Properties

Label 1764.2.b.l.1567.3
Level $1764$
Weight $2$
Character 1764.1567
Analytic conductor $14.086$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,2,Mod(1567,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.1567"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-4,0,-4,0,0,0,-4,0,0,0,0,0,0,0,-4,0,0,0,-24,0,0,0,0,-12,24, 0,0,-32,0,-16,-4,0,-32,0,0,32,-24,0,32,0,0,0,24,0,24,0,0,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(50)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.15911316233388032.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 10 x^{10} - 20 x^{9} + 35 x^{8} - 56 x^{7} + 84 x^{6} - 112 x^{5} + 140 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 588)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1567.3
Root \(1.22594 + 0.705031i\) of defining polynomial
Character \(\chi\) \(=\) 1764.1567
Dual form 1764.2.b.l.1567.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22594 - 0.705031i) q^{2} +(1.00586 + 1.72865i) q^{4} +3.64758i q^{5} +(-0.0143727 - 2.82839i) q^{8} +(2.57166 - 4.47172i) q^{10} +6.07019i q^{11} +0.483253i q^{13} +(-1.97648 + 3.47757i) q^{16} +2.55250i q^{17} +1.21909 q^{19} +(-6.30540 + 3.66896i) q^{20} +(4.27968 - 7.44170i) q^{22} +3.46720i q^{23} -8.30483 q^{25} +(0.340708 - 0.592439i) q^{26} -8.21857 q^{29} +6.31249 q^{31} +(4.87485 - 2.86982i) q^{32} +(1.79959 - 3.12921i) q^{34} +1.19016 q^{37} +(-1.49454 - 0.859498i) q^{38} +(10.3168 - 0.0524254i) q^{40} -6.59422i q^{41} +3.51184i q^{43} +(-10.4933 + 6.10578i) q^{44} +(2.44449 - 4.25059i) q^{46} +11.6622 q^{47} +(10.1812 + 5.85517i) q^{50} +(-0.835376 + 0.486085i) q^{52} -2.62782 q^{53} -22.1415 q^{55} +(10.0755 + 5.79435i) q^{58} +1.16160 q^{59} +0.208458i q^{61} +(-7.73874 - 4.45050i) q^{62} +(-7.99959 + 0.0813030i) q^{64} -1.76270 q^{65} -1.77617i q^{67} +(-4.41238 + 2.56746i) q^{68} -9.13166i q^{71} +6.04928i q^{73} +(-1.45907 - 0.839100i) q^{74} +(1.22624 + 2.10739i) q^{76} -3.17938i q^{79} +(-12.6847 - 7.20938i) q^{80} +(-4.64913 + 8.08412i) q^{82} -7.49842 q^{83} -9.31044 q^{85} +(2.47595 - 4.30530i) q^{86} +(17.1689 - 0.0872448i) q^{88} -12.2872i q^{89} +(-5.99359 + 3.48753i) q^{92} +(-14.2972 - 8.22221i) q^{94} +4.44674i q^{95} -11.8376i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} - 4 q^{4} - 4 q^{8} - 4 q^{16} - 24 q^{20} - 12 q^{25} + 24 q^{26} - 32 q^{29} - 16 q^{31} - 4 q^{32} - 32 q^{34} + 32 q^{37} - 24 q^{38} + 32 q^{40} + 24 q^{44} + 24 q^{46} + 28 q^{50} - 32 q^{52}+ \cdots + 24 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22594 0.705031i −0.866871 0.498532i
\(3\) 0 0
\(4\) 1.00586 + 1.72865i 0.502931 + 0.864327i
\(5\) 3.64758i 1.63125i 0.578583 + 0.815624i \(0.303606\pi\)
−0.578583 + 0.815624i \(0.696394\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −0.0143727 2.82839i −0.00508150 0.999987i
\(9\) 0 0
\(10\) 2.57166 4.47172i 0.813229 1.41408i
\(11\) 6.07019i 1.83023i 0.403190 + 0.915116i \(0.367901\pi\)
−0.403190 + 0.915116i \(0.632099\pi\)
\(12\) 0 0
\(13\) 0.483253i 0.134030i 0.997752 + 0.0670151i \(0.0213476\pi\)
−0.997752 + 0.0670151i \(0.978652\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.97648 + 3.47757i −0.494121 + 0.869393i
\(17\) 2.55250i 0.619072i 0.950888 + 0.309536i \(0.100174\pi\)
−0.950888 + 0.309536i \(0.899826\pi\)
\(18\) 0 0
\(19\) 1.21909 0.279679 0.139840 0.990174i \(-0.455341\pi\)
0.139840 + 0.990174i \(0.455341\pi\)
\(20\) −6.30540 + 3.66896i −1.40993 + 0.820405i
\(21\) 0 0
\(22\) 4.27968 7.44170i 0.912430 1.58658i
\(23\) 3.46720i 0.722962i 0.932379 + 0.361481i \(0.117729\pi\)
−0.932379 + 0.361481i \(0.882271\pi\)
\(24\) 0 0
\(25\) −8.30483 −1.66097
\(26\) 0.340708 0.592439i 0.0668184 0.116187i
\(27\) 0 0
\(28\) 0 0
\(29\) −8.21857 −1.52615 −0.763075 0.646310i \(-0.776311\pi\)
−0.763075 + 0.646310i \(0.776311\pi\)
\(30\) 0 0
\(31\) 6.31249 1.13376 0.566878 0.823801i \(-0.308151\pi\)
0.566878 + 0.823801i \(0.308151\pi\)
\(32\) 4.87485 2.86982i 0.861760 0.507317i
\(33\) 0 0
\(34\) 1.79959 3.12921i 0.308627 0.536655i
\(35\) 0 0
\(36\) 0 0
\(37\) 1.19016 0.195661 0.0978305 0.995203i \(-0.468810\pi\)
0.0978305 + 0.995203i \(0.468810\pi\)
\(38\) −1.49454 0.859498i −0.242446 0.139429i
\(39\) 0 0
\(40\) 10.3168 0.0524254i 1.63123 0.00828918i
\(41\) 6.59422i 1.02984i −0.857237 0.514922i \(-0.827821\pi\)
0.857237 0.514922i \(-0.172179\pi\)
\(42\) 0 0
\(43\) 3.51184i 0.535550i 0.963481 + 0.267775i \(0.0862884\pi\)
−0.963481 + 0.267775i \(0.913712\pi\)
\(44\) −10.4933 + 6.10578i −1.58192 + 0.920480i
\(45\) 0 0
\(46\) 2.44449 4.25059i 0.360420 0.626715i
\(47\) 11.6622 1.70111 0.850553 0.525889i \(-0.176267\pi\)
0.850553 + 0.525889i \(0.176267\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 10.1812 + 5.85517i 1.43984 + 0.828046i
\(51\) 0 0
\(52\) −0.835376 + 0.486085i −0.115846 + 0.0674079i
\(53\) −2.62782 −0.360959 −0.180479 0.983579i \(-0.557765\pi\)
−0.180479 + 0.983579i \(0.557765\pi\)
\(54\) 0 0
\(55\) −22.1415 −2.98556
\(56\) 0 0
\(57\) 0 0
\(58\) 10.0755 + 5.79435i 1.32298 + 0.760835i
\(59\) 1.16160 0.151228 0.0756138 0.997137i \(-0.475908\pi\)
0.0756138 + 0.997137i \(0.475908\pi\)
\(60\) 0 0
\(61\) 0.208458i 0.0266903i 0.999911 + 0.0133451i \(0.00424802\pi\)
−0.999911 + 0.0133451i \(0.995752\pi\)
\(62\) −7.73874 4.45050i −0.982821 0.565215i
\(63\) 0 0
\(64\) −7.99959 + 0.0813030i −0.999948 + 0.0101629i
\(65\) −1.76270 −0.218636
\(66\) 0 0
\(67\) 1.77617i 0.216993i −0.994097 0.108497i \(-0.965396\pi\)
0.994097 0.108497i \(-0.0346037\pi\)
\(68\) −4.41238 + 2.56746i −0.535080 + 0.311350i
\(69\) 0 0
\(70\) 0 0
\(71\) 9.13166i 1.08373i −0.840466 0.541864i \(-0.817719\pi\)
0.840466 0.541864i \(-0.182281\pi\)
\(72\) 0 0
\(73\) 6.04928i 0.708015i 0.935243 + 0.354007i \(0.115181\pi\)
−0.935243 + 0.354007i \(0.884819\pi\)
\(74\) −1.45907 0.839100i −0.169613 0.0975433i
\(75\) 0 0
\(76\) 1.22624 + 2.10739i 0.140659 + 0.241734i
\(77\) 0 0
\(78\) 0 0
\(79\) 3.17938i 0.357708i −0.983876 0.178854i \(-0.942761\pi\)
0.983876 0.178854i \(-0.0572390\pi\)
\(80\) −12.6847 7.20938i −1.41820 0.806033i
\(81\) 0 0
\(82\) −4.64913 + 8.08412i −0.513410 + 0.892742i
\(83\) −7.49842 −0.823059 −0.411529 0.911396i \(-0.635005\pi\)
−0.411529 + 0.911396i \(0.635005\pi\)
\(84\) 0 0
\(85\) −9.31044 −1.00986
\(86\) 2.47595 4.30530i 0.266989 0.464253i
\(87\) 0 0
\(88\) 17.1689 0.0872448i 1.83021 0.00930033i
\(89\) 12.2872i 1.30244i −0.758887 0.651222i \(-0.774257\pi\)
0.758887 0.651222i \(-0.225743\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −5.99359 + 3.48753i −0.624875 + 0.363600i
\(93\) 0 0
\(94\) −14.2972 8.22221i −1.47464 0.848057i
\(95\) 4.44674i 0.456226i
\(96\) 0 0
\(97\) 11.8376i 1.20192i −0.799277 0.600962i \(-0.794784\pi\)
0.799277 0.600962i \(-0.205216\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −8.35352 14.3562i −0.835352 1.43562i
\(101\) 5.72662i 0.569820i −0.958554 0.284910i \(-0.908036\pi\)
0.958554 0.284910i \(-0.0919637\pi\)
\(102\) 0 0
\(103\) −4.95307 −0.488041 −0.244020 0.969770i \(-0.578466\pi\)
−0.244020 + 0.969770i \(0.578466\pi\)
\(104\) 1.36683 0.00694562i 0.134028 0.000681074i
\(105\) 0 0
\(106\) 3.22155 + 1.85270i 0.312905 + 0.179950i
\(107\) 13.7280i 1.32713i 0.748118 + 0.663566i \(0.230958\pi\)
−0.748118 + 0.663566i \(0.769042\pi\)
\(108\) 0 0
\(109\) −13.6507 −1.30750 −0.653752 0.756709i \(-0.726806\pi\)
−0.653752 + 0.756709i \(0.726806\pi\)
\(110\) 27.1442 + 15.6105i 2.58810 + 1.48840i
\(111\) 0 0
\(112\) 0 0
\(113\) 7.11968 0.669764 0.334882 0.942260i \(-0.391304\pi\)
0.334882 + 0.942260i \(0.391304\pi\)
\(114\) 0 0
\(115\) −12.6469 −1.17933
\(116\) −8.26674 14.2071i −0.767548 1.31909i
\(117\) 0 0
\(118\) −1.42406 0.818966i −0.131095 0.0753919i
\(119\) 0 0
\(120\) 0 0
\(121\) −25.8472 −2.34975
\(122\) 0.146969 0.255557i 0.0133060 0.0231370i
\(123\) 0 0
\(124\) 6.34949 + 10.9121i 0.570201 + 0.979936i
\(125\) 12.0546i 1.07820i
\(126\) 0 0
\(127\) 3.03609i 0.269409i 0.990886 + 0.134705i \(0.0430086\pi\)
−0.990886 + 0.134705i \(0.956991\pi\)
\(128\) 9.86434 + 5.54029i 0.871893 + 0.489697i
\(129\) 0 0
\(130\) 2.16097 + 1.24276i 0.189530 + 0.108997i
\(131\) −14.4666 −1.26395 −0.631974 0.774989i \(-0.717755\pi\)
−0.631974 + 0.774989i \(0.717755\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1.25225 + 2.17747i −0.108178 + 0.188105i
\(135\) 0 0
\(136\) 7.21946 0.0366862i 0.619064 0.00314581i
\(137\) −11.5627 −0.987866 −0.493933 0.869500i \(-0.664441\pi\)
−0.493933 + 0.869500i \(0.664441\pi\)
\(138\) 0 0
\(139\) 17.6203 1.49453 0.747266 0.664525i \(-0.231366\pi\)
0.747266 + 0.664525i \(0.231366\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −6.43811 + 11.1949i −0.540274 + 0.939453i
\(143\) −2.93344 −0.245306
\(144\) 0 0
\(145\) 29.9779i 2.48953i
\(146\) 4.26493 7.41606i 0.352968 0.613757i
\(147\) 0 0
\(148\) 1.19714 + 2.05737i 0.0984040 + 0.169115i
\(149\) −6.11467 −0.500934 −0.250467 0.968125i \(-0.580584\pi\)
−0.250467 + 0.968125i \(0.580584\pi\)
\(150\) 0 0
\(151\) 14.2427i 1.15906i 0.814952 + 0.579529i \(0.196763\pi\)
−0.814952 + 0.579529i \(0.803237\pi\)
\(152\) −0.0175216 3.44807i −0.00142119 0.279675i
\(153\) 0 0
\(154\) 0 0
\(155\) 23.0253i 1.84944i
\(156\) 0 0
\(157\) 21.0971i 1.68373i 0.539689 + 0.841865i \(0.318542\pi\)
−0.539689 + 0.841865i \(0.681458\pi\)
\(158\) −2.24156 + 3.89773i −0.178329 + 0.310087i
\(159\) 0 0
\(160\) 10.4679 + 17.7814i 0.827559 + 1.40574i
\(161\) 0 0
\(162\) 0 0
\(163\) 19.1370i 1.49893i 0.662046 + 0.749464i \(0.269689\pi\)
−0.662046 + 0.749464i \(0.730311\pi\)
\(164\) 11.3991 6.63287i 0.890121 0.517940i
\(165\) 0 0
\(166\) 9.19262 + 5.28662i 0.713486 + 0.410322i
\(167\) 7.69624 0.595553 0.297776 0.954636i \(-0.403755\pi\)
0.297776 + 0.954636i \(0.403755\pi\)
\(168\) 0 0
\(169\) 12.7665 0.982036
\(170\) 11.4140 + 6.56415i 0.875417 + 0.503447i
\(171\) 0 0
\(172\) −6.07075 + 3.53242i −0.462890 + 0.269345i
\(173\) 0.823365i 0.0625993i 0.999510 + 0.0312996i \(0.00996461\pi\)
−0.999510 + 0.0312996i \(0.990035\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −21.1095 11.9976i −1.59119 0.904356i
\(177\) 0 0
\(178\) −8.66288 + 15.0634i −0.649311 + 1.12905i
\(179\) 9.47297i 0.708043i −0.935237 0.354022i \(-0.884814\pi\)
0.935237 0.354022i \(-0.115186\pi\)
\(180\) 0 0
\(181\) 2.06119i 0.153207i −0.997062 0.0766034i \(-0.975592\pi\)
0.997062 0.0766034i \(-0.0244075\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 9.80661 0.0498329i 0.722953 0.00367373i
\(185\) 4.34120i 0.319171i
\(186\) 0 0
\(187\) −15.4942 −1.13304
\(188\) 11.7306 + 20.1599i 0.855539 + 1.47031i
\(189\) 0 0
\(190\) 3.13509 5.45144i 0.227443 0.395489i
\(191\) 10.8564i 0.785541i 0.919637 + 0.392770i \(0.128483\pi\)
−0.919637 + 0.392770i \(0.871517\pi\)
\(192\) 0 0
\(193\) 9.71346 0.699190 0.349595 0.936901i \(-0.386319\pi\)
0.349595 + 0.936901i \(0.386319\pi\)
\(194\) −8.34587 + 14.5122i −0.599198 + 1.04191i
\(195\) 0 0
\(196\) 0 0
\(197\) 15.9300 1.13496 0.567481 0.823386i \(-0.307918\pi\)
0.567481 + 0.823386i \(0.307918\pi\)
\(198\) 0 0
\(199\) 10.0572 0.712935 0.356467 0.934308i \(-0.383981\pi\)
0.356467 + 0.934308i \(0.383981\pi\)
\(200\) 0.119363 + 23.4893i 0.00844020 + 1.66095i
\(201\) 0 0
\(202\) −4.03745 + 7.02050i −0.284074 + 0.493961i
\(203\) 0 0
\(204\) 0 0
\(205\) 24.0529 1.67993
\(206\) 6.07217 + 3.49207i 0.423068 + 0.243304i
\(207\) 0 0
\(208\) −1.68055 0.955141i −0.116525 0.0662271i
\(209\) 7.40013i 0.511878i
\(210\) 0 0
\(211\) 1.03227i 0.0710647i −0.999369 0.0355324i \(-0.988687\pi\)
0.999369 0.0355324i \(-0.0113127\pi\)
\(212\) −2.64322 4.54259i −0.181537 0.311986i
\(213\) 0 0
\(214\) 9.67863 16.8297i 0.661618 1.15045i
\(215\) −12.8097 −0.873614
\(216\) 0 0
\(217\) 0 0
\(218\) 16.7350 + 9.62420i 1.13344 + 0.651833i
\(219\) 0 0
\(220\) −22.2713 38.2750i −1.50153 2.58050i
\(221\) −1.23350 −0.0829743
\(222\) 0 0
\(223\) 9.57250 0.641022 0.320511 0.947245i \(-0.396145\pi\)
0.320511 + 0.947245i \(0.396145\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −8.72831 5.01960i −0.580599 0.333899i
\(227\) −11.1538 −0.740307 −0.370153 0.928971i \(-0.620695\pi\)
−0.370153 + 0.928971i \(0.620695\pi\)
\(228\) 0 0
\(229\) 10.1285i 0.669308i 0.942341 + 0.334654i \(0.108619\pi\)
−0.942341 + 0.334654i \(0.891381\pi\)
\(230\) 15.5043 + 8.91646i 1.02233 + 0.587934i
\(231\) 0 0
\(232\) 0.118123 + 23.2453i 0.00775513 + 1.52613i
\(233\) −12.6414 −0.828168 −0.414084 0.910239i \(-0.635898\pi\)
−0.414084 + 0.910239i \(0.635898\pi\)
\(234\) 0 0
\(235\) 42.5388i 2.77492i
\(236\) 1.16841 + 2.00801i 0.0760571 + 0.130710i
\(237\) 0 0
\(238\) 0 0
\(239\) 5.46050i 0.353211i −0.984282 0.176605i \(-0.943488\pi\)
0.984282 0.176605i \(-0.0565116\pi\)
\(240\) 0 0
\(241\) 13.6377i 0.878484i −0.898369 0.439242i \(-0.855247\pi\)
0.898369 0.439242i \(-0.144753\pi\)
\(242\) 31.6872 + 18.2231i 2.03693 + 1.17143i
\(243\) 0 0
\(244\) −0.360351 + 0.209680i −0.0230691 + 0.0134234i
\(245\) 0 0
\(246\) 0 0
\(247\) 0.589130i 0.0374854i
\(248\) −0.0907272 17.8542i −0.00576119 1.13374i
\(249\) 0 0
\(250\) −8.49890 + 14.7783i −0.537518 + 0.934661i
\(251\) −28.2425 −1.78265 −0.891324 0.453367i \(-0.850223\pi\)
−0.891324 + 0.453367i \(0.850223\pi\)
\(252\) 0 0
\(253\) −21.0466 −1.32319
\(254\) 2.14054 3.72206i 0.134309 0.233543i
\(255\) 0 0
\(256\) −8.18702 13.7467i −0.511689 0.859171i
\(257\) 20.1625i 1.25770i −0.777525 0.628852i \(-0.783525\pi\)
0.777525 0.628852i \(-0.216475\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −1.77304 3.04710i −0.109959 0.188973i
\(261\) 0 0
\(262\) 17.7351 + 10.1994i 1.09568 + 0.630119i
\(263\) 12.5084i 0.771300i 0.922645 + 0.385650i \(0.126023\pi\)
−0.922645 + 0.385650i \(0.873977\pi\)
\(264\) 0 0
\(265\) 9.58518i 0.588813i
\(266\) 0 0
\(267\) 0 0
\(268\) 3.07037 1.78658i 0.187553 0.109133i
\(269\) 13.0548i 0.795962i 0.917394 + 0.397981i \(0.130289\pi\)
−0.917394 + 0.397981i \(0.869711\pi\)
\(270\) 0 0
\(271\) −10.2934 −0.625282 −0.312641 0.949871i \(-0.601214\pi\)
−0.312641 + 0.949871i \(0.601214\pi\)
\(272\) −8.87650 5.04497i −0.538217 0.305896i
\(273\) 0 0
\(274\) 14.1752 + 8.15205i 0.856352 + 0.492483i
\(275\) 50.4119i 3.03995i
\(276\) 0 0
\(277\) −18.9622 −1.13933 −0.569665 0.821877i \(-0.692927\pi\)
−0.569665 + 0.821877i \(0.692927\pi\)
\(278\) −21.6014 12.4228i −1.29557 0.745073i
\(279\) 0 0
\(280\) 0 0
\(281\) −17.5144 −1.04482 −0.522412 0.852693i \(-0.674968\pi\)
−0.522412 + 0.852693i \(0.674968\pi\)
\(282\) 0 0
\(283\) 18.9419 1.12598 0.562990 0.826464i \(-0.309651\pi\)
0.562990 + 0.826464i \(0.309651\pi\)
\(284\) 15.7855 9.18519i 0.936696 0.545041i
\(285\) 0 0
\(286\) 3.59622 + 2.06816i 0.212649 + 0.122293i
\(287\) 0 0
\(288\) 0 0
\(289\) 10.4848 0.616750
\(290\) −21.1353 + 36.7511i −1.24111 + 2.15810i
\(291\) 0 0
\(292\) −10.4571 + 6.08474i −0.611956 + 0.356082i
\(293\) 25.2760i 1.47664i 0.674451 + 0.738320i \(0.264380\pi\)
−0.674451 + 0.738320i \(0.735620\pi\)
\(294\) 0 0
\(295\) 4.23703i 0.246690i
\(296\) −0.0171057 3.36624i −0.000994251 0.195658i
\(297\) 0 0
\(298\) 7.49623 + 4.31104i 0.434245 + 0.249732i
\(299\) −1.67554 −0.0968987
\(300\) 0 0
\(301\) 0 0
\(302\) 10.0416 17.4608i 0.577828 1.00475i
\(303\) 0 0
\(304\) −2.40952 + 4.23948i −0.138195 + 0.243151i
\(305\) −0.760366 −0.0435385
\(306\) 0 0
\(307\) 10.2457 0.584750 0.292375 0.956304i \(-0.405554\pi\)
0.292375 + 0.956304i \(0.405554\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 16.2336 28.2277i 0.922005 1.60322i
\(311\) 30.3837 1.72290 0.861451 0.507840i \(-0.169556\pi\)
0.861451 + 0.507840i \(0.169556\pi\)
\(312\) 0 0
\(313\) 17.1215i 0.967764i −0.875133 0.483882i \(-0.839226\pi\)
0.875133 0.483882i \(-0.160774\pi\)
\(314\) 14.8741 25.8638i 0.839394 1.45958i
\(315\) 0 0
\(316\) 5.49605 3.19802i 0.309177 0.179903i
\(317\) 12.3657 0.694527 0.347264 0.937768i \(-0.387111\pi\)
0.347264 + 0.937768i \(0.387111\pi\)
\(318\) 0 0
\(319\) 49.8883i 2.79321i
\(320\) −0.296559 29.1791i −0.0165782 1.63116i
\(321\) 0 0
\(322\) 0 0
\(323\) 3.11173i 0.173141i
\(324\) 0 0
\(325\) 4.01333i 0.222620i
\(326\) 13.4922 23.4609i 0.747264 1.29938i
\(327\) 0 0
\(328\) −18.6510 + 0.0947764i −1.02983 + 0.00523315i
\(329\) 0 0
\(330\) 0 0
\(331\) 7.68197i 0.422239i −0.977460 0.211120i \(-0.932289\pi\)
0.977460 0.211120i \(-0.0677109\pi\)
\(332\) −7.54238 12.9622i −0.413942 0.711392i
\(333\) 0 0
\(334\) −9.43514 5.42609i −0.516268 0.296902i
\(335\) 6.47871 0.353969
\(336\) 0 0
\(337\) −13.3863 −0.729201 −0.364600 0.931164i \(-0.618794\pi\)
−0.364600 + 0.931164i \(0.618794\pi\)
\(338\) −15.6509 9.00076i −0.851299 0.489577i
\(339\) 0 0
\(340\) −9.36501 16.0945i −0.507889 0.872848i
\(341\) 38.3180i 2.07504i
\(342\) 0 0
\(343\) 0 0
\(344\) 9.93284 0.0504744i 0.535543 0.00272140i
\(345\) 0 0
\(346\) 0.580498 1.00940i 0.0312078 0.0542655i
\(347\) 31.8786i 1.71133i −0.517529 0.855666i \(-0.673148\pi\)
0.517529 0.855666i \(-0.326852\pi\)
\(348\) 0 0
\(349\) 9.51634i 0.509398i −0.967020 0.254699i \(-0.918024\pi\)
0.967020 0.254699i \(-0.0819764\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 17.4203 + 29.5913i 0.928507 + 1.57722i
\(353\) 14.1326i 0.752201i 0.926579 + 0.376100i \(0.122735\pi\)
−0.926579 + 0.376100i \(0.877265\pi\)
\(354\) 0 0
\(355\) 33.3085 1.76783
\(356\) 21.2404 12.3593i 1.12574 0.655040i
\(357\) 0 0
\(358\) −6.67874 + 11.6133i −0.352982 + 0.613782i
\(359\) 22.4656i 1.18569i −0.805318 0.592843i \(-0.798005\pi\)
0.805318 0.592843i \(-0.201995\pi\)
\(360\) 0 0
\(361\) −17.5138 −0.921780
\(362\) −1.45320 + 2.52689i −0.0763785 + 0.132811i
\(363\) 0 0
\(364\) 0 0
\(365\) −22.0652 −1.15495
\(366\) 0 0
\(367\) −11.9991 −0.626349 −0.313174 0.949696i \(-0.601392\pi\)
−0.313174 + 0.949696i \(0.601392\pi\)
\(368\) −12.0575 6.85287i −0.628538 0.357231i
\(369\) 0 0
\(370\) 3.06068 5.32206i 0.159117 0.276680i
\(371\) 0 0
\(372\) 0 0
\(373\) 5.62760 0.291386 0.145693 0.989330i \(-0.453459\pi\)
0.145693 + 0.989330i \(0.453459\pi\)
\(374\) 18.9949 + 10.9239i 0.982204 + 0.564859i
\(375\) 0 0
\(376\) −0.167617 32.9852i −0.00864417 1.70108i
\(377\) 3.97165i 0.204550i
\(378\) 0 0
\(379\) 21.3356i 1.09594i −0.836500 0.547968i \(-0.815402\pi\)
0.836500 0.547968i \(-0.184598\pi\)
\(380\) −7.68687 + 4.47280i −0.394328 + 0.229450i
\(381\) 0 0
\(382\) 7.65410 13.3093i 0.391618 0.680963i
\(383\) −7.55189 −0.385884 −0.192942 0.981210i \(-0.561803\pi\)
−0.192942 + 0.981210i \(0.561803\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −11.9081 6.84829i −0.606108 0.348569i
\(387\) 0 0
\(388\) 20.4631 11.9070i 1.03886 0.604485i
\(389\) 2.65061 0.134391 0.0671957 0.997740i \(-0.478595\pi\)
0.0671957 + 0.997740i \(0.478595\pi\)
\(390\) 0 0
\(391\) −8.85003 −0.447565
\(392\) 0 0
\(393\) 0 0
\(394\) −19.5292 11.2311i −0.983866 0.565816i
\(395\) 11.5970 0.583511
\(396\) 0 0
\(397\) 18.6502i 0.936025i 0.883722 + 0.468012i \(0.155030\pi\)
−0.883722 + 0.468012i \(0.844970\pi\)
\(398\) −12.3295 7.09063i −0.618023 0.355421i
\(399\) 0 0
\(400\) 16.4144 28.8807i 0.820718 1.44403i
\(401\) 23.8483 1.19093 0.595464 0.803382i \(-0.296968\pi\)
0.595464 + 0.803382i \(0.296968\pi\)
\(402\) 0 0
\(403\) 3.05053i 0.151958i
\(404\) 9.89934 5.76019i 0.492511 0.286580i
\(405\) 0 0
\(406\) 0 0
\(407\) 7.22450i 0.358105i
\(408\) 0 0
\(409\) 17.4269i 0.861706i 0.902422 + 0.430853i \(0.141787\pi\)
−0.902422 + 0.430853i \(0.858213\pi\)
\(410\) −29.4875 16.9581i −1.45628 0.837499i
\(411\) 0 0
\(412\) −4.98211 8.56215i −0.245451 0.421827i
\(413\) 0 0
\(414\) 0 0
\(415\) 27.3511i 1.34261i
\(416\) 1.38685 + 2.35578i 0.0679957 + 0.115502i
\(417\) 0 0
\(418\) 5.21732 9.07212i 0.255188 0.443732i
\(419\) 26.6148 1.30022 0.650109 0.759841i \(-0.274723\pi\)
0.650109 + 0.759841i \(0.274723\pi\)
\(420\) 0 0
\(421\) 17.2196 0.839234 0.419617 0.907701i \(-0.362164\pi\)
0.419617 + 0.907701i \(0.362164\pi\)
\(422\) −0.727786 + 1.26551i −0.0354281 + 0.0616040i
\(423\) 0 0
\(424\) 0.0377688 + 7.43250i 0.00183421 + 0.360954i
\(425\) 21.1981i 1.02826i
\(426\) 0 0
\(427\) 0 0
\(428\) −23.7309 + 13.8084i −1.14707 + 0.667455i
\(429\) 0 0
\(430\) 15.7039 + 9.03124i 0.757311 + 0.435525i
\(431\) 19.6830i 0.948095i 0.880499 + 0.474047i \(0.157207\pi\)
−0.880499 + 0.474047i \(0.842793\pi\)
\(432\) 0 0
\(433\) 6.43311i 0.309156i −0.987981 0.154578i \(-0.950598\pi\)
0.987981 0.154578i \(-0.0494017\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −13.7308 23.5974i −0.657584 1.13011i
\(437\) 4.22684i 0.202197i
\(438\) 0 0
\(439\) 6.95350 0.331872 0.165936 0.986137i \(-0.446935\pi\)
0.165936 + 0.986137i \(0.446935\pi\)
\(440\) 0.318232 + 62.6248i 0.0151711 + 2.98552i
\(441\) 0 0
\(442\) 1.51220 + 0.869657i 0.0719280 + 0.0413654i
\(443\) 7.78413i 0.369835i 0.982754 + 0.184918i \(0.0592018\pi\)
−0.982754 + 0.184918i \(0.940798\pi\)
\(444\) 0 0
\(445\) 44.8187 2.12461
\(446\) −11.7353 6.74891i −0.555684 0.319570i
\(447\) 0 0
\(448\) 0 0
\(449\) 13.4404 0.634290 0.317145 0.948377i \(-0.397276\pi\)
0.317145 + 0.948377i \(0.397276\pi\)
\(450\) 0 0
\(451\) 40.0282 1.88485
\(452\) 7.16142 + 12.3075i 0.336845 + 0.578894i
\(453\) 0 0
\(454\) 13.6740 + 7.86381i 0.641750 + 0.369067i
\(455\) 0 0
\(456\) 0 0
\(457\) −1.16365 −0.0544333 −0.0272166 0.999630i \(-0.508664\pi\)
−0.0272166 + 0.999630i \(0.508664\pi\)
\(458\) 7.14088 12.4169i 0.333672 0.580203i
\(459\) 0 0
\(460\) −12.7210 21.8621i −0.593121 1.01933i
\(461\) 21.4211i 0.997678i 0.866695 + 0.498839i \(0.166240\pi\)
−0.866695 + 0.498839i \(0.833760\pi\)
\(462\) 0 0
\(463\) 14.4408i 0.671119i 0.942019 + 0.335560i \(0.108925\pi\)
−0.942019 + 0.335560i \(0.891075\pi\)
\(464\) 16.2439 28.5807i 0.754103 1.32682i
\(465\) 0 0
\(466\) 15.4977 + 8.91261i 0.717915 + 0.412869i
\(467\) 29.7659 1.37740 0.688701 0.725045i \(-0.258181\pi\)
0.688701 + 0.725045i \(0.258181\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 29.9912 52.1500i 1.38339 2.40550i
\(471\) 0 0
\(472\) −0.0166953 3.28546i −0.000768464 0.151226i
\(473\) −21.3175 −0.980181
\(474\) 0 0
\(475\) −10.1244 −0.464538
\(476\) 0 0
\(477\) 0 0
\(478\) −3.84983 + 6.69426i −0.176087 + 0.306188i
\(479\) −28.3552 −1.29558 −0.647790 0.761819i \(-0.724307\pi\)
−0.647790 + 0.761819i \(0.724307\pi\)
\(480\) 0 0
\(481\) 0.575148i 0.0262245i
\(482\) −9.61504 + 16.7191i −0.437953 + 0.761533i
\(483\) 0 0
\(484\) −25.9988 44.6809i −1.18176 2.03095i
\(485\) 43.1785 1.96064
\(486\) 0 0
\(487\) 9.56787i 0.433561i 0.976220 + 0.216781i \(0.0695557\pi\)
−0.976220 + 0.216781i \(0.930444\pi\)
\(488\) 0.589600 0.00299609i 0.0266899 0.000135627i
\(489\) 0 0
\(490\) 0 0
\(491\) 17.7521i 0.801141i −0.916266 0.400571i \(-0.868812\pi\)
0.916266 0.400571i \(-0.131188\pi\)
\(492\) 0 0
\(493\) 20.9779i 0.944796i
\(494\) 0.415355 0.722238i 0.0186877 0.0324950i
\(495\) 0 0
\(496\) −12.4765 + 21.9521i −0.560213 + 0.985681i
\(497\) 0 0
\(498\) 0 0
\(499\) 9.40111i 0.420852i 0.977610 + 0.210426i \(0.0674850\pi\)
−0.977610 + 0.210426i \(0.932515\pi\)
\(500\) 20.8383 12.1253i 0.931917 0.542260i
\(501\) 0 0
\(502\) 34.6236 + 19.9118i 1.54533 + 0.888708i
\(503\) 40.9278 1.82488 0.912440 0.409211i \(-0.134196\pi\)
0.912440 + 0.409211i \(0.134196\pi\)
\(504\) 0 0
\(505\) 20.8883 0.929517
\(506\) 25.8019 + 14.8385i 1.14703 + 0.659652i
\(507\) 0 0
\(508\) −5.24834 + 3.05389i −0.232858 + 0.135494i
\(509\) 14.4104i 0.638729i 0.947632 + 0.319365i \(0.103470\pi\)
−0.947632 + 0.319365i \(0.896530\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.344932 + 22.6248i 0.0152440 + 0.999884i
\(513\) 0 0
\(514\) −14.2152 + 24.7181i −0.627007 + 1.09027i
\(515\) 18.0667i 0.796115i
\(516\) 0 0
\(517\) 70.7918i 3.11342i
\(518\) 0 0
\(519\) 0 0
\(520\) 0.0253347 + 4.98561i 0.00111100 + 0.218634i
\(521\) 10.6100i 0.464834i 0.972616 + 0.232417i \(0.0746634\pi\)
−0.972616 + 0.232417i \(0.925337\pi\)
\(522\) 0 0
\(523\) −36.2715 −1.58604 −0.793022 0.609193i \(-0.791493\pi\)
−0.793022 + 0.609193i \(0.791493\pi\)
\(524\) −14.5514 25.0077i −0.635679 1.09246i
\(525\) 0 0
\(526\) 8.81880 15.3345i 0.384518 0.668618i
\(527\) 16.1126i 0.701877i
\(528\) 0 0
\(529\) 10.9785 0.477326
\(530\) −6.75785 + 11.7509i −0.293542 + 0.510425i
\(531\) 0 0
\(532\) 0 0
\(533\) 3.18667 0.138030
\(534\) 0 0
\(535\) −50.0738 −2.16488
\(536\) −5.02369 + 0.0255282i −0.216990 + 0.00110265i
\(537\) 0 0
\(538\) 9.20401 16.0044i 0.396813 0.689997i
\(539\) 0 0
\(540\) 0 0
\(541\) −23.6346 −1.01613 −0.508065 0.861319i \(-0.669639\pi\)
−0.508065 + 0.861319i \(0.669639\pi\)
\(542\) 12.6191 + 7.25719i 0.542038 + 0.311723i
\(543\) 0 0
\(544\) 7.32520 + 12.4430i 0.314065 + 0.533491i
\(545\) 49.7922i 2.13286i
\(546\) 0 0
\(547\) 40.9096i 1.74917i −0.484875 0.874583i \(-0.661135\pi\)
0.484875 0.874583i \(-0.338865\pi\)
\(548\) −11.6305 19.9879i −0.496828 0.853839i
\(549\) 0 0
\(550\) −35.5420 + 61.8021i −1.51552 + 2.63525i
\(551\) −10.0192 −0.426832
\(552\) 0 0
\(553\) 0 0
\(554\) 23.2466 + 13.3690i 0.987652 + 0.567993i
\(555\) 0 0
\(556\) 17.7236 + 30.4594i 0.751647 + 1.29176i
\(557\) 38.2781 1.62190 0.810948 0.585119i \(-0.198952\pi\)
0.810948 + 0.585119i \(0.198952\pi\)
\(558\) 0 0
\(559\) −1.69710 −0.0717799
\(560\) 0 0
\(561\) 0 0
\(562\) 21.4717 + 12.3482i 0.905727 + 0.520878i
\(563\) 4.56016 0.192188 0.0960939 0.995372i \(-0.469365\pi\)
0.0960939 + 0.995372i \(0.469365\pi\)
\(564\) 0 0
\(565\) 25.9696i 1.09255i
\(566\) −23.2216 13.3546i −0.976079 0.561337i
\(567\) 0 0
\(568\) −25.8279 + 0.131246i −1.08371 + 0.00550697i
\(569\) −43.8157 −1.83685 −0.918425 0.395596i \(-0.870538\pi\)
−0.918425 + 0.395596i \(0.870538\pi\)
\(570\) 0 0
\(571\) 8.45294i 0.353745i −0.984234 0.176872i \(-0.943402\pi\)
0.984234 0.176872i \(-0.0565980\pi\)
\(572\) −2.95063 5.07090i −0.123372 0.212025i
\(573\) 0 0
\(574\) 0 0
\(575\) 28.7945i 1.20082i
\(576\) 0 0
\(577\) 25.2153i 1.04973i 0.851187 + 0.524863i \(0.175883\pi\)
−0.851187 + 0.524863i \(0.824117\pi\)
\(578\) −12.8537 7.39208i −0.534643 0.307470i
\(579\) 0 0
\(580\) 51.8214 30.1536i 2.15176 1.25206i
\(581\) 0 0
\(582\) 0 0
\(583\) 15.9514i 0.660639i
\(584\) 17.1097 0.0869442i 0.708005 0.00359778i
\(585\) 0 0
\(586\) 17.8204 30.9869i 0.736152 1.28006i
\(587\) −3.61615 −0.149254 −0.0746272 0.997212i \(-0.523777\pi\)
−0.0746272 + 0.997212i \(0.523777\pi\)
\(588\) 0 0
\(589\) 7.69551 0.317088
\(590\) 2.98724 5.19435i 0.122983 0.213848i
\(591\) 0 0
\(592\) −2.35233 + 4.13887i −0.0966802 + 0.170106i
\(593\) 8.49515i 0.348854i −0.984670 0.174427i \(-0.944193\pi\)
0.984670 0.174427i \(-0.0558073\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.15052 10.5702i −0.251935 0.432970i
\(597\) 0 0
\(598\) 2.05411 + 1.18130i 0.0839987 + 0.0483071i
\(599\) 18.4899i 0.755479i 0.925912 + 0.377739i \(0.123298\pi\)
−0.925912 + 0.377739i \(0.876702\pi\)
\(600\) 0 0
\(601\) 31.5493i 1.28692i 0.765479 + 0.643461i \(0.222502\pi\)
−0.765479 + 0.643461i \(0.777498\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −24.6208 + 14.3262i −1.00180 + 0.582926i
\(605\) 94.2799i 3.83302i
\(606\) 0 0
\(607\) 15.5209 0.629974 0.314987 0.949096i \(-0.398000\pi\)
0.314987 + 0.949096i \(0.398000\pi\)
\(608\) 5.94289 3.49857i 0.241016 0.141886i
\(609\) 0 0
\(610\) 0.932164 + 0.536082i 0.0377422 + 0.0217053i
\(611\) 5.63579i 0.228000i
\(612\) 0 0
\(613\) −5.54811 −0.224086 −0.112043 0.993703i \(-0.535739\pi\)
−0.112043 + 0.993703i \(0.535739\pi\)
\(614\) −12.5606 7.22351i −0.506903 0.291517i
\(615\) 0 0
\(616\) 0 0
\(617\) 32.3633 1.30290 0.651448 0.758693i \(-0.274162\pi\)
0.651448 + 0.758693i \(0.274162\pi\)
\(618\) 0 0
\(619\) −2.08906 −0.0839665 −0.0419832 0.999118i \(-0.513368\pi\)
−0.0419832 + 0.999118i \(0.513368\pi\)
\(620\) −39.8028 + 23.1603i −1.59852 + 0.930139i
\(621\) 0 0
\(622\) −37.2486 21.4215i −1.49353 0.858923i
\(623\) 0 0
\(624\) 0 0
\(625\) 2.44610 0.0978440
\(626\) −12.0712 + 20.9899i −0.482462 + 0.838927i
\(627\) 0 0
\(628\) −36.4695 + 21.2207i −1.45529 + 0.846800i
\(629\) 3.03788i 0.121128i
\(630\) 0 0
\(631\) 37.2258i 1.48194i 0.671541 + 0.740968i \(0.265633\pi\)
−0.671541 + 0.740968i \(0.734367\pi\)
\(632\) −8.99253 + 0.0456961i −0.357704 + 0.00181769i
\(633\) 0 0
\(634\) −15.1596 8.71821i −0.602066 0.346244i
\(635\) −11.0744 −0.439473
\(636\) 0 0
\(637\) 0 0
\(638\) −35.1728 + 61.1601i −1.39250 + 2.42135i
\(639\) 0 0
\(640\) −20.2086 + 35.9810i −0.798816 + 1.42227i
\(641\) 11.5614 0.456649 0.228324 0.973585i \(-0.426675\pi\)
0.228324 + 0.973585i \(0.426675\pi\)
\(642\) 0 0
\(643\) 5.82948 0.229892 0.114946 0.993372i \(-0.463330\pi\)
0.114946 + 0.993372i \(0.463330\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 2.19387 3.81480i 0.0863165 0.150091i
\(647\) 46.2772 1.81934 0.909671 0.415329i \(-0.136333\pi\)
0.909671 + 0.415329i \(0.136333\pi\)
\(648\) 0 0
\(649\) 7.05115i 0.276782i
\(650\) −2.82953 + 4.92011i −0.110983 + 0.192983i
\(651\) 0 0
\(652\) −33.0813 + 19.2492i −1.29556 + 0.753857i
\(653\) −23.5761 −0.922605 −0.461303 0.887243i \(-0.652618\pi\)
−0.461303 + 0.887243i \(0.652618\pi\)
\(654\) 0 0
\(655\) 52.7679i 2.06181i
\(656\) 22.9319 + 13.0334i 0.895339 + 0.508867i
\(657\) 0 0
\(658\) 0 0
\(659\) 20.7935i 0.810001i −0.914316 0.405001i \(-0.867271\pi\)
0.914316 0.405001i \(-0.132729\pi\)
\(660\) 0 0
\(661\) 33.2815i 1.29450i −0.762278 0.647249i \(-0.775919\pi\)
0.762278 0.647249i \(-0.224081\pi\)
\(662\) −5.41603 + 9.41764i −0.210500 + 0.366027i
\(663\) 0 0
\(664\) 0.107772 + 21.2085i 0.00418237 + 0.823048i
\(665\) 0 0
\(666\) 0 0
\(667\) 28.4954i 1.10335i
\(668\) 7.74136 + 13.3041i 0.299522 + 0.514752i
\(669\) 0 0
\(670\) −7.94251 4.56769i −0.306846 0.176465i
\(671\) −1.26538 −0.0488494
\(672\) 0 0
\(673\) −13.1796 −0.508037 −0.254019 0.967199i \(-0.581752\pi\)
−0.254019 + 0.967199i \(0.581752\pi\)
\(674\) 16.4109 + 9.43779i 0.632123 + 0.363530i
\(675\) 0 0
\(676\) 12.8413 + 22.0688i 0.493896 + 0.848800i
\(677\) 43.9651i 1.68972i −0.534991 0.844858i \(-0.679685\pi\)
0.534991 0.844858i \(-0.320315\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0.133816 + 26.3336i 0.00513160 + 1.00985i
\(681\) 0 0
\(682\) 27.0154 46.9757i 1.03447 1.79879i
\(683\) 11.9327i 0.456594i 0.973592 + 0.228297i \(0.0733156\pi\)
−0.973592 + 0.228297i \(0.926684\pi\)
\(684\) 0 0
\(685\) 42.1758i 1.61145i
\(686\) 0 0
\(687\) 0 0
\(688\) −12.2127 6.94109i −0.465603 0.264626i
\(689\) 1.26990i 0.0483794i
\(690\) 0 0
\(691\) 37.2750 1.41801 0.709003 0.705205i \(-0.249145\pi\)
0.709003 + 0.705205i \(0.249145\pi\)
\(692\) −1.42331 + 0.828191i −0.0541062 + 0.0314831i
\(693\) 0 0
\(694\) −22.4754 + 39.0812i −0.853154 + 1.48350i
\(695\) 64.2714i 2.43795i
\(696\) 0 0
\(697\) 16.8317 0.637547
\(698\) −6.70932 + 11.6665i −0.253951 + 0.441582i
\(699\) 0 0
\(700\) 0 0
\(701\) 30.9151 1.16765 0.583823 0.811881i \(-0.301556\pi\)
0.583823 + 0.811881i \(0.301556\pi\)
\(702\) 0 0
\(703\) 1.45091 0.0547223
\(704\) −0.493525 48.5590i −0.0186004 1.83014i
\(705\) 0 0
\(706\) 9.96390 17.3257i 0.374996 0.652061i
\(707\) 0 0
\(708\) 0 0
\(709\) −8.65551 −0.325065 −0.162532 0.986703i \(-0.551966\pi\)
−0.162532 + 0.986703i \(0.551966\pi\)
\(710\) −40.8342 23.4835i −1.53248 0.881320i
\(711\) 0 0
\(712\) −34.7531 + 0.176600i −1.30243 + 0.00661837i
\(713\) 21.8867i 0.819663i
\(714\) 0 0
\(715\) 10.6999i 0.400155i
\(716\) 16.3755 9.52850i 0.611980 0.356097i
\(717\) 0 0
\(718\) −15.8389 + 27.5414i −0.591103 + 1.02784i
\(719\) 27.6536 1.03131 0.515653 0.856798i \(-0.327549\pi\)
0.515653 + 0.856798i \(0.327549\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 21.4709 + 12.3478i 0.799064 + 0.459537i
\(723\) 0 0
\(724\) 3.56308 2.07327i 0.132421 0.0770524i
\(725\) 68.2539 2.53488
\(726\) 0 0
\(727\) −31.3975 −1.16447 −0.582235 0.813021i \(-0.697822\pi\)
−0.582235 + 0.813021i \(0.697822\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 27.0507 + 15.5567i 1.00119 + 0.575778i
\(731\) −8.96395 −0.331544
\(732\) 0 0
\(733\) 19.4953i 0.720074i 0.932938 + 0.360037i \(0.117236\pi\)
−0.932938 + 0.360037i \(0.882764\pi\)
\(734\) 14.7102 + 8.45975i 0.542964 + 0.312255i
\(735\) 0 0
\(736\) 9.95023 + 16.9021i 0.366771 + 0.623019i
\(737\) 10.7817 0.397148
\(738\) 0 0
\(739\) 39.5099i 1.45340i −0.686957 0.726698i \(-0.741054\pi\)
0.686957 0.726698i \(-0.258946\pi\)
\(740\) −7.50443 + 4.36665i −0.275868 + 0.160521i
\(741\) 0 0
\(742\) 0 0
\(743\) 10.9193i 0.400590i 0.979736 + 0.200295i \(0.0641901\pi\)
−0.979736 + 0.200295i \(0.935810\pi\)
\(744\) 0 0
\(745\) 22.3038i 0.817147i
\(746\) −6.89911 3.96764i −0.252594 0.145265i
\(747\) 0 0
\(748\) −15.5850 26.7840i −0.569843 0.979321i
\(749\) 0 0
\(750\) 0 0
\(751\) 30.3164i 1.10626i 0.833095 + 0.553130i \(0.186567\pi\)
−0.833095 + 0.553130i \(0.813433\pi\)
\(752\) −23.0501 + 40.5561i −0.840552 + 1.47893i
\(753\) 0 0
\(754\) −2.80013 + 4.86900i −0.101975 + 0.177319i
\(755\) −51.9515 −1.89071
\(756\) 0 0
\(757\) 18.4211 0.669526 0.334763 0.942302i \(-0.391344\pi\)
0.334763 + 0.942302i \(0.391344\pi\)
\(758\) −15.0423 + 26.1562i −0.546359 + 0.950035i
\(759\) 0 0
\(760\) 12.5771 0.0639114i 0.456220 0.00231831i
\(761\) 33.6013i 1.21805i 0.793152 + 0.609023i \(0.208438\pi\)
−0.793152 + 0.609023i \(0.791562\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −18.7669 + 10.9200i −0.678964 + 0.395073i
\(765\) 0 0
\(766\) 9.25817 + 5.32432i 0.334511 + 0.192375i
\(767\) 0.561347i 0.0202691i
\(768\) 0 0
\(769\) 0.776682i 0.0280079i −0.999902 0.0140039i \(-0.995542\pi\)
0.999902 0.0140039i \(-0.00445774\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 9.77040 + 16.7912i 0.351644 + 0.604329i
\(773\) 20.3612i 0.732340i 0.930548 + 0.366170i \(0.119331\pi\)
−0.930548 + 0.366170i \(0.880669\pi\)
\(774\) 0 0
\(775\) −52.4242 −1.88313
\(776\) −33.4813 + 0.170138i −1.20191 + 0.00610758i
\(777\) 0 0
\(778\) −3.24949 1.86876i −0.116500 0.0669984i
\(779\) 8.03896i 0.288026i
\(780\) 0 0
\(781\) 55.4309 1.98348
\(782\) 10.8496 + 6.23955i 0.387981 + 0.223126i
\(783\) 0 0
\(784\) 0 0
\(785\) −76.9532 −2.74658
\(786\) 0 0
\(787\) −48.7815 −1.73887 −0.869437 0.494043i \(-0.835518\pi\)
−0.869437 + 0.494043i \(0.835518\pi\)
\(788\) 16.0233 + 27.5374i 0.570808 + 0.980978i
\(789\) 0 0
\(790\) −14.2173 8.17628i −0.505828 0.290899i
\(791\) 0 0
\(792\) 0 0
\(793\) −0.100738 −0.00357730
\(794\) 13.1489 22.8640i 0.466639 0.811413i
\(795\) 0 0
\(796\) 10.1161 + 17.3854i 0.358557 + 0.616209i
\(797\) 5.84706i 0.207113i 0.994624 + 0.103557i \(0.0330223\pi\)
−0.994624 + 0.103557i \(0.966978\pi\)
\(798\) 0 0
\(799\) 29.7677i 1.05311i
\(800\) −40.4848 + 23.8333i −1.43135 + 0.842636i
\(801\) 0 0
\(802\) −29.2366 16.8138i −1.03238 0.593716i
\(803\) −36.7203 −1.29583
\(804\) 0 0
\(805\) 0 0
\(806\) 2.15072 3.73977i 0.0757558 0.131728i
\(807\) 0 0
\(808\) −16.1971 + 0.0823067i −0.569813 + 0.00289554i
\(809\) −25.1875 −0.885544 −0.442772 0.896634i \(-0.646005\pi\)
−0.442772 + 0.896634i \(0.646005\pi\)
\(810\) 0 0
\(811\) −12.4012 −0.435465 −0.217733 0.976008i \(-0.569866\pi\)
−0.217733 + 0.976008i \(0.569866\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 5.09350 8.85681i 0.178527 0.310431i
\(815\) −69.8038 −2.44512
\(816\) 0 0
\(817\) 4.28125i 0.149782i
\(818\) 12.2865 21.3644i 0.429588 0.746988i
\(819\) 0 0
\(820\) 24.1939 + 41.5792i 0.844889 + 1.45201i
\(821\) −14.2786 −0.498328 −0.249164 0.968461i \(-0.580156\pi\)
−0.249164 + 0.968461i \(0.580156\pi\)
\(822\) 0 0
\(823\) 14.1742i 0.494081i 0.969005 + 0.247040i \(0.0794581\pi\)
−0.969005 + 0.247040i \(0.920542\pi\)
\(824\) 0.0711888 + 14.0092i 0.00247998 + 0.488034i
\(825\) 0 0
\(826\) 0 0
\(827\) 25.5816i 0.889559i 0.895640 + 0.444779i \(0.146718\pi\)
−0.895640 + 0.444779i \(0.853282\pi\)
\(828\) 0 0
\(829\) 40.6638i 1.41231i −0.708056 0.706156i \(-0.750428\pi\)
0.708056 0.706156i \(-0.249572\pi\)
\(830\) −19.2834 + 33.5308i −0.669336 + 1.16387i
\(831\) 0 0
\(832\) −0.0392899 3.86582i −0.00136213 0.134023i
\(833\) 0 0
\(834\) 0 0
\(835\) 28.0726i 0.971494i
\(836\) −12.7923 + 7.44351i −0.442429 + 0.257439i
\(837\) 0 0
\(838\) −32.6282 18.7643i −1.12712 0.648201i
\(839\) 24.4293 0.843394 0.421697 0.906737i \(-0.361435\pi\)
0.421697 + 0.906737i \(0.361435\pi\)
\(840\) 0 0
\(841\) 38.5449 1.32913
\(842\) −21.1103 12.1404i −0.727508 0.418385i
\(843\) 0 0
\(844\) 1.78445 1.03833i 0.0614231 0.0357406i
\(845\) 46.5667i 1.60194i
\(846\) 0 0
\(847\) 0 0
\(848\) 5.19384 9.13844i 0.178357 0.313815i
\(849\) 0 0
\(850\) −14.9453 + 25.9876i −0.512620 + 0.891367i
\(851\) 4.12652i 0.141455i
\(852\) 0 0
\(853\) 21.6039i 0.739705i 0.929091 + 0.369852i \(0.120592\pi\)
−0.929091 + 0.369852i \(0.879408\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 38.8280 0.197307i 1.32711 0.00674382i
\(857\) 2.37802i 0.0812317i −0.999175 0.0406159i \(-0.987068\pi\)
0.999175 0.0406159i \(-0.0129320\pi\)
\(858\) 0 0
\(859\) 41.8671 1.42849 0.714244 0.699897i \(-0.246771\pi\)
0.714244 + 0.699897i \(0.246771\pi\)
\(860\) −12.8848 22.1435i −0.439368 0.755088i
\(861\) 0 0
\(862\) 13.8771 24.1301i 0.472656 0.821876i
\(863\) 39.7743i 1.35393i −0.736014 0.676967i \(-0.763294\pi\)
0.736014 0.676967i \(-0.236706\pi\)
\(864\) 0 0
\(865\) −3.00329 −0.102115
\(866\) −4.53554 + 7.88661i −0.154124 + 0.267998i
\(867\) 0 0
\(868\) 0 0
\(869\) 19.2995 0.654689
\(870\) 0 0
\(871\) 0.858337 0.0290836
\(872\) 0.196197 + 38.6096i 0.00664408 + 1.30749i
\(873\) 0 0
\(874\) 2.98006 5.18186i 0.100802 0.175279i
\(875\) 0 0
\(876\) 0 0
\(877\) 26.7180 0.902203 0.451102 0.892473i \(-0.351031\pi\)
0.451102 + 0.892473i \(0.351031\pi\)
\(878\) −8.52458 4.90243i −0.287690 0.165449i
\(879\) 0 0
\(880\) 43.7623 76.9987i 1.47523 2.59563i
\(881\) 39.2357i 1.32188i −0.750437 0.660942i \(-0.770157\pi\)
0.750437 0.660942i \(-0.229843\pi\)
\(882\) 0 0
\(883\) 57.7837i 1.94458i 0.233783 + 0.972289i \(0.424889\pi\)
−0.233783 + 0.972289i \(0.575111\pi\)
\(884\) −1.24073 2.13230i −0.0417303 0.0717169i
\(885\) 0 0
\(886\) 5.48806 9.54288i 0.184375 0.320599i
\(887\) 49.9754 1.67801 0.839005 0.544124i \(-0.183138\pi\)
0.839005 + 0.544124i \(0.183138\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −54.9450 31.5986i −1.84176 1.05919i
\(891\) 0 0
\(892\) 9.62861 + 16.5475i 0.322390 + 0.554052i
\(893\) 14.2173 0.475764
\(894\) 0 0
\(895\) 34.5534 1.15499
\(896\) 0 0
\(897\) 0 0
\(898\) −16.4771 9.47587i −0.549847 0.316214i
\(899\) −51.8796 −1.73028
\(900\) 0 0
\(901\) 6.70750i 0.223459i
\(902\) −49.0722 28.2211i −1.63392 0.939660i
\(903\) 0 0
\(904\) −0.102329 20.1372i −0.00340340 0.669755i
\(905\) 7.51834 0.249918
\(906\) 0 0
\(907\) 15.4793i 0.513982i 0.966414 + 0.256991i \(0.0827310\pi\)
−0.966414 + 0.256991i \(0.917269\pi\)
\(908\) −11.2192 19.2811i −0.372323 0.639867i
\(909\) 0 0
\(910\) 0 0
\(911\) 2.22992i 0.0738807i 0.999317 + 0.0369403i \(0.0117612\pi\)
−0.999317 + 0.0369403i \(0.988239\pi\)
\(912\) 0 0
\(913\) 45.5169i 1.50639i
\(914\) 1.42657 + 0.820410i 0.0471866 + 0.0271368i
\(915\) 0 0
\(916\) −17.5086 + 10.1878i −0.578500 + 0.336616i
\(917\) 0 0
\(918\) 0 0
\(919\) 30.2165i 0.996750i 0.866962 + 0.498375i \(0.166070\pi\)
−0.866962 + 0.498375i \(0.833930\pi\)
\(920\) 0.181769 + 35.7704i 0.00599276 + 1.17931i
\(921\) 0 0
\(922\) 15.1025 26.2610i 0.497375 0.864859i
\(923\) 4.41290 0.145252
\(924\) 0 0
\(925\) −9.88408 −0.324986
\(926\) 10.1812 17.7035i 0.334575 0.581774i
\(927\) 0 0
\(928\) −40.0643 + 23.5858i −1.31517 + 0.774241i
\(929\) 2.79127i 0.0915787i −0.998951 0.0457894i \(-0.985420\pi\)
0.998951 0.0457894i \(-0.0145803\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −12.7155 21.8527i −0.416511 0.715808i
\(933\) 0 0
\(934\) −36.4912 20.9859i −1.19403 0.686680i
\(935\) 56.5161i 1.84828i
\(936\) 0 0
\(937\) 13.5645i 0.443133i 0.975145 + 0.221566i \(0.0711169\pi\)
−0.975145 + 0.221566i \(0.928883\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −73.5348 + 42.7881i −2.39844 + 1.39560i
\(941\) 26.2750i 0.856541i 0.903650 + 0.428271i \(0.140877\pi\)
−0.903650 + 0.428271i \(0.859123\pi\)
\(942\) 0 0
\(943\) 22.8635 0.744538
\(944\) −2.29589 + 4.03956i −0.0747248 + 0.131476i
\(945\) 0 0
\(946\) 26.1340 + 15.0295i 0.849690 + 0.488652i
\(947\) 9.01711i 0.293017i 0.989209 + 0.146508i \(0.0468035\pi\)
−0.989209 + 0.146508i \(0.953196\pi\)
\(948\) 0 0
\(949\) −2.92333 −0.0948953
\(950\) 12.4119 + 7.13799i 0.402694 + 0.231587i
\(951\) 0 0
\(952\) 0 0
\(953\) −5.49448 −0.177984 −0.0889918 0.996032i \(-0.528364\pi\)
−0.0889918 + 0.996032i \(0.528364\pi\)
\(954\) 0 0
\(955\) −39.5995 −1.28141
\(956\) 9.43932 5.49251i 0.305289 0.177641i
\(957\) 0 0
\(958\) 34.7618 + 19.9913i 1.12310 + 0.645889i
\(959\) 0 0
\(960\) 0 0
\(961\) 8.84755 0.285405
\(962\) 0.405497 0.705097i 0.0130738 0.0227332i
\(963\) 0 0
\(964\) 23.5749 13.7177i 0.759297 0.441817i
\(965\) 35.4306i 1.14055i
\(966\) 0 0
\(967\) 45.1993i 1.45351i −0.686896 0.726756i \(-0.741027\pi\)
0.686896 0.726756i \(-0.258973\pi\)
\(968\) 0.371494 + 73.1061i 0.0119403 + 2.34972i
\(969\) 0 0
\(970\) −52.9343 30.4422i −1.69962 0.977441i
\(971\) 41.0558 1.31754 0.658772 0.752342i \(-0.271076\pi\)
0.658772 + 0.752342i \(0.271076\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 6.74564 11.7296i 0.216144 0.375842i
\(975\) 0 0
\(976\) −0.724927 0.412013i −0.0232044 0.0131882i
\(977\) −57.2191 −1.83060 −0.915301 0.402770i \(-0.868048\pi\)
−0.915301 + 0.402770i \(0.868048\pi\)
\(978\) 0 0
\(979\) 74.5859 2.38378
\(980\) 0 0
\(981\) 0 0
\(982\) −12.5158 + 21.7630i −0.399395 + 0.694486i
\(983\) −52.3743 −1.67048 −0.835241 0.549884i \(-0.814672\pi\)
−0.835241 + 0.549884i \(0.814672\pi\)
\(984\) 0 0
\(985\) 58.1058i 1.85140i
\(986\) −14.7901 + 25.7176i −0.471011 + 0.819016i
\(987\) 0 0
\(988\) −1.01840 + 0.592583i −0.0323997 + 0.0188526i
\(989\) −12.1762 −0.387182
\(990\) 0 0
\(991\) 59.5704i 1.89232i 0.323704 + 0.946158i \(0.395072\pi\)
−0.323704 + 0.946158i \(0.604928\pi\)
\(992\) 30.7724 18.1157i 0.977026 0.575174i
\(993\) 0 0
\(994\) 0 0
\(995\) 36.6844i 1.16297i
\(996\) 0 0
\(997\) 32.3500i 1.02454i 0.858826 + 0.512268i \(0.171194\pi\)
−0.858826 + 0.512268i \(0.828806\pi\)
\(998\) 6.62808 11.5252i 0.209808 0.364824i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.b.l.1567.3 12
3.2 odd 2 588.2.b.c.391.10 yes 12
4.3 odd 2 1764.2.b.m.1567.4 12
7.6 odd 2 1764.2.b.m.1567.3 12
12.11 even 2 588.2.b.d.391.9 yes 12
21.2 odd 6 588.2.o.f.31.8 24
21.5 even 6 588.2.o.e.31.8 24
21.11 odd 6 588.2.o.f.19.3 24
21.17 even 6 588.2.o.e.19.3 24
21.20 even 2 588.2.b.d.391.10 yes 12
28.27 even 2 inner 1764.2.b.l.1567.4 12
84.11 even 6 588.2.o.e.19.8 24
84.23 even 6 588.2.o.e.31.3 24
84.47 odd 6 588.2.o.f.31.3 24
84.59 odd 6 588.2.o.f.19.8 24
84.83 odd 2 588.2.b.c.391.9 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.b.c.391.9 12 84.83 odd 2
588.2.b.c.391.10 yes 12 3.2 odd 2
588.2.b.d.391.9 yes 12 12.11 even 2
588.2.b.d.391.10 yes 12 21.20 even 2
588.2.o.e.19.3 24 21.17 even 6
588.2.o.e.19.8 24 84.11 even 6
588.2.o.e.31.3 24 84.23 even 6
588.2.o.e.31.8 24 21.5 even 6
588.2.o.f.19.3 24 21.11 odd 6
588.2.o.f.19.8 24 84.59 odd 6
588.2.o.f.31.3 24 84.47 odd 6
588.2.o.f.31.8 24 21.2 odd 6
1764.2.b.l.1567.3 12 1.1 even 1 trivial
1764.2.b.l.1567.4 12 28.27 even 2 inner
1764.2.b.m.1567.3 12 7.6 odd 2
1764.2.b.m.1567.4 12 4.3 odd 2