852 10.0433i 0.291755 0.505335i
\(396\) 0.0411277 + 12.1403i 0.00206674 + 0.610074i
\(397\) 16.1515 9.32508i 0.810621 0.468012i −0.0365505 0.999332i \(-0.511637\pi\)
0.847171 + 0.531320i \(0.178304\pi\)
\(398\) 12.3295 + 7.09063i 0.618023 + 0.355421i
\(399\) 0 0
\(400\) 16.4144 28.8807i 0.820718 1.44403i
\(401\) 11.9242 + 20.6533i 0.595464 + 1.03137i 0.993481 + 0.113996i \(0.0363652\pi\)
−0.398017 + 0.917378i \(0.630302\pi\)
\(402\) −1.25962 2.17322i −0.0628242 0.108390i
\(403\) −2.64184 1.52526i −0.131599 0.0759788i
\(404\) 9.93814 + 5.69299i 0.494441 + 0.283237i
\(405\) 3.64758i 0.181250i
\(406\) 0 0
\(407\) 7.22450i 0.358105i
\(408\) 3.64150 + 6.23389i 0.180281 + 0.308624i
\(409\) −15.0922 8.71346i −0.746259 0.430853i 0.0780817 0.996947i \(-0.475121\pi\)
−0.824341 + 0.566094i \(0.808454\pi\)
\(410\) −29.4299 + 17.0579i −1.45344 + 0.842428i
\(411\) 5.78134 + 10.0136i 0.285172 + 0.493933i
\(412\) −4.98211 8.56215i −0.245451 0.421827i
\(413\) 0 0
\(414\) 2.44449 4.25059i 0.120140 0.208905i
\(415\) −23.6867 + 13.6755i −1.16274 + 0.671306i
\(416\) 2.73359 0.0231519i 0.134025 0.00113512i
\(417\) 8.81014 15.2596i 0.431434 0.747266i
\(418\) −10.4653 + 0.0177266i −0.511877 + 0.000867039i
\(419\) −26.6148 −1.30022 −0.650109 0.759841i \(-0.725277\pi\)
−0.650109 + 0.759841i \(0.725277\pi\)
\(420\) 0 0
\(421\) 17.2196 0.839234 0.419617 0.907701i \(-0.362164\pi\)
0.419617 + 0.907701i \(0.362164\pi\)
\(422\) −1.45985 + 0.00247276i −0.0710646 + 0.000120372i
\(423\) 5.83110 10.0998i 0.283518 0.491067i
\(424\) −6.45562 3.68354i −0.313513 0.178889i
\(425\) 18.3581 10.5990i 0.890497 0.514129i
\(426\) 6.43811 11.1949i 0.311927 0.542394i
\(427\) 0 0
\(428\) 23.7309 13.8084i 1.14707 0.667455i
\(429\) 1.46672 + 2.54043i 0.0708138 + 0.122653i
\(430\) −15.6732 + 9.08439i −0.755831 + 0.438088i
\(431\) 17.0459 + 9.84148i 0.821074 + 0.474047i 0.850787 0.525511i \(-0.176126\pi\)
−0.0297126 + 0.999558i \(0.509459\pi\)
\(432\) −3.99991 + 0.0271012i −0.192446 + 0.00130391i
\(433\) 6.43311i 0.309156i −0.987981 0.154578i \(-0.950598\pi\)
0.987981 0.154578i \(-0.0494017\pi\)
\(434\) 0 0
\(435\) 29.9779i 1.43733i
\(436\) −13.5706 + 23.6899i −0.649912 + 1.13454i
\(437\) 3.66055 + 2.11342i 0.175108 + 0.101099i
\(438\) 4.29003 + 7.40157i 0.204986 + 0.353661i
\(439\) −3.47675 6.02190i −0.165936 0.287410i 0.771051 0.636773i \(-0.219731\pi\)
−0.936987 + 0.349363i \(0.886398\pi\)
\(440\) −0.318232 62.6248i −0.0151711 2.98552i
\(441\) 0 0
\(442\) 1.51220 + 0.869657i 0.0719280 + 0.0413654i
\(443\) −6.74126 + 3.89207i −0.320287 + 0.184918i −0.651520 0.758631i \(-0.725868\pi\)
0.331234 + 0.943549i \(0.392535\pi\)
\(444\) 2.38031 0.00806375i 0.112964 0.000382688i
\(445\) −22.4093 + 38.8141i −1.06230 + 1.83996i
\(446\) −0.0229305 13.5375i −0.00108579 0.641021i
\(447\) −6.11467 −0.289214
\(448\) 0 0
\(449\) −13.4404 −0.634290 −0.317145 0.948377i \(-0.602724\pi\)
−0.317145 + 0.948377i \(0.602724\pi\)
\(450\) 0.0198938 + 11.7448i 0.000937804 + 0.553655i
\(451\) −20.0141 + 34.6654i −0.942427 + 1.63233i
\(452\) 14.2393 0.0482384i 0.669760 0.00226894i
\(453\) −12.3346 + 7.12137i −0.579529 + 0.334591i
\(454\) 13.6740 + 7.86381i 0.641750 + 0.369067i
\(455\) 0 0
\(456\) −0.0175216 3.44807i −0.000820524 0.161471i
\(457\) 0.581825 + 1.00775i 0.0272166 + 0.0471406i 0.879313 0.476244i \(-0.158002\pi\)
−0.852096 + 0.523385i \(0.824669\pi\)
\(458\) −7.18291 12.3926i −0.335635 0.579070i
\(459\) −2.21053 1.27625i −0.103179 0.0595702i
\(460\) −12.5726 + 21.9478i −0.586201 + 1.02332i
\(461\) 21.4211i 0.997678i −0.866695 0.498839i \(-0.833760\pi\)
0.866695 0.498839i \(-0.166240\pi\)
\(462\) 0 0
\(463\) 14.4408i 0.671119i 0.942019 + 0.335560i \(0.108925\pi\)
−0.942019 + 0.335560i \(0.891075\pi\)
\(464\) 32.8735 0.222733i 1.52611 0.0103401i
\(465\) −19.9405 11.5127i −0.924719 0.533887i
\(466\) −15.4674 + 8.96506i −0.716512 + 0.415298i
\(467\) 14.8830 + 25.7780i 0.688701 + 1.19287i 0.972258 + 0.233910i \(0.0751521\pi\)
−0.283557 + 0.958955i \(0.591515\pi\)
\(468\) −0.835376 + 0.486085i −0.0386153 + 0.0224693i
\(469\) 0 0
\(470\) −29.9912 + 52.1500i −1.38339 + 2.40550i
\(471\) −18.2706 + 10.5485i −0.841865 + 0.486051i
\(472\) 2.85364 + 1.62827i 0.131350 + 0.0749474i
\(473\) −10.6588 + 18.4615i −0.490090 + 0.848861i
\(474\) 4.49632 0.00761605i 0.206523 0.000349817i
\(475\) −10.1244 −0.464538
\(476\) 0 0
\(477\) 2.62782 0.120320
\(478\) 7.72231 0.0130804i 0.353210 0.000598282i
\(479\) −14.1776 + 24.5563i −0.647790 + 1.12201i 0.335859 + 0.941912i \(0.390973\pi\)
−0.983649 + 0.180094i \(0.942360\pi\)
\(480\) 20.6331 0.174750i 0.941767 0.00797621i
\(481\) 0.498093 0.287574i 0.0227111 0.0131122i
\(482\) 9.61504 16.7191i 0.437953 0.761533i
\(483\) 0 0
\(484\) −25.9988 44.6809i −1.18176 2.03095i
\(485\) 21.5893 + 37.3937i 0.980318 + 1.69796i
\(486\) 1.22355 0.709180i 0.0555011 0.0321691i
\(487\) −8.28601 4.78393i −0.375475 0.216781i 0.300373 0.953822i \(-0.402889\pi\)
−0.675848 + 0.737041i \(0.736222\pi\)
\(488\) 0.297395 + 0.509111i 0.0134624 + 0.0230464i
\(489\) 19.1370i 0.865406i
\(490\) 0 0
\(491\) 17.7521i 0.801141i 0.916266 + 0.400571i \(0.131188\pi\)
−0.916266 + 0.400571i \(0.868812\pi\)
\(492\) −11.4438 6.55549i −0.515926 0.295544i
\(493\) 18.1674 + 10.4889i 0.818217 + 0.472398i
\(494\) −0.417799 0.720827i −0.0187977 0.0324315i
\(495\) 11.0708 + 19.1751i 0.497593 + 0.861857i
\(496\) −12.4765 + 21.9521i −0.560213 + 0.985681i
\(497\) 0 0
\(498\) −9.19262 5.28662i −0.411931 0.236899i
\(499\) 8.14160 4.70056i 0.364468 0.210426i −0.306571 0.951848i \(-0.599182\pi\)
0.671039 + 0.741422i \(0.265848\pi\)
\(500\) −0.0816744 24.1092i −0.00365259 1.07819i
\(501\) −3.84812 + 6.66514i −0.171921 + 0.297776i
\(502\) −0.0676534 39.9408i −0.00301952 1.78265i
\(503\) −40.9278 −1.82488 −0.912440 0.409211i \(-0.865804\pi\)
−0.912440 + 0.409211i \(0.865804\pi\)
\(504\) 0 0
\(505\) 20.8883 0.929517
\(506\) 0.0504161 + 29.7643i 0.00224127 + 1.32319i
\(507\) 6.38323 11.0561i 0.283489 0.491018i
\(508\) −0.0205706 6.07214i −0.000912671 0.269408i
\(509\) −12.4798 + 7.20520i −0.553156 + 0.319365i −0.750394 0.660991i \(-0.770136\pi\)
0.197238 + 0.980356i \(0.436803\pi\)
\(510\) 11.4140 + 6.56415i 0.505422 + 0.290665i
\(511\) 0 0
\(512\) −0.344932 22.6248i −0.0152440 0.999884i
\(513\) 0.609546 + 1.05577i 0.0269121 + 0.0466132i
\(514\) −14.2989 24.6698i −0.630696 1.08814i
\(515\) −15.6462 9.03336i −0.689456 0.398058i
\(516\) −6.09454 3.49121i −0.268297 0.153692i
\(517\) 70.7918i 3.11342i
\(518\) 0 0
\(519\) 0.823365i 0.0361417i
\(520\) 4.30500 2.51475i 0.188787 0.110279i
\(521\) 9.18855 + 5.30501i 0.402558 + 0.232417i 0.687587 0.726102i \(-0.258670\pi\)
−0.285029 + 0.958519i \(0.592003\pi\)
\(522\) −10.0558 + 5.82845i −0.440130 + 0.255104i
\(523\) 18.1358 + 31.4121i 0.793022 + 1.37355i 0.924088 + 0.382181i \(0.124827\pi\)
−0.131066 + 0.991374i \(0.541840\pi\)
\(524\) 14.5514 + 25.0077i 0.635679 + 1.09246i
\(525\) 0 0
\(526\) 8.81880 15.3345i 0.384518 0.668618i
\(527\) −13.9539 + 8.05631i −0.607843 + 0.350938i
\(528\) 20.9450 12.2826i 0.911515 0.534531i
\(529\) −5.48925 + 9.50766i −0.238663 + 0.413377i
\(530\) −13.5555 + 0.0229608i −0.588812 + 0.000997355i
\(531\) −1.16160 −0.0504092
\(532\) 0 0
\(533\) −3.18667 −0.138030
\(534\) −17.3767 + 0.0294335i −0.751965 + 0.00127371i
\(535\) 25.0369 43.3652i 1.08244 1.87484i
\(536\) −2.48974 + 4.36341i −0.107540 + 0.188471i
\(537\) −8.20383 + 4.73649i −0.354022 + 0.204394i
\(538\) 9.20401 16.0044i 0.396813 0.689997i
\(539\) 0 0
\(540\) −6.30540 + 3.66896i −0.271341 + 0.157887i
\(541\) 11.8173 + 20.4682i 0.508065 + 0.879995i 0.999956 + 0.00933811i \(0.00297245\pi\)
−0.491891 + 0.870657i \(0.663694\pi\)
\(542\) 12.5945 7.29990i 0.540979 0.313558i
\(543\) −1.78504 1.03059i −0.0766034 0.0442270i
\(544\) 7.11339 12.5653i 0.304984 0.538734i
\(545\) 49.7922i 2.13286i
\(546\) 0 0
\(547\) 40.9096i 1.74917i −0.484875 0.874583i \(-0.661135\pi\)
0.484875 0.874583i \(-0.338865\pi\)
\(548\) 11.4948 20.0662i 0.491032 0.857185i
\(549\) −0.180530 0.104229i −0.00770482 0.00444838i
\(550\) −35.7512 61.6813i −1.52443 2.63010i
\(551\) −5.00960 8.67688i −0.213416 0.369647i
\(552\) −9.80661 + 0.0498329i −0.417397 + 0.00212103i
\(553\) 0 0
\(554\) −23.2466 13.3690i −0.987652 0.567993i
\(555\) 3.75959 2.17060i 0.159586 0.0921369i
\(556\) −35.2404 + 0.119384i −1.49452 + 0.00506299i
\(557\) 19.1391 33.1498i 0.810948 1.40460i −0.101254 0.994861i \(-0.532285\pi\)
0.912202 0.409742i \(-0.134381\pi\)
\(558\) −0.0151213 8.92720i −0.000640134 0.377918i
\(559\) −1.69710 −0.0717799
\(560\) 0 0
\(561\) 15.4942 0.654164
\(562\) −0.0419550 24.7691i −0.00176976 1.04482i
\(563\) 2.28008 3.94921i 0.0960939 0.166439i −0.813971 0.580906i \(-0.802698\pi\)
0.910065 + 0.414466i \(0.136032\pi\)
\(564\) −23.3243 + 0.0790155i −0.982129 + 0.00332715i
\(565\) 22.4903 12.9848i 0.946176 0.546275i
\(566\) 23.2216 + 13.3546i 0.976079 + 0.561337i
\(567\) 0 0
\(568\) −25.8279 + 0.131246i −1.08371 + 0.00550697i
\(569\) −21.9078 37.9455i −0.918425 1.59076i −0.801808 0.597581i \(-0.796129\pi\)
−0.116616 0.993177i \(-0.537205\pi\)
\(570\) −3.15354 5.44078i −0.132087 0.227889i
\(571\) 7.32046 + 4.22647i 0.306352 + 0.176872i 0.645293 0.763935i \(-0.276735\pi\)
−0.338941 + 0.940808i \(0.610069\pi\)
\(572\) 2.91621 5.09077i 0.121933 0.212856i
\(573\) 10.8564i 0.453532i
\(574\) 0 0
\(575\) 28.7945i 1.20082i
\(576\) 4.07020 + 6.88719i 0.169592 + 0.286966i
\(577\) −21.8371 12.6076i −0.909089 0.524863i −0.0289511 0.999581i \(-0.509217\pi\)
−0.880138 + 0.474718i \(0.842550\pi\)
\(578\) −12.8286 + 7.43558i −0.533598 + 0.309279i
\(579\) 4.85673 + 8.41210i 0.201839 + 0.349595i
\(580\) 51.8214 30.1536i 2.15176 1.25206i
\(581\) 0 0
\(582\) −8.34587 + 14.5122i −0.345947 + 0.601549i
\(583\) −13.8143 + 7.97569i −0.572130 + 0.330319i
\(584\) 8.47957 14.8609i 0.350887 0.614950i
\(585\) −0.881351 + 1.52655i −0.0364394 + 0.0631149i
\(586\) −35.7456 + 0.0605474i −1.47664 + 0.00250119i
\(587\) 3.61615 0.149254 0.0746272 0.997212i \(-0.476223\pi\)
0.0746272 + 0.997212i \(0.476223\pi\)
\(588\) 0 0
\(589\) 7.69551 0.317088
\(590\) 5.99206 0.0101496i 0.246689 0.000417853i
\(591\) −7.96498 + 13.7957i −0.327635 + 0.567481i
\(592\) −2.40820 4.10661i −0.0989763 0.168781i
\(593\) 7.35701 4.24757i 0.302116 0.174427i −0.341277 0.939963i \(-0.610859\pi\)
0.643393 + 0.765536i \(0.277526\pi\)
\(594\) −4.27968 + 7.44170i −0.175597 + 0.305337i
\(595\) 0 0
\(596\) 6.15052 + 10.5702i 0.251935 + 0.432970i
\(597\) 5.02859 + 8.70978i 0.205807 + 0.356467i
\(598\) −2.05009 + 1.18826i −0.0838346 + 0.0485914i
\(599\) 16.0128 + 9.24497i 0.654264 + 0.377739i 0.790088 0.612994i \(-0.210035\pi\)
−0.135824 + 0.990733i \(0.543368\pi\)
\(600\) 20.2827 11.8480i 0.828036 0.483694i
\(601\) 31.5493i 1.28692i 0.765479 + 0.643461i \(0.222502\pi\)
−0.765479 + 0.643461i \(0.777498\pi\)
\(602\) 0 0
\(603\) 1.77617i 0.0723311i
\(604\) 24.7173 + 14.1591i 1.00573 + 0.576125i
\(605\) −81.6488 47.1399i −3.31949 1.91651i
\(606\) 4.06121 + 7.00678i 0.164975 + 0.284631i
\(607\) −7.76045 13.4415i −0.314987 0.545573i 0.664448 0.747335i \(-0.268667\pi\)
−0.979435 + 0.201761i \(0.935333\pi\)
\(608\) −5.94289 + 3.49857i −0.241016 + 0.141886i
\(609\) 0 0
\(610\) 0.932164 + 0.536082i 0.0377422 + 0.0217053i
\(611\) −4.88074 + 2.81789i −0.197453 + 0.114000i
\(612\) 0.0172941 + 5.10497i 0.000699071 + 0.206356i
\(613\) 2.77406 4.80481i 0.112043 0.194064i −0.804551 0.593884i \(-0.797594\pi\)
0.916594 + 0.399820i \(0.130927\pi\)
\(614\) −0.0245430 14.4895i −0.000990474 0.584750i
\(615\) −24.0529 −0.969908
\(616\) 0 0
\(617\) −32.3633 −1.30290 −0.651448 0.758693i \(-0.725838\pi\)
−0.651448 + 0.758693i \(0.725838\pi\)
\(618\) −0.0118648 7.00469i −0.000477274 0.281770i
\(619\) 1.04453 1.80918i 0.0419832 0.0727171i −0.844270 0.535918i \(-0.819966\pi\)
0.886253 + 0.463201i \(0.153299\pi\)
\(620\) 0.156005 + 46.0504i 0.00626529 + 1.84943i
\(621\) 3.00269 1.73360i 0.120494 0.0695670i
\(622\) −37.2486 21.4215i −1.49353 0.858923i
\(623\) 0 0
\(624\) 1.68055 + 0.955141i 0.0672757 + 0.0382362i
\(625\) −1.22305 2.11839i −0.0489220 0.0847354i
\(626\) 12.1422 + 20.9489i 0.485301 + 0.837288i
\(627\) −6.40870 3.70006i −0.255939 0.147766i
\(628\) 36.6125 + 20.9732i 1.46100 + 0.836920i
\(629\) 3.03788i 0.121128i
\(630\) 0 0
\(631\) 37.2258i 1.48194i 0.671541 + 0.740968i \(0.265633\pi\)
−0.671541 + 0.740968i \(0.734367\pi\)
\(632\) −4.53584 7.76491i −0.180426 0.308872i
\(633\) −0.893976 0.516137i −0.0355324 0.0205146i
\(634\) 15.1300 8.76952i 0.600889 0.348282i
\(635\) −5.53719 9.59069i −0.219737 0.380595i
\(636\) −2.64322 4.54259i −0.104811 0.180125i
\(637\) 0 0
\(638\) 35.1728 61.1601i 1.39250 2.42135i
\(639\) 7.90825 4.56583i 0.312846 0.180621i
\(640\) −21.0561 35.4917i −0.832316 1.40293i
\(641\) 5.78071 10.0125i 0.228324 0.395469i −0.728987 0.684527i \(-0.760009\pi\)
0.957312 + 0.289058i \(0.0933420\pi\)
\(642\) 19.4142 0.0328846i 0.766218 0.00129785i
\(643\) 5.82948 0.229892 0.114946 0.993372i \(-0.463330\pi\)
0.114946 + 0.993372i \(0.463330\pi\)
\(644\) 0 0
\(645\) −12.8097 −0.504381
\(646\) −4.40064 + 0.00745400i −0.173141 + 0.000293274i
\(647\) 23.1386 40.0772i 0.909671 1.57560i 0.0951507 0.995463i \(-0.469667\pi\)
0.814521 0.580134i \(-0.197000\pi\)
\(648\) −2.45664 1.40175i −0.0965061 0.0550659i
\(649\) 6.10647 3.52557i 0.239700 0.138391i
\(650\) 2.82953 4.92011i 0.110983 0.192983i
\(651\) 0 0
\(652\) −33.0813 + 19.2492i −1.29556 + 0.753857i
\(653\) −11.7881 20.4175i −0.461303 0.798999i 0.537724 0.843121i \(-0.319284\pi\)
−0.999026 + 0.0441218i \(0.985951\pi\)
\(654\) −16.7023 + 9.68084i −0.653112 + 0.378551i
\(655\) 45.6983 + 26.3839i 1.78558 + 1.03091i
\(656\) 0.178712 + 26.3763i 0.00697751 + 1.02982i
\(657\) 6.04928i 0.236005i
\(658\) 0 0
\(659\) 20.7935i 0.810001i 0.914316 + 0.405001i \(0.132729\pi\)
−0.914316 + 0.405001i \(0.867271\pi\)
\(660\) 22.0115 38.4250i 0.856795 1.49569i
\(661\) 28.8226 + 16.6407i 1.12107 + 0.647249i 0.941674 0.336528i \(-0.109253\pi\)
0.179395 + 0.983777i \(0.442586\pi\)
\(662\) 5.44790 + 9.39923i 0.211739 + 0.365312i
\(663\) 0.616751 + 1.06824i 0.0239526 + 0.0414871i
\(664\) 0.107772 + 21.2085i 0.00418237 + 0.823048i
\(665\) 0 0
\(666\) 1.45907 + 0.839100i 0.0565376 + 0.0325144i
\(667\) −24.6778 + 14.2477i −0.955528 + 0.551674i
\(668\) 15.3924 0.0521447i 0.595550 0.00201754i
\(669\) 4.78625 8.29003i 0.185047 0.320511i
\(670\) 0.0155194 + 9.16226i 0.000599568 + 0.353969i
\(671\) 1.26538 0.0488494
\(672\) 0 0
\(673\) −13.1796 −0.508037 −0.254019 0.967199i \(-0.581752\pi\)
−0.254019 + 0.967199i \(0.581752\pi\)
\(674\) 0.0320663 + 18.9311i 0.00123515 + 0.729200i
\(675\) −4.15242 + 7.19220i −0.159827 + 0.276828i
\(676\) −25.5328 + 0.0864973i −0.982030 + 0.00332682i
\(677\) 38.0749 21.9825i 1.46334 0.844858i 0.464173 0.885745i \(-0.346352\pi\)
0.999164 + 0.0408865i \(0.0130182\pi\)
\(678\) 8.72831 + 5.01960i 0.335209 + 0.192777i
\(679\) 0 0
\(680\) −0.133816 26.3336i −0.00513160 1.00985i
\(681\) 5.57692 + 9.65951i 0.213708 + 0.370153i
\(682\) 27.1744 + 46.8839i 1.04056 + 1.79528i
\(683\) 10.3341 + 5.96637i 0.395422 + 0.228297i 0.684507 0.729007i \(-0.260018\pi\)
−0.289085 + 0.957303i \(0.593351\pi\)
\(684\) 1.21193 2.11565i 0.0463394 0.0808938i
\(685\) 42.1758i 1.61145i
\(686\) 0 0
\(687\) 10.1285i 0.386425i
\(688\) 0.0951751 + 14.0470i 0.00362852 + 0.535538i
\(689\) −1.09977 0.634951i −0.0418978 0.0241897i
\(690\) −15.4741 + 8.96893i −0.589087 + 0.341441i
\(691\) −18.6375 32.2811i −0.709003 1.22803i −0.965227 0.261412i \(-0.915812\pi\)
0.256224 0.966617i \(-0.417522\pi\)
\(692\) 1.42331 0.828191i 0.0541062 0.0314831i
\(693\) 0 0
\(694\) −22.4754 + 39.0812i −0.853154 + 1.48350i
\(695\) −55.6606 + 32.1357i −2.11133 + 1.21898i
\(696\) 20.1901 + 11.5204i 0.765304 + 0.436678i
\(697\) −8.41586 + 14.5767i −0.318773 + 0.552132i
\(698\) −13.4581 + 0.0227959i −0.509397 + 0.000862839i
\(699\) −12.6414 −0.478143
\(700\) 0 0
\(701\) −30.9151 −1.16765 −0.583823 0.811881i \(-0.698444\pi\)
−0.583823 + 0.811881i \(0.698444\pi\)
\(702\) −0.683422 + 0.00115761i −0.0257941 + 4.36911e-5i
\(703\) −0.725457 + 1.25653i −0.0273611 + 0.0473909i
\(704\) −42.3001 23.8521i −1.59425 0.898960i
\(705\) −36.8397 + 21.2694i −1.38746 + 0.801052i
\(706\) 9.96390 17.3257i 0.374996 0.652061i
\(707\) 0 0
\(708\) 1.16841 + 2.00801i 0.0439116 + 0.0754655i
\(709\) 4.32776 + 7.49590i 0.162532 + 0.281514i 0.935776 0.352594i \(-0.114700\pi\)
−0.773244 + 0.634109i \(0.781367\pi\)
\(710\) −40.7544 + 23.6217i −1.52949 + 0.886507i
\(711\) 2.75342 + 1.58969i 0.103261 + 0.0596180i
\(712\) 17.5295 + 30.0088i 0.656945 + 1.12463i
\(713\) 21.8867i 0.819663i
\(714\) 0 0
\(715\) 10.6999i 0.400155i
\(716\) 16.4397 + 9.41733i 0.614379 + 0.351942i
\(717\) 4.72894 + 2.73025i 0.176605 + 0.101963i
\(718\) −15.9321 27.4876i −0.594582 1.02583i
\(719\) 13.8268 + 23.9487i 0.515653 + 0.893137i 0.999835 + 0.0181697i \(0.00578391\pi\)
−0.484182 + 0.874967i \(0.660883\pi\)
\(720\) 12.6847 + 7.20938i 0.472732 + 0.268678i
\(721\) 0 0
\(722\) −21.4709 12.3478i −0.799064 0.459537i
\(723\) 11.8106 6.81887i 0.439242 0.253597i
\(724\) 0.0139653 + 4.12235i 0.000519015 + 0.153206i
\(725\) 34.1269 59.1096i 1.26744 2.19527i
\(726\) −0.0619158 36.5535i −0.00229791 1.35663i
\(727\) −31.3975 −1.16447 −0.582235 0.813021i \(-0.697822\pi\)
−0.582235 + 0.813021i \(0.697822\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −0.0528562 31.2049i −0.00195629 1.15494i
\(731\) −4.48198 + 7.76301i −0.165772 + 0.287125i
\(732\) 0.00141237 + 0.416913i 5.22029e−5 + 0.0154096i
\(733\) 16.8834 9.74763i 0.623602 0.360037i −0.154668 0.987966i \(-0.549431\pi\)
0.778270 + 0.627930i \(0.216097\pi\)
\(734\) −14.7102 8.45975i −0.542964 0.312255i
\(735\) 0 0
\(736\) 9.95023 + 16.9021i 0.366771 + 0.623019i
\(737\) 5.39083 + 9.33720i 0.198574 + 0.343940i
\(738\) −4.67649 8.06832i −0.172144 0.296999i
\(739\) 34.2166 + 19.7550i 1.25868 + 0.726698i 0.972818 0.231573i \(-0.0743871\pi\)
0.285861 + 0.958271i \(0.407720\pi\)
\(740\) −7.53384 4.31570i −0.276950 0.158648i
\(741\) 0.589130i 0.0216422i
\(742\) 0 0
\(743\) 10.9193i 0.400590i −0.979736 0.200295i \(-0.935810\pi\)
0.979736 0.200295i \(-0.0641901\pi\)
\(744\) −15.4168 + 9.00567i −0.565208 + 0.330164i
\(745\) 19.3156 + 11.1519i 0.707670 + 0.408573i
\(746\) −6.88563 + 3.99099i −0.252101 + 0.146120i
\(747\) −3.74921 6.49383i −0.137176 0.237597i
\(748\) −15.5850 26.7840i −0.569843 0.979321i
\(749\) 0 0
\(750\) 8.49890 14.7783i 0.310336 0.539627i
\(751\) 26.2548 15.1582i 0.958050 0.553130i 0.0624774 0.998046i \(-0.480100\pi\)
0.895572 + 0.444916i \(0.146767\pi\)
\(752\) 23.5976 + 40.2401i 0.860515 + 1.46740i
\(753\) 14.1212 24.4587i 0.514606 0.891324i
\(754\) 5.61675 0.00951388i 0.204550 0.000346475i
\(755\) 51.9515 1.89071
\(756\) 0 0
\(757\) 18.4211 0.669526 0.334763 0.942302i \(-0.391344\pi\)
0.334763 + 0.942302i \(0.391344\pi\)
\(758\) −30.1730 + 0.0511083i −1.09593 + 0.00185634i
\(759\) −10.5233 + 18.2269i −0.381971 + 0.661594i
\(760\) −6.23320 + 10.9241i −0.226102 + 0.396257i
\(761\) −29.0996 + 16.8007i −1.05486 + 0.609023i −0.924006 0.382379i \(-0.875105\pi\)
−0.130853 + 0.991402i \(0.541772\pi\)
\(762\) 2.14054 3.72206i 0.0775435 0.134836i
\(763\) 0 0
\(764\) 18.7669 10.9200i 0.678964 0.395073i
\(765\) 4.65522 + 8.06307i 0.168310 + 0.291521i
\(766\) −9.24008 + 5.35565i −0.333858 + 0.193508i
\(767\) 0.486141 + 0.280674i 0.0175535 + 0.0101345i
\(768\) 7.81151 13.9635i 0.281873 0.503866i
\(769\) 0.776682i 0.0280079i −0.999902 0.0140039i \(-0.995542\pi\)
0.999902 0.0140039i \(-0.00445774\pi\)
\(770\) 0 0
\(771\) 20.1625i 0.726136i
\(772\) 9.65641 16.8570i 0.347542 0.606697i
\(773\) 17.6333 + 10.1806i 0.634225 + 0.366170i 0.782387 0.622793i \(-0.214002\pi\)
−0.148161 + 0.988963i \(0.547335\pi\)
\(774\) −2.49052 4.29689i −0.0895201 0.154449i
\(775\) 26.2121 + 45.4007i 0.941566 + 1.63084i
\(776\) 33.4813 0.170138i 1.20191 0.00610758i
\(777\) 0 0
\(778\) −3.24949 1.86876i −0.116500 0.0669984i
\(779\) 6.96194 4.01948i 0.249438 0.144013i
\(780\) 3.52538 0.0119429i 0.126229 0.000427625i
\(781\) −27.7155 + 48.0046i −0.991738 + 1.71774i
\(782\) 0.0211998 + 12.5158i 0.000758104 + 0.447564i
\(783\) −8.21857 −0.293708
\(784\) 0 0
\(785\) 76.9532 2.74658
\(786\) 0.0346539 + 20.4588i 0.00123606 + 0.729740i
\(787\) 24.3908 42.2461i 0.869437 1.50591i 0.00686444 0.999976i \(-0.497815\pi\)
0.862573 0.505933i \(-0.168852\pi\)
\(788\) 31.8597 0.107931i 1.13496 0.00384488i
\(789\) 10.8326 6.25419i 0.385650 0.222655i
\(790\) −14.2173 8.17628i −0.505828 0.290899i
\(791\) 0 0
\(792\) 17.1689 0.0872448i 0.610070 0.00310011i
\(793\) 0.0503689 + 0.0872415i 0.00178865 + 0.00309804i
\(794\) −13.2263 22.8193i −0.469385 0.809827i
\(795\) −8.30101 4.79259i −0.294407 0.169976i
\(796\) 9.99811 17.4535i 0.354374 0.618624i
\(797\) 5.84706i 0.207113i −0.994624 0.103557i \(-0.966978\pi\)
0.994624 0.103557i \(-0.0330223\pi\)
\(798\) 0 0
\(799\) 29.7677i 1.05311i
\(800\) −40.8827 23.1442i −1.44542 0.818271i
\(801\) −10.6411 6.14362i −0.375983 0.217074i
\(802\) 29.1795 16.9128i 1.03036 0.597210i
\(803\) −18.3601 31.8007i −0.647915 1.12222i
\(804\) −3.07037 + 1.78658i −0.108284 + 0.0630077i
\(805\) 0 0
\(806\) −2.15072 + 3.73977i −0.0757558 + 0.131728i
\(807\) 11.3057 6.52738i 0.397981 0.229775i
\(808\) 8.02728 14.0683i 0.282399 0.494920i
\(809\) −12.5937 + 21.8130i −0.442772 + 0.766903i −0.997894 0.0648654i \(-0.979338\pi\)
0.555122 + 0.831769i \(0.312672\pi\)
\(810\) −5.15845 + 0.00873760i −0.181249 + 0.000307008i
\(811\) −12.4012 −0.435465 −0.217733 0.976008i \(-0.569866\pi\)
−0.217733 + 0.976008i \(0.569866\pi\)
\(812\) 0 0
\(813\) 10.2934 0.361006
\(814\) −10.2170 + 0.0173059i −0.358105 + 0.000606573i
\(815\) −34.9019 + 60.4519i −1.22256 + 2.11754i
\(816\) 8.80732 5.16479i 0.308318 0.180804i
\(817\) 3.70767 2.14063i 0.129715 0.0748910i
\(818\) −12.2865 + 21.3644i −0.429588 + 0.746988i
\(819\) 0 0
\(820\) 24.1939 + 41.5792i 0.844889 + 1.45201i
\(821\) −7.13932 12.3657i −0.249164 0.431564i 0.714130 0.700013i \(-0.246822\pi\)
−0.963294 + 0.268448i \(0.913489\pi\)
\(822\) 14.1475 8.20002i 0.493449 0.286009i
\(823\) −12.2752 7.08709i −0.427887 0.247040i 0.270559 0.962703i \(-0.412791\pi\)
−0.698446 + 0.715663i \(0.746125\pi\)
\(824\) −12.0968 + 7.06626i −0.421410 + 0.246165i
\(825\) 50.4119i 1.75512i
\(826\) 0 0
\(827\) 25.5816i 0.889559i −0.895640 0.444779i \(-0.853282\pi\)
0.895640 0.444779i \(-0.146718\pi\)
\(828\) −6.01708 3.44684i −0.209108 0.119786i
\(829\) 35.2159 + 20.3319i 1.22310 + 0.706156i 0.965577 0.260117i \(-0.0837611\pi\)
0.257521 + 0.966273i \(0.417094\pi\)
\(830\) 19.3969 + 33.4653i 0.673275 + 1.16160i
\(831\) −9.48111 16.4218i −0.328896 0.569665i
\(832\) −0.0392899 3.86582i −0.00136213 0.134023i
\(833\) 0 0
\(834\) −21.6014 12.4228i −0.747996 0.430168i
\(835\) 24.3116 14.0363i 0.841338 0.485747i
\(836\) 0.0501385 + 14.8002i 0.00173407 + 0.511875i
\(837\) 3.15625 5.46678i 0.109096 0.188959i
\(838\) 0.0637545 + 37.6390i 0.00220236 + 1.30022i
\(839\) −24.4293 −0.843394 −0.421697 0.906737i \(-0.638565\pi\)
−0.421697 + 0.906737i \(0.638565\pi\)
\(840\) 0 0
\(841\) 38.5449 1.32913
\(842\) −0.0412488 24.3522i −0.00142153 0.839233i
\(843\) 8.75722 15.1679i 0.301615 0.522412i
\(844\) 0.00699402 + 2.06454i 0.000240744 + 0.0710643i
\(845\) −40.3279 + 23.2833i −1.38732 + 0.800972i
\(846\) −14.2972 8.22221i −0.491547 0.282686i
\(847\) 0 0
\(848\) −5.19384 + 9.13844i −0.178357 + 0.313815i
\(849\) 9.47095 + 16.4042i 0.325042 + 0.562990i
\(850\) −15.0333 25.9368i −0.515636 0.889625i
\(851\) 3.57368 + 2.06326i 0.122504 + 0.0707277i
\(852\) −15.8473 9.07803i −0.542921 0.311008i
\(853\) 21.6039i 0.739705i 0.929091 + 0.369852i \(0.120592\pi\)
−0.929091 + 0.369852i \(0.879408\pi\)
\(854\) 0 0
\(855\) 4.44674i 0.152075i
\(856\) −19.5849 33.5274i −0.669397 1.14594i
\(857\) −2.05943 1.18901i −0.0703487 0.0406159i 0.464413 0.885619i \(-0.346265\pi\)
−0.534762 + 0.845003i \(0.679599\pi\)
\(858\) 3.58919 2.08034i 0.122533 0.0710215i
\(859\) −20.9336 36.2580i −0.714244 1.23711i −0.963250 0.268605i \(-0.913437\pi\)
0.249007 0.968502i \(-0.419896\pi\)
\(860\) 12.8848 + 22.1435i 0.439368 + 0.755088i
\(861\) 0 0
\(862\) 13.8771 24.1301i 0.472656 0.821876i
\(863\) 34.4456 19.8872i 1.17254 0.676967i 0.218263 0.975890i \(-0.429961\pi\)
0.954277 + 0.298923i \(0.0966275\pi\)
\(864\) 0.0479085 + 5.65665i 0.00162988 + 0.192443i
\(865\) 1.50164 2.60092i 0.0510574 0.0884341i
\(866\) −9.09778 + 0.0154102i −0.309155 + 0.000523660i
\(867\) −10.4848 −0.356081
\(868\) 0 0
\(869\) −19.2995 −0.654689
\(870\) 42.3951 0.0718106i 1.43733 0.00243461i
\(871\) −0.429168 + 0.743342i −0.0145418 + 0.0251872i
\(872\) 33.5350 + 19.1349i 1.13564 + 0.647990i
\(873\) −10.2517 + 5.91879i −0.346966 + 0.200321i
\(874\) 2.98006 5.18186i 0.100802 0.175279i
\(875\) 0 0
\(876\) 10.4571 6.08474i 0.353313 0.205584i
\(877\) −13.3590 23.1385i −0.451102 0.781331i 0.547353 0.836902i \(-0.315635\pi\)
−0.998455 + 0.0555709i \(0.982302\pi\)
\(878\) −8.50792 + 4.93128i −0.287128 + 0.166423i
\(879\) −21.8897 12.6380i −0.738320 0.426269i
\(880\) −88.5640 + 0.600062i −2.98549 + 0.0202281i
\(881\) 39.2357i 1.32188i 0.750437 + 0.660942i \(0.229843\pi\)
−0.750437 + 0.660942i \(0.770157\pi\)
\(882\) 0 0
\(883\) 57.7837i 1.94458i 0.233783 + 0.972289i \(0.424889\pi\)
−0.233783 + 0.972289i \(0.575111\pi\)
\(884\) 1.22626 2.14065i 0.0412435 0.0719980i
\(885\) 3.66938 + 2.11852i 0.123345 + 0.0712132i
\(886\) 5.52035 + 9.52424i 0.185460 + 0.319973i
\(887\) 24.9877 + 43.2800i 0.839005 + 1.45320i 0.890727 + 0.454538i \(0.150196\pi\)
−0.0517223 + 0.998662i \(0.516471\pi\)
\(888\) −0.0171057 3.36624i −0.000574031 0.112963i
\(889\) 0 0
\(890\) 54.9450 + 31.5986i 1.84176 + 1.05919i
\(891\) −5.25694 + 3.03510i −0.176114 + 0.101680i
\(892\) −19.1449 + 0.0648570i −0.641018 + 0.00217157i
\(893\) 7.10865 12.3125i 0.237882 0.412023i
\(894\) 0.0146474 + 8.64744i 0.000489883 + 0.289214i
\(895\) 34.5534 1.15499
\(896\) 0 0
\(897\) −1.67554 −0.0559445
\(898\) 0.0321957 + 19.0075i 0.00107439 + 0.634289i
\(899\) −25.9398 + 44.9291i −0.865141 + 1.49847i
\(900\) 16.6096 0.0562682i 0.553652 0.00187561i
\(901\) −5.80887 + 3.35375i −0.193522 + 0.111730i
\(902\) 49.0722 + 28.2211i 1.63392 + 0.939660i
\(903\) 0 0
\(904\) −0.102329 20.1372i −0.00340340 0.669755i
\(905\) 3.75917 + 6.51107i 0.124959 + 0.216435i
\(906\) 10.1007 + 17.4266i 0.335572 + 0.578962i
\(907\) −13.4055 7.73965i −0.445121 0.256991i 0.260646 0.965434i \(-0.416064\pi\)
−0.705768 + 0.708444i \(0.749398\pi\)
\(908\) 11.0883 19.3567i 0.367979 0.642375i
\(909\) 5.72662i 0.189940i
\(910\) 0 0
\(911\) 2.22992i 0.0738807i −0.999317 0.0369403i \(-0.988239\pi\)
0.999317 0.0369403i \(-0.0117612\pi\)
\(912\) −4.87626 + 0.0330389i −0.161469 + 0.00109403i
\(913\) 39.4188 + 22.7584i 1.30457 + 0.753194i
\(914\) 1.42378 0.825238i 0.0470944 0.0272964i
\(915\) 0.380183 + 0.658497i 0.0125685 + 0.0217692i
\(916\) −17.5086 + 10.1878i −0.578500 + 0.336616i
\(917\) 0 0
\(918\) −1.79959 + 3.12921i −0.0593953 + 0.103279i
\(919\) 26.1682 15.1082i 0.863211 0.498375i −0.00187547 0.999998i \(-0.500597\pi\)
0.865086 + 0.501623i \(0.167264\pi\)
\(920\) 31.0689 + 17.7278i 1.02431 + 0.584467i
\(921\) 5.12283 8.87300i 0.168803 0.292375i
\(922\) −30.2939 + 0.0513131i −0.997677 + 0.00168991i
\(923\) −4.41290 −0.145252
\(924\) 0 0
\(925\) −9.88408 −0.324986
\(926\) 20.4223 0.0345921i 0.671118 0.00113677i
\(927\) 2.47654 4.28949i 0.0813401 0.140885i
\(928\) −0.393739 46.4896i −0.0129251 1.52610i
\(929\) 2.41731 1.39564i 0.0793095 0.0457894i −0.459821 0.888012i \(-0.652086\pi\)
0.539130 + 0.842222i \(0.318753\pi\)
\(930\) −16.2336 + 28.2277i −0.532320 + 0.925622i
\(931\) 0 0
\(932\) 12.7155 + 21.8527i 0.416511 + 0.715808i
\(933\) −15.1919 26.3131i −0.497359 0.861451i
\(934\) 36.4199 21.1094i 1.19170 0.690721i
\(935\) −48.9444 28.2581i −1.60065 0.924138i
\(936\) 0.689429 + 1.18023i 0.0225347 + 0.0385772i
\(937\) 13.5645i 0.443133i 0.975145 + 0.221566i \(0.0711169\pi\)
−0.975145 + 0.221566i \(0.928883\pi\)
\(938\) 0 0
\(939\) 17.1215i 0.558739i
\(940\) 73.8230 + 42.2889i 2.40784 + 1.37931i
\(941\) 22.7548 + 13.1375i 0.741787 + 0.428271i 0.822719 0.568449i \(-0.192456\pi\)
−0.0809319 + 0.996720i \(0.525790\pi\)
\(942\) 14.9616 + 25.8132i 0.487476 + 0.841040i
\(943\) −11.4317 19.8004i −0.372269 0.644789i
\(944\) 2.29589 4.03956i 0.0747248 0.131476i
\(945\) 0 0
\(946\) 26.1340 + 15.0295i 0.849690 + 0.488652i
\(947\) −7.80904 + 4.50855i −0.253760 + 0.146508i −0.621485 0.783426i \(-0.713470\pi\)
0.367725 + 0.929935i \(0.380137\pi\)
\(948\) −0.0215414 6.35873i −0.000699633 0.206522i
\(949\) 1.46167 2.53168i 0.0474477 0.0821818i
\(950\) 0.0242524 + 14.3180i 0.000786852 + 0.464537i
\(951\) 12.3657 0.400986
\(952\) 0 0
\(953\) 5.49448 0.177984 0.0889918 0.996032i \(-0.471636\pi\)
0.0889918 + 0.996032i \(0.471636\pi\)
\(954\) −0.00629482 3.71629i −0.000203802 0.120319i
\(955\) 19.7998 34.2942i 0.640706 1.10973i
\(956\) −0.0369968 10.9209i −0.00119656 0.353209i
\(957\) 43.2045 24.9442i 1.39660 0.806330i
\(958\) 34.7618 + 19.9913i 1.12310 + 0.645889i
\(959\) 0 0
\(960\) −0.296559 29.1791i −0.00957140 0.941752i
\(961\) −4.42377 7.66220i −0.142702 0.247168i
\(962\) −0.407883 0.703719i −0.0131507 0.0226888i
\(963\) 11.8888 + 6.86398i 0.383110 + 0.221189i
\(964\) −23.6673 13.5576i −0.762273 0.436662i
\(965\) 35.4306i 1.14055i
\(966\) 0 0
\(967\) 45.1993i 1.45351i −0.686896 0.726756i \(-0.741027\pi\)
0.686896 0.726756i \(-0.258973\pi\)
\(968\) −63.1260 + 36.8748i −2.02895 + 1.18520i
\(969\) −2.69484 1.55587i −0.0865707 0.0499816i
\(970\) 52.8309 30.6214i 1.69630 0.983193i
\(971\) 20.5279 + 35.5554i 0.658772 + 1.14103i 0.980934 + 0.194342i \(0.0622572\pi\)
−0.322162 + 0.946685i \(0.604409\pi\)
\(972\) −1.00586 1.72865i −0.0322630 0.0554466i
\(973\) 0 0
\(974\) −6.74564 + 11.7296i −0.216144 + 0.375842i
\(975\) 3.47565 2.00667i 0.111310 0.0642648i
\(976\) 0.719278 0.421799i 0.0230235 0.0135014i
\(977\) −28.6096 + 49.5532i −0.915301 + 1.58535i −0.108842 + 0.994059i \(0.534714\pi\)
−0.806459 + 0.591289i \(0.798619\pi\)
\(978\) −27.0638 + 0.0458418i −0.865405 + 0.00146586i
\(979\) 74.5859 2.38378
\(980\) 0 0
\(981\) −13.6507 −0.435835
\(982\) 25.1052 0.0425243i 0.801140 0.00135700i
\(983\) −26.1872 + 45.3575i −0.835241 + 1.44668i 0.0585929 + 0.998282i \(0.481339\pi\)
−0.893834 + 0.448398i \(0.851995\pi\)
\(984\) −9.24343 + 16.1996i −0.294670 + 0.516426i
\(985\) 50.3211 29.0529i 1.60336 0.925702i
\(986\) 14.7901 25.7176i 0.471011 0.819016i
\(987\) 0 0
\(988\) −1.01840 + 0.592583i −0.0323997 + 0.0188526i
\(989\) −6.08812 10.5449i −0.193591 0.335310i
\(990\) 27.0911 15.7023i 0.861013 0.499053i
\(991\) −51.5895 29.7852i −1.63879 0.946158i −0.981249 0.192743i \(-0.938262\pi\)
−0.657545 0.753415i \(-0.728405\pi\)
\(992\) 31.0749 + 17.5919i 0.986628 + 0.558543i
\(993\) 7.68197i 0.243780i
\(994\) 0 0
\(995\) 36.6844i 1.16297i
\(996\) −7.45438 + 13.0130i −0.236201 + 0.412332i
\(997\) −28.0159 16.1750i −0.887274 0.512268i −0.0142239 0.999899i \(-0.504528\pi\)
−0.873050 + 0.487631i \(0.837861\pi\)
\(998\) −6.66708 11.5027i −0.211043 0.364111i
\(999\) 0.595080 + 1.03071i 0.0188275 + 0.0326102i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.o.f.31.8 24
4.3 odd 2 588.2.o.e.31.3 24
7.2 even 3 inner 588.2.o.f.19.3 24
7.3 odd 6 588.2.b.d.391.10 yes 12
7.4 even 3 588.2.b.c.391.10 yes 12
7.5 odd 6 588.2.o.e.19.3 24
7.6 odd 2 588.2.o.e.31.8 24
21.11 odd 6 1764.2.b.l.1567.3 12
21.17 even 6 1764.2.b.m.1567.3 12
28.3 even 6 588.2.b.c.391.9 12
28.11 odd 6 588.2.b.d.391.9 yes 12
28.19 even 6 inner 588.2.o.f.19.8 24
28.23 odd 6 588.2.o.e.19.8 24
28.27 even 2 inner 588.2.o.f.31.3 24
84.11 even 6 1764.2.b.m.1567.4 12
84.59 odd 6 1764.2.b.l.1567.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.b.c.391.9 12 28.3 even 6
588.2.b.c.391.10 yes 12 7.4 even 3
588.2.b.d.391.9 yes 12 28.11 odd 6
588.2.b.d.391.10 yes 12 7.3 odd 6
588.2.o.e.19.3 24 7.5 odd 6
588.2.o.e.19.8 24 28.23 odd 6
588.2.o.e.31.3 24 4.3 odd 2
588.2.o.e.31.8 24 7.6 odd 2
588.2.o.f.19.3 24 7.2 even 3 inner
588.2.o.f.19.8 24 28.19 even 6 inner
588.2.o.f.31.3 24 28.27 even 2 inner
588.2.o.f.31.8 24 1.1 even 1 trivial
1764.2.b.l.1567.3 12 21.11 odd 6
1764.2.b.l.1567.4 12 84.59 odd 6
1764.2.b.m.1567.3 12 21.17 even 6
1764.2.b.m.1567.4 12 84.11 even 6